1
|
Meghwanshi GK, Verma S, Srivastava V, Kumar R. Archaeal lipolytic enzymes: Current developments and further prospects. Biotechnol Adv 2022; 61:108054. [DOI: 10.1016/j.biotechadv.2022.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/02/2022]
|
2
|
Karaiyan P, Chang CCH, Chan ES, Tey BT, Ramanan RN, Ooi CW. In silico screening and heterologous expression of soluble dimethyl sulfide monooxygenases of microbial origin in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:4523-4537. [PMID: 35713659 PMCID: PMC9259527 DOI: 10.1007/s00253-022-12008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. Key points • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12008-8.
Collapse
Affiliation(s)
- Prasanth Karaiyan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Catherine Ching Han Chang
- Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Quantitative Mass Spectrometry by SILAC in Haloferax volcanii. Methods Mol Biol 2022; 2522:255-266. [PMID: 36125755 PMCID: PMC9926160 DOI: 10.1007/978-1-0716-2445-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of mass spectrometry (MS)-based proteomics methods has been critical in providing new insight about cellular processes and adaptations in all domains of life. While traditional MS-based methods are not inherently quantitative, technologies are now available to overcome this limitation. Of note, stable isotope labeling of amino acids in cell culture (SILAC) is reported as a reliable tool to label proteomes for quantitative MS-based proteomics that is accurate and flexible for multiplexing. The isotopically labeled lysine and arginine are easily incorporated into the proteome of cells auxotrophic for these amino acids. Microorganisms of the domain Archaea provide a fascinating alternative to understanding cellular adaptations and responses to environmental stresses. However, the availability of preferred SILAC-based quantitative analyses is limited. This protocol describes the use of SILAC to quantitatively analyze the proteome of Haloferax volcanii, a mesophilic halophilic archaeon that is easy to grow and requires no special equipment to maintain.
Collapse
|
4
|
Fuentes-Ugarte N, Herrera SM, Maturana P, Castro-Fernandez V, Guixé V. Structural and Kinetic Insights Into the Molecular Basis of Salt Tolerance of the Short-Chain Glucose-6-Phosphate Dehydrogenase From Haloferax volcanii. Front Microbiol 2021; 12:730429. [PMID: 34650535 PMCID: PMC8506132 DOI: 10.3389/fmicb.2021.730429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Halophilic enzymes need high salt concentrations for activity and stability and are considered a promising source for biotechnological applications. The model study for haloadaptation has been proteins from the Halobacteria class of Archaea, where common structural characteristics have been found. However, the effect of salt on enzyme function and conformational dynamics has been much less explored. Here we report the structural and kinetic characteristics of glucose-6-phosphate dehydrogenase from Haloferax volcanii (HvG6PDH) belonging to the short-chain dehydrogenases/reductases (SDR) superfamily. The enzyme was expressed in Escherichia coli and successfully solubilized and refolded from inclusion bodies. The enzyme is active in the presence of several salts, though the maximum activity is achieved in the presence of KCl, mainly by an increment in the kcat value, that correlates with a diminution of its flexibility according to molecular dynamics simulations. The high KM for glucose-6-phosphate and its promiscuous activity for glucose restrict the use of HvG6PDH as an auxiliary enzyme for the determination of halophilic glucokinase activity. Phylogenetic analysis indicates that SDR-G6PDH enzymes are exclusively present in Halobacteria, with HvG6PDH being the only enzyme characterized. Homology modeling and molecular dynamics simulations of HvG6PDH identified a conserved NLTX2H motif involved in glucose-6-phosphate interaction at high salt concentrations, whose residues could be crucial for substrate specificity. Structural differences in its conformational dynamics, potentially related to the haloadaptation strategy, were also determined.
Collapse
Affiliation(s)
- Nicolás Fuentes-Ugarte
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sixto M Herrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Analysis of Haloferax mediterranei Lrp Transcriptional Regulator. Genes (Basel) 2021; 12:genes12060802. [PMID: 34070366 PMCID: PMC8229911 DOI: 10.3390/genes12060802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.
Collapse
|
6
|
Hu D, Wen Z, Li C, Hu B, Zhang T, Li J, Wu M. Characterization of a robust glucose 1-dehydrogenase, SyGDH, and its application in NADPH regeneration for the asymmetric reduction of haloketone by a carbonyl reductase in organic solvent/buffer system. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Martínez-Espinosa RM. Heterologous and Homologous Expression of Proteins from Haloarchaea: Denitrification as Case of Study. Int J Mol Sci 2019; 21:E82. [PMID: 31877629 PMCID: PMC6981372 DOI: 10.3390/ijms21010082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Abstract
Haloarchaea (halophilic microbes belonging to the Archaea domain) are microorganisms requiring mid or even high salt concentrations to be alive. The molecular machinery of these organisms is adapted to such conditions, which are stressful for most life forms. Among their molecular adaptations, halophilic proteins are characterized by their high content of acidic amino acids (Aspartate (Asp) and glumate (Glu)), being only stable in solutions containing high salt concentration (between 1 and 4 M total salt concentration). Recent knowledge about haloarchaeal peptides, proteins, and enzymes have revealed that many haloarchaeal species produce proteins of interest due to their potential applications in biotechnology-based industries. Although proteins of interest are usually overproduced in recombinant prokaryotic or eukaryotic expression systems, these procedures do not accurately work for halophilic proteins, mainly if such proteins contain metallocofactors in their structures. This work summarizes the main challenges of heterologous and homologous expression of enzymes from haloarchaea, paying special attention to the metalloenzymes involved in the pathway of denitrification (anaerobic reduction of nitrate to dinitrogen), a pathway with significant implications in wastewater treatment, climate change, and biosensor design.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences and Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
8
|
Expression, Folding, and Activation of Halophilic Alkaline Phosphatase in Non-Halophilic Brevibacillus choshinensis. Protein J 2019; 39:46-53. [DOI: 10.1007/s10930-019-09874-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Promchai R, Boonchalearn A, Visessanguan W, Luxananil P. Rapid production of extracellular thermostable alkaline halophilic protease originating from an extreme haloarchaeon, Halobacterium salinarum by recombinant Bacillus subtilis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Jia Z, Ma H, Huang Y, Huang Y, Ren P, Song S, Hu M, Tao Y. Production of (R)-3-quinuclidinol by a whole-cell biocatalyst with high efficiency. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1400019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhenhua Jia
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Hong Ma
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Yali Huang
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Yuanyuan Huang
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Pengju Ren
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Shuishan Song
- Biology Institute, Hebei Academy of sciences, Shijiazhuang, P. R. China
| | - Meirong Hu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
11
|
Gutiérrez-Arnillas E, Arellano M, Deive FJ, Rodríguez A, Sanromán MÁ. Unravelling the suitability of biological induction for halophilic lipase production by Halomonas sp. LM1C cultures. BIORESOURCE TECHNOLOGY 2017; 239:368-377. [PMID: 28531862 DOI: 10.1016/j.biortech.2017.04.128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
In this study, the viability of using biological induction as an alternative to the conventional chemical induction in lipase production by a novel halophilic microorganism, Halomonas sp. LM1C, has been demonstrated. Thus, a 9-times increase of lipase activity (3000U/L) was recorded when Staphylococcus equorum sp. AMC7 was present in the medium, which is competitive with the results obtained when Triton X-100 was added as chemical inducer. The GC-MS data allowed concluding the true nature of the biological inducer effect, as the existence of high percentages of isomeric forms of pentadecanoic acid were detected. The suitability of the proposed strategy was validated by operating at bench scