1
|
Mayer RL, Verbeke R, Asselman C, Aernout I, Gul A, Eggermont D, Boucher K, Thery F, Maia TM, Demol H, Gabriels R, Martens L, Bécavin C, De Smedt SC, Vandekerckhove B, Lentacker I, Impens F. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat Commun 2022; 13:6075. [PMID: 36241641 PMCID: PMC9562072 DOI: 10.1038/s41467-022-33721-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne intracellular bacterial pathogen leading to human listeriosis. Despite a high mortality rate and increasing antibiotic resistance no clinically approved vaccine against Listeria is available. Attenuated Listeria strains offer protection and are tested as antitumor vaccine vectors, but would benefit from a better knowledge on immunodominant vector antigens. To identify novel antigens, we screen for Listeria peptides presented on the surface of infected human cell lines by mass spectrometry-based immunopeptidomics. In between more than 15,000 human self-peptides, we detect 68 Listeria immunopeptides from 42 different bacterial proteins, including several known antigens. Peptides presented on different cell lines are often derived from the same bacterial surface proteins, classifying these antigens as potential vaccine candidates. Encoding these highly presented antigens in lipid nanoparticle mRNA vaccine formulations results in specific CD8+ T-cell responses and induces protection in vaccination challenge experiments in mice. Our results can serve as a starting point for the development of a clinical mRNA vaccine against Listeria and aid to improve attenuated Listeria vaccines and vectors, demonstrating the power of immunopeptidomics for next-generation bacterial vaccine development.
Collapse
Affiliation(s)
- Rupert L Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Adillah Gul
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Teresa M Maia
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
2
|
Li R, Wan X, Takala TM, Saris PEJ. Heterologous Expression of the Leuconostoc Bacteriocin Leucocin C in Probiotic Yeast Saccharomyces boulardii. Probiotics Antimicrob Proteins 2021; 13:229-237. [PMID: 32567021 PMCID: PMC7904741 DOI: 10.1007/s12602-020-09676-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The yeast Saccharomyces boulardii is well known for its probiotic effects such as treating or preventing gastrointestinal diseases. Due to its ability to survive in stomach and intestine, S. boulardii could be applied as a vehicle for producing and delivering bioactive substances of interest to human gut. In this study, we cloned the gene lecC encoding the antilisterial peptide leucocin C from lactic acid bacterium Leuconostoc carnosum in S. boulardii. The constructed S. boulardii strain secreted a peptide, which had molecular weight corresponding to leucocin C in SDS-PAGE. The peptide band inhibited Listeria monocytogenes in gel overlay assay. Likewise, concentrated S. boulardii culture supernatant inhibited the growth of L. monocytogenes. The growth profile and acid tolerance of the leucocin C secreting S. boulardii were similar as those of the strain carrying the empty vector. We further demonstrated that the cells of the leucocin C producing S. boulardii efficiently killed L. monocytogenes, also without antibiotic selection pressure. These results showed that antilisterial activity could be added to the arsenal of probiotic activities of S. boulardii, demonstrating its potential as a carrier for therapeutics delivery.
Collapse
Affiliation(s)
- Ran Li
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, 00014, Helsinki, Finland.
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, 00014, Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, 00014, Helsinki, Finland
| | - Per E J Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
3
|
Rey C, Chang YY, Latour-Lambert P, Varet H, Proux C, Legendre R, Coppée JY, Enninga J. Transcytosis subversion by M cell-to-enterocyte spread promotes Shigella flexneri and Listeria monocytogenes intracellular bacterial dissemination. PLoS Pathog 2020; 16:e1008446. [PMID: 32282860 PMCID: PMC7179946 DOI: 10.1371/journal.ppat.1008446] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/23/2020] [Accepted: 02/29/2020] [Indexed: 11/19/2022] Open
Abstract
Microfold (M) cell host-pathogen interaction studies would benefit from the visual analysis of dynamic cellular and microbial interplays. We adapted a human in vitro M cell model to physiological bacterial infections, expression of fluorescent localization reporters and long-term three-dimensional time-lapse microscopy. This approach allows following key steps of M cell infection dynamics at subcellular resolution, from the apical onset to basolateral epithelial dissemination. We focused on the intracellular pathogen Shigella flexneri, classically reported to transcytose through M cells to initiate bacillary dysentery in humans, while eliciting poorly protective immune responses. Our workflow was critical to reveal that S. flexneri develops a bimodal lifestyle within M cells leading to rapid transcytosis or delayed vacuolar rupture, followed by direct actin motility-based propagation to neighboring enterocytes. Moreover, we show that Listeria monocytogenes, another intracellular pathogen sharing a tropism for M cells, disseminates in a similar manner and evades M cell transcytosis completely. We established that actin-based M cell-to-enterocyte spread is the major dissemination pathway for both pathogens and avoids their exposure to basolateral compartments in our system. Our results challenge the notion that intracellular pathogens are readily transcytosed by M cells to inductive immune compartments in vivo, providing a potential mechanism for their ability to evade adaptive immunity. Microfold (M) epithelial cells are important for the onset of infections and induction of immune responses in many mucosal diseases. We extended a human in vitro M cell model to apical infections, expression of fluorescent host and microbial reporters and real-time fluorescence microscopy. Focusing on the human intracellular pathogen S. flexneri, responsible for bacillary dysentery, this workflow allowed us to uncover that the bacterium can subvert the immunological sampling function of M cells by promoting a cytosolic lifestyle and spreading directly to neighboring enterocytes. This mechanism was shared with the etiologic agent of listeriosis, the intracellular pathogen L. monocytogenes and allowed both pathogens to avoid exposure to underlying immune compartments. These results may provide a mechanism for the ability of intracellular pathogens to evade adaptive immunity in vivo, emphasizing the importance of advanced studies of M cell host-pathogen interactions to understand early steps of mucosal invasion and their consequences on immunity.
Collapse
Affiliation(s)
- Camille Rey
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
| | - Yuen-Yan Chang
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
| | - Patricia Latour-Lambert
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
| | - Hugo Varet
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR 3756 IP CNRS), Paris, France
| | - Caroline Proux
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
- Institut Pasteur, Hub Bioinformatique et Biostatistique, Département de Biologie Computationnelle (USR 3756 IP CNRS), Paris, France
| | - Jean-Yves Coppée
- Institut Pasteur, Transcriptome and Epigenome Platform, Paris, France
| | - Jost Enninga
- Institut Pasteur, Dynamics of Host-Pathogen Interactions Unit, Paris, France, and Centre National de le la Recherche Scientifique (CNRS) UMR3691, Paris, France
- * E-mail:
| |
Collapse
|
4
|
Karlsson WK, Harboe ZB, Roed C, Monrad JB, Lindelof M, Larsen VA, Kondziella D. Early trigeminal nerve involvement in Listeria monocytogenes rhombencephalitis: case series and systematic review. J Neurol 2017; 264:1875-1884. [PMID: 28730571 DOI: 10.1007/s00415-017-8572-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/26/2023]
Abstract
Listeria monocytogenes is associated with rhombencephalitis. However, the exact mechanisms of brainstem invasion remains poorly understood. Here, we demonstrate clinical and radiological data suggesting that Listeria may invade the brainstem via the trigeminal nerve. Three females (41, 64 and 70 years) with culture proven L. monocytogenes bacteremia and rhombencephalitis were investigated in the period of 2014-16. T2-weighted and contrast-enhanced T1-weighted MRI revealed a cerebellopontine abscess in all three patients, including the involvement of the trigeminal nerve root. In two patients, MRI also revealed selective contrast enhancement of the sensory trigeminal tract in the pons and medulla oblongata. Prior to any other neurological symptoms, two patients complained of hypoesthesia and a tingling sensation in the ipsilateral half of the face, consistent with sensory trigeminal nerve dysfunction on that side. In addition, we identified another 120 cases of Listeria rhombencephalitis following a systematic review. Cranial nerves VII, V, IX, and X, respectively, medulla oblongata, cerebellum and pons, were the most frequently involved brain structures. The present clinical and radiological findings corroborate earlier data from animal experiments, indicating that L. monocytogenes may be capable of retrograde intra-axonal migration along the cranial nerves. We suggest that in a subset of patients with rhombencephalitis L. monocytogenes enters the cerebellopontine angle through the trigeminal nerve, invading the brainstem via the sensory trigeminal nuclei.
Collapse
Affiliation(s)
- William K Karlsson
- Department of Neurology, Herlev Sygehus, Copenhagen University Hospital, Copenhagen, Denmark
| | - Zitta Barrella Harboe
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Casper Roed
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jeppe B Monrad
- Department of Neurology, Herlev Sygehus, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Lindelof
- Department of Neurology, Herlev Sygehus, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Neuroradiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
5
|
Abstract
Nucleotide-binding oligomerization domain 2 (NOD2) is an intracellular pattern recognition receptor that senses bacterial peptidoglycan (PGN)-conserved motifs in cytosol and stimulates host immune response. The association of NOD2 mutations with a number of inflammatory pathologies, including Crohn disease (CD), Graft-versus-host disease (GVHD), and Blau syndrome, highlights its pivotal role in host–pathogen interactions and inflammatory response. Stimulation of NOD2 by its ligand (muramyl dipeptide) activates pro-inflammatory pathways such as nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), and Caspase-1. A loss of NOD2 function may result in a failure in the control of microbial infection, thereby initiating systemic responses and aberrant inflammation. Because the ligand of Nod2 is conserved in both gram-positive and gram-negative bacteria, NOD2 detects a wide variety of microorganisms. Furthermore, current literature evidences that NOD2 is also able to control viruses’ and parasites’ infections. In this review, we present and discuss recent developments about the role of NOD2 in shaping the gut commensal microbiota and pathogens, including bacteria, viruses, and parasites, and the mechanisms by which Nod2 mutations participate in disease occurrence.
Collapse
Affiliation(s)
- Ziad Al Nabhani
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Jean-Pierre Hugot
- Laboratoire Inflamex, Université Paris-Diderot Sorbonne Paris-Cité, Paris, France
- INSERM, UMR 1149, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
- * E-mail: (JPH); (FB)
| | - Frederick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- * E-mail: (JPH); (FB)
| |
Collapse
|
6
|
Albac S, Schmitz A, Lopez-Alayon C, d'Enfert C, Sautour M, Ducreux A, Labruère-Chazal C, Laue M, Holland G, Bonnin A, Dalle F. Candida albicansis able to use M cells as a portal of entry across the intestinal barrierin vitro. Cell Microbiol 2015; 18:195-210. [DOI: 10.1111/cmi.12495] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Sandrine Albac
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Antonin Schmitz
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Carolina Lopez-Alayon
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Christophe d'Enfert
- Institut Pasteur; Unité Biologie et Pathogénicité Fongiques, Département Mycologie; Paris France
- INRA; USC 2019; Paris France
| | - Marc Sautour
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
- Centre Hospitalier Universitaire; Service de Parasitologie Mycologie; 2 Rue Angélique Ducoudray F-21070 Dijon Cedex France
| | - Amandine Ducreux
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
| | - Catherine Labruère-Chazal
- Université de Bourgogne Franche-Comté; Institut de Mathématiques de Bourgogne, UFR Sciences et Techniques; Dijon France
| | - Michael Laue
- Robert Koch-Institute; Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy; Nordufer 20 13353 Berlin Germany
| | - Gudrun Holland
- Robert Koch-Institute; Centre for Biological Threats and Special Pathogens, Advanced Light and Electron Microscopy; Nordufer 20 13353 Berlin Germany
| | - Alain Bonnin
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
- Centre Hospitalier Universitaire; Service de Parasitologie Mycologie; 2 Rue Angélique Ducoudray F-21070 Dijon Cedex France
| | - Frederic Dalle
- UMR 1347, Université de Bourgogne Franche-Comté; 17 Rue Sully, BP 86 510 F-21065 Dijon Cedex France
- Centre Hospitalier Universitaire; Service de Parasitologie Mycologie; 2 Rue Angélique Ducoudray F-21070 Dijon Cedex France
| |
Collapse
|
7
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
8
|
Bou Ghanem EN, Jones GS, Myers-Morales T, Patil PD, Hidayatullah AN, D'Orazio SEF. InlA promotes dissemination of Listeria monocytogenes to the mesenteric lymph nodes during food borne infection of mice. PLoS Pathog 2012; 8:e1003015. [PMID: 23166492 PMCID: PMC3499570 DOI: 10.1371/journal.ppat.1003015] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/21/2012] [Indexed: 12/15/2022] Open
Abstract
Intestinal Listeria monocytogenes infection is not efficient in mice and this has been attributed to a low affinity interaction between the bacterial surface protein InlA and E-cadherin on murine intestinal epithelial cells. Previous studies using either transgenic mice expressing human E-cadherin or mouse-adapted L. monocytogenes expressing a modified InlA protein (InlA(m)) with high affinity for murine E-cadherin showed increased efficiency of intragastric infection. However, the large inocula used in these studies disseminated to the spleen and liver rapidly, resulting in a lethal systemic infection that made it difficult to define the natural course of intestinal infection. We describe here a novel mouse model of oral listeriosis that closely mimics all phases of human disease: (1) ingestion of contaminated food, (2) a distinct period of time during which L. monocytogenes colonize only the intestines, (3) varying degrees of systemic spread in susceptible vs. resistant mice, and (4) late stage spread to the brain. Using this natural feeding model, we showed that the type of food, the time of day when feeding occurred, and mouse gender each affected susceptibility to L. monocytogenes infection. Co-infection studies using L. monocytogenes strains that expressed either a high affinity ligand for E-cadherin (InlA(m)), a low affinity ligand (wild type InlA from Lm EGDe), or no InlA (ΔinlA) showed that InlA was not required to establish intestinal infection in mice. However, expression of InlA(m) significantly increased bacterial persistence in the underlying lamina propria and greatly enhanced dissemination to the mesenteric lymph nodes. Thus, these studies revealed a previously uncharacterized role for InlA in facilitating systemic spread via the lymphatic system after invasion of the gut mucosa.
Collapse
Affiliation(s)
| | | | | | | | | | - Sarah E. F. D'Orazio
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
9
|
Jung C, Hugot JP, Barreau F. Peyer's Patches: The Immune Sensors of the Intestine. Int J Inflam 2010; 2010:823710. [PMID: 21188221 PMCID: PMC3004000 DOI: 10.4061/2010/823710] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 07/11/2010] [Indexed: 12/13/2022] Open
Abstract
The gut-associated lymphoid tissue (GALT) consists of isolated or aggregated lymphoid follicles forming Peyer's patches (PPs). By their ability to transport luminal antigens and bacteria, PPs can be considered as the immune sensors of the intestine. PPs functions like induction of immune tolerance or defense against pathogens result from the complex interplay between immune cells located in the lymphoid follicles and the follicle-associated epithelium. This crosstalk seems to be regulated by pathogen recognition receptors, especially Nod2. Although TLR exerts a limited role in PP homeotasis, Nod2 regulates the number, size, and T-cell composition of PPs, in response to the gut flora. In turn, CD4+ T-cells present in the PP are able to modulate the paracellular and transcellular permeabilities. Two human disorders, Crohn's disease and graft-versus-host disease are thought to be driven by an abnormal response toward the commensal flora. They have been associated with NOD2 mutations and PP dysfunction.
Collapse
Affiliation(s)
- Camille Jung
- UMR843 INSERM, Université Sorbonne Paris Cité-Diderot, Hôpital Robert Debré, 75019 Paris, France
| | | | | |
Collapse
|
10
|
Kuo CY, Sinha S, Jazayeri JA, Pouton CW. A Stably Engineered, Suicidal Strain of Listeria monocytogenes Delivers Protein and/or DNA to Fully Differentiated Intestinal Epithelial Monolayers. Mol Pharm 2009; 6:1052-61. [DOI: 10.1021/mp800153u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng-Yi Kuo
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Shubhra Sinha
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Jalal A. Jazayeri
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Colin W. Pouton
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| |
Collapse
|
11
|
Lungu B, Ricke S, Johnson M. Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: A review. Anaerobe 2009; 15:7-17. [DOI: 10.1016/j.anaerobe.2008.08.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 05/28/2008] [Accepted: 08/30/2008] [Indexed: 11/24/2022]
|
12
|
Martinez-Argudo I, Jepson MA. Salmonella translocates across an in vitro M cell model independently of SPI-1 and SPI-2. MICROBIOLOGY-SGM 2009; 154:3887-3894. [PMID: 19047755 DOI: 10.1099/mic.0.2008/021162-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have used an in vitro model of intestinal M cells to examine the mechanisms by which Salmonella enterica translocates across these specialized cells, which constitute a primary site of infection of the mammalian host. S. enterica can invade cultured cells by deploying a type III secretion system (TTSS) encoded within Salmonella pathogenicity island 1 (SPI-1) to translocate effector proteins into the host cell cytoplasm that trigger cellular responses, including prominent cytoskeletal rearrangements. After Salmonella enters the host cell, a second TTSS encoded in SPI-2 modulates intracellular trafficking and enables the bacteria to replicate within a modified vacuolar compartment. Within the host intestine, specialized antigen-sampling M cells, which reside in the epithelium overlying lymphoid tissues in the gut, are a preferential site of Salmonella invasion. The mechanisms of infection of M cells remain poorly defined and it is not known whether either SPI-1 or SPI-2 is required for infection of these cells. To address these questions we have employed an in vitro M cell model involving co-culture of polarized Caco-2 intestinal epithelial cells with Raji B cells. S. enterica serovar Typhimurium translocated across Caco-2/Raji co-cultures to a much greater extent than they cross native Caco-2 cell monolayers. Salmonella translocation was greatly reduced by heat treatment or fixation, suggesting that processes distinct from the sampling of inert particles are the main determinants of bacterial translocation. Translocation across both mono-cultured and co-cultured Caco-2 cells was partially inhibited by treatment with the dynamin inhibitor dynasore, but resistant to EIPA, an inhibitor of macropinocytosis. There was no difference between the abilities of wild-type Salmonella Typhimurium and mutants lacking multiple SPI-1 effectors to translocate across the M cell model, although the SPI-1 effector mutants were somewhat attenuated for translocation across native Caco-2 layers. There was also no difference between wild-type and SPI-2 mutants in M cell translocation. Together these data suggest that that SPI-1 and SPI-2 are dispensable for rapid M cell translocation and that infection at these specialized epithelial sites involves distinctive mechanisms that are not reliably modelled using conventional cell culture infection models.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Mark A Jepson
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
13
|
Corr SC, Gahan CCGM, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. ACTA ACUST UNITED AC 2007; 52:2-12. [PMID: 18081850 DOI: 10.1111/j.1574-695x.2007.00359.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
M-cells are specialized cells found in the follicle-associated epithelium of intestinal Peyer's patches of gut-associated lymphoid tissue and in isolated lymphoid follicles, appendix and in mucosal-associated lymphoid tissue sites outside the gastrointestinal tract. In the gastrointestinal tract, M-cells play an important role in transport of antigen from the lumen of the small intestine to mucosal lymphoid tissues, where processing and initiation of immune responses occur. Thus, M-cells act as gateways to the mucosal immune system and this function has been exploited by many invading pathogens. Understanding the mechanism by which M-cells sample antigen will inform the design of oral vaccines with improved efficacy in priming mucosal and systemic immune responses. In this review, the origin and morphology of M-cells, and their role in mucosal immunity and pathogenesis of infections are discussed.
Collapse
Affiliation(s)
- Sinead C Corr
- Department of Microbiology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
14
|
Martinez-Argudo I, Sands C, Jepson MA. Translocation of enteropathogenic Escherichia coli across an in vitro M cell model is regulated by its type III secretion system. Cell Microbiol 2007; 9:1538-46. [PMID: 17298392 DOI: 10.1111/j.1462-5822.2007.00891.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is an extracellular pathogen that utilizes a type III secretion system (TTSS) to modulate diverse host cell processes including cytoskeletal dynamics, tight junction permeability and macrophage phagocytosis. Some EPEC strains exhibit selective tropism for the specialized follicle-associated epithelium (FAE) overlying lymphoid follicles in the gut, which is a major site of uptake of inert particulates and pathogens, but do not translocate from the intestinal lumen in significant numbers. We have investigated the interaction of EPEC with FAE using an established in vitro model of the specialized FAE in which polarized enterocyte-like Caco-2 cells cocultured with the Raji B cell line undergo a phenotypic switch to a form that morphologically and functionally resembles the specialized antigen-transporting M cells found within FAE. Having confirmed that coculture with Raji B cells induces brush border reorganization and enhances particle transport across Caco-2 cells, we investigated translocation of bacteria across the M cell model. While Salmonella translocation was markedly upregulated by Raji coculture, transport of wild-type EPEC occurred at similarly low levels across both native Caco-2 and Caco-2/Raji-cocultured layers. Translocation rates were markedly higher for EPEC strains lacking either functional TTSS or the effector protein EspF. These observations resemble previously reported data on the inhibition of macrophage phagocytosis by EPEC, which has also been reported to be dependent on TTSS and EspF. Furthermore, as with macrophage phagocytosis, enhanced translocation of a TTSS mutant was blocked by wortmannin, implicating inhibition of phosphatidyl inositol 3-kinase-mediated signalling in the regulation of M cell translocation by EPEC.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
15
|
Corr S, Hill C, Gahan CGM. An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microb Pathog 2006; 41:241-50. [PMID: 17049432 DOI: 10.1016/j.micpath.2006.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/28/2006] [Accepted: 08/28/2006] [Indexed: 01/02/2023]
Abstract
An ability to translocate the mucosal epithelia through M cells provides invasive pathogens with a rapid means of accessing the mucosal lymphoid tissues. In order to determine the role of M cells in Listeria monocytogenes infection, we initially assessed colonization of Peyer's patch (PP) epithelium in BALB/c mice by Vibrio cholerae Eltor, wild-type L. monocytogenes and an isogenic hemolysin mutant (LO28Deltahly). It was observed that both wild-type L. monocytogenes and Deltahly showed preferential colonization of PP epithelium in this model. Furthermore, a novel luciferase reporter system was used to show rapid site-specific localization of L. monocytogenes in intestinal Peyer's patches. To examine the role of M cells in transcytosis of L. monocytogenes we utilized an in vitro transwell model that mimics M-cell activity through differentiation of C2Bbe1 epithelial enterocytes via co-culture with murine Peyer's patch lymphocytes (PPL). It was shown that L. monocytogenes transits M cells at significantly increased rates compared to C2Bbe1 monocultures. In addition, M-cell transport occurred independently of bacterial hemolysin and internalin production. This study demonstrates rapid transcytosis of L. monocytogenes through M cells, a process that occurs independently of the action of classical virulence factors.
Collapse
Affiliation(s)
- Sinéad Corr
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Ireland
| | | | | |
Collapse
|
16
|
Moroni O, Kheadr E, Boutin Y, Lacroix C, Fliss I. Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl Environ Microbiol 2006; 72:6894-901. [PMID: 16936051 PMCID: PMC1636179 DOI: 10.1128/aem.00928-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 08/14/2006] [Indexed: 01/16/2023] Open
Abstract
Three bacteriocin-producing bifidobacterial isolates from newborns were identified as Bifidobacterium thermacidophilum (two strains) and B. thermophilum (one strain). This study was undertaken to evaluate the ability of these strains to compete with food-borne Listeria monocytogenes for adhesion and invasion sites on Caco-2 and HT-29 cells. The bifidobacteria adhered at levels ranging from 4% to 10% of the CFU added, but none of the bifidobacteria were able to invade cells. The abilities of Listeria to adhere to and to invade cells varied widely depending on the strain tested. Three groups of Listeria were identified based on invasiveness: weakly invasive, moderately invasive, and highly invasive strains. One strain from each group was tested in competition with bifidobacteria. B. thermacidophilum RBL70 was the most effective in blocking invasion of Listeria, and the decreases in invasion ranged from 38% to 90%. For all three bifidobacterial strains, contact between the cell monolayer and the bifidobacteria for 1 h before exposure to Listeria increased the degree of inhibition. Finally, visualization of competition for adhesion sites on cells by fluorescent in situ hybridization suggested that the two bacteria tended to adhere in close proximity.
Collapse
Affiliation(s)
- Olivier Moroni
- STELA Dairy Research Center, Nutraceuticals and Functional Foods Institute (INAF), Pavillon Paul Comtois, Université Laval, Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
17
|
Rütten M, Lehner A, Pospischil A, Sydler T. Cerebral listeriosis in an adult Freiberger gelding. J Comp Pathol 2006; 134:249-53. [PMID: 16542674 DOI: 10.1016/j.jcpa.2005.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 09/27/2005] [Indexed: 11/22/2022]
Abstract
Listeria monocytogenes infection, although rare in horses, can lead to septicaemia, gastroenteritis and abortion or stillborn foals. Equine cerebral listeriosis has been reported, but only in newborn animals. This report describes a Freiberger gelding with severe neuronal symptoms of sudden onset. The animal collapsed within 24 h and was humanely killed. Necropsy revealed multiple small brown to reddish foci within the brain stem and pons. Histopathology demonstrated multifocal suppurative meningoencephalitis with microabscesses and occasional intra-lesional, coccoid to rod-shaped, bacteria. These were identified immunohistochemically as Listeria spp. and further specified as L. monocytogenes by a commercial test system based on in-situ hybridization.
Collapse
Affiliation(s)
- M Rütten
- Institute of Veterinary Pathology, Vetsuisse Faculty University of Zürich, Winterthurerstrasse 268, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
18
|
Brayden DJ, Jepson MA, Baird AW. Keynote review: Intestinal Peyer's patch M cells and oral vaccine targeting. Drug Discov Today 2005; 10:1145-57. [PMID: 16182207 DOI: 10.1016/s1359-6446(05)03536-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Specialized M cells in the follicle-associated epithelium of intestinal Peyer's patches serve as portals for diverse particulates. Following antigen handover to dome lymphocytes, a protective mucosal antibody secretion ensues. One approach to oral vaccine delivery is to mimic the entry pathways of pathogens via M cells. The paucity of human tissue for in vitro investigation has hampered the discovery of M-cell pathogen receptors; however an in vitro human M like-cell culture model displays many expected phenotypic features. Comparative studies using microarrays reveal several novel M-cell surface receptors that could be used to potentially target orally delivered antigens.
Collapse
Affiliation(s)
- David J Brayden
- Faculty of Veterinary Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
19
|
Affiliation(s)
- C G M Gahan
- Department of Microbiology, University College Cork, Cork, Ireland.
| | | |
Collapse
|
20
|
Munder A, Zelmer A, Schmiedl A, Dittmar KEJ, Rohde M, Dorsch M, Otto K, Hedrich HJ, Tümmler B, Weiss S, Tschernig T. Murine pulmonary infection with Listeria monocytogenes: differential susceptibility of BALB/c, C57BL/6 and DBA/2 mice. Microbes Infect 2005; 7:600-11. [PMID: 15820148 DOI: 10.1016/j.micinf.2004.12.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 12/20/2004] [Accepted: 12/22/2004] [Indexed: 11/20/2022]
Abstract
Murine listeriosis is a paradigm to understand host pathogen interactions. Airway infections with Listeria monocytogenes, although representing a serious problem in early onset neonatal listeriosis, has not been investigated in detail in animal models so far. Here, the susceptibility of BALB/c, DBA/2 and C57BL/6 mice towards an intratracheal (i.t.) infection with virulent L. monocytogenes EGDe and the attenuated variant L. monocytogenes EGD hlyW491A(pERL3-CMVGFP) is reported. The course of infection was characterized by determination of bacterial numbers in the organs and assessment of the health condition of the mice. The distribution and cellular localization of Listeria in the airways was assessed by immunocytochemistry and confocal and electron microscopy. The differential susceptibility of inbred mouse strains to airway infections with L. monocytogenes could be assigned to the major virulence factor listeriolysin O. Resistant C57BL/6 mice were not affected by the two listerial strains. In contrast, BALB/c and DBA/2 mice showed differential susceptibility towards L. monocytogenes EGDe and attenuated bacteria, with all the mice being killed by the wild-type bacteria but rarely by the variant that secretes a listeriolysin of only 10% activity of that of the wild-type toxin. Thus, listeriolysin is a decisive factor for differential susceptibility against Listeria. After i.t. application, bacteria were predominantly localized in the peribronchiolar space and invaded alveolar macrophages but rarely lung epithelial cells. Dissemination from the lung into the deep organs started almost immediately after application, although a pulmonary bacterial reservoir remained during the first 4 days.
Collapse
Affiliation(s)
- Antje Munder
- Clinical Research Group OE 6711, Center of Pediatrics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neudeck BL, Loeb JM, Faith NG, Czuprynski CJ. Intestinal P glycoprotein acts as a natural defense mechanism against Listeria monocytogenes. Infect Immun 2004; 72:3849-54. [PMID: 15213126 PMCID: PMC427447 DOI: 10.1128/iai.72.7.3849-3854.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Revised: 12/18/2003] [Accepted: 03/22/2004] [Indexed: 12/30/2022] Open
Abstract
Mechanisms by which the intestinal epithelium resists invasion by food-borne pathogens such as Listeria monocytogenes are an evolving area of research. Intestinal P glycoprotein is well known to limit the absorption of xenobiotics and is believed to act as a cytotoxic defense mechanism. The aim of this study was to determine if intestinal P glycoprotein is involved in host defense against L. monocytogenes. Caco-2 cells and a P-glycoprotein-overexpressing subclone (Caco-2/MDR) were employed in addition to mdr1a(-/-) mice and wild-type controls. In vitro invasion assays and in vivo experiments were employed to measure bacterial invasion and dissemination. In addition, L. monocytogenes proteins were labeled with [(35)S]methionine, and the transepithelial transport across Caco-2 monolayers was characterized in both directions. Overexpression of P glycoprotein in Caco-2/MDR cells led to increased resistance to L. monocytogenes invasion, whereas P-glycoprotein inhibition led to increased invasion. Flux of [(35)S]methionine-labeled L. monocytogenes proteins was significantly greater in the basolateral-to-apical direction than in the apical-to-basolateral direction, indicating dependence on an apically located efflux transporter. Moreover, inhibiting P glycoprotein reduced the basolateral-to-apical flux of the proteins. Early dissemination of L. monocytogenes from the gastrointestinal tract was significantly greater in the mdr1a(-/-) mice than in wild-type controls. Expression and function of intestinal P glycoprotein is an important determinant in resistance to early invasion of L. monocytogenes.
Collapse
Affiliation(s)
- Brien L Neudeck
- University of Wisconsin School of Pharmacy, 777 Highland Avenue, Madison, WI 53705-2222, USA.
| | | | | | | |
Collapse
|
22
|
Czuprynski CJ, Faith NG, Steinberg H, Neudeck B. Sodium pentobarbital anesthesia transiently enhances the severity of infection following intragastric, but not intravenous, inoculation of Listeria monocytogenes in mice. Microb Pathog 2003; 35:81-6. [PMID: 12901847 DOI: 10.1016/s0882-4010(03)00097-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the present study we observed that mice anesthetized with sodium pentobarbital were far more susceptible to gastrointestinal challenge with Listeria monocytogenes than were unanaesthetized mice. The effect of pentobarbital anesthesia was transient (gone within 2 h) and did not alter the severity of infection following i.v. challenge with L. monocytogenes. Treatment with pharmacological inhibitors of gastric acidity (i.e. cimetidine and omeprazole), or intestinal motility (loperamide), did not duplicate the effect of pentobarbital on gastrointestinal listeriosis. These findings suggest that sodium pentobarbital anesthesia causes a short-lived but striking diminution in resistance to gastrointestinal listeriosis in mice, via an undefined mechanism.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
M cells are located in the epithelia overlying mucosa-associated lymphoid tissues such as Peyer's patches where they function as the antigen sampling cells of the mucosal immune system. Paradoxically, some pathogens exploit M cells as a route of invasion. Here we review our current knowledge of intestinal M cells with particular emphasis on the mechanisms underlying bacterial infection of these atypical epithelial cells.
Collapse
Affiliation(s)
- M Ann Clark
- Department of Physiological Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | |
Collapse
|
24
|
Czuprynski CJ, Faith NG, Steinberg H. A/J mice are susceptible and C57BL/6 mice are resistant to Listeria monocytogenes infection by intragastric inoculation. Infect Immun 2003; 71:682-9. [PMID: 12540546 PMCID: PMC145353 DOI: 10.1128/iai.71.2.682-689.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2002] [Revised: 07/05/2002] [Accepted: 11/05/2002] [Indexed: 02/01/2023] Open
Abstract
Previous studies demonstrated that the innate resistance of mice to Listeria monocytogenes infection by intravenous or intraperitoneal inoculation is regulated principally by the Hc locus on mouse chromosome 2. The A/J and C57BL/6 mouse strains were identified as prototype L. monocytogenes-susceptible and -resistant strains, respectively. In the present study, we compared the relative susceptibilities of A/J and C57BL/6 mice to intragastric (i.g.) inoculation with L. monocytogenes. The results of our study indicate that A/J mice are significantly more susceptible than C57BL/6 mice to an i.g. challenge with L. monocytogenes. This was reflected in the estimated 50% lethal doses for the two strains (10(6) and 10(8) CFU for A/J and C57BL/6 mice, respectively) and a more rapid and severe dissemination of the infection to the spleen and liver in A/J mice than in C57BL/6 mice. Histopathological examination of tissues from the infected mice confirmed the greater severity of disease in A/J mice. Clearance of a primary infection enhanced the resistance of both A/J and C57BL/6 mice to reinfection with L. monocytogenes via the gastrointestinal tract. However, the relative difference in susceptibility between the two strains was evident even after immunization. The A/J mouse holds promise as a model for investigating the pathogenesis of gastrointestinal listeriosis because of its ability to develop systemic infection following challenge with numbers of organisms similar to those recovered from some L. monocytogenes-contaminated food products.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 53706, USA.
| | | | | |
Collapse
|
25
|
Schubert WD, Urbanke C, Ziehm T, Beier V, Machner MP, Domann E, Wehland J, Chakraborty T, Heinz DW. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002; 111:825-36. [PMID: 12526809 DOI: 10.1016/s0092-8674(02)01136-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Listeria monocytogenes, a food-borne bacterial pathogen, enters mammalian cells by inducing its own phagocytosis. The listerial protein internalin (InlA) mediates bacterial adhesion and invasion of epithelial cells in the human intestine through specific interaction with its host cell receptor E-cadherin. We present the crystal structures of the functional domain of InlA alone and in a complex with the extracellular, N-terminal domain of human E-cadherin (hEC1). The leucine rich repeat (LRR) domain of InlA surrounds and specifically recognizes hEC1. Individual interactions were probed by mutagenesis and analytical ultracentrifugation. These include Pro16 of hEC1, a major determinant for human susceptibility to L. monocytogenes infection that is essential for intermolecular recognition. Our studies reveal the structural basis for host tro-pism of this bacterium and the molecular deception L. monocytogenes employs to exploit the E-cadherin system.
Collapse
Affiliation(s)
- Wolf Dieter Schubert
- Department of Structural Biology, German Research Center for Biotechnology (GBF), Mascheroder Weg 1, D-38124, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Intestinal M cells, the specialised antigen-sampling cells of the mucosal immune system, are exploited by Salmonella and other pathogens as a route of invasion. Salmonella entry into M cells and colonisation of Peyer's patches involve mechanisms critical for infection of cultured cells as well as factors not accurately modelled in vitro.
Collapse
Affiliation(s)
- M A Jepson
- Cell Imaging Facility and the Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
27
|
Vázquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Domínguez-Bernal G, Goebel W, González-Zorn B, Wehland J, Kreft J. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 2001; 14:584-640. [PMID: 11432815 PMCID: PMC88991 DOI: 10.1128/cmr.14.3.584-640.2001] [Citation(s) in RCA: 1494] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal individuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.
Collapse
Affiliation(s)
- J A Vázquez-Boland
- Grupo de Patogénesis Molecular Bacteriana, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|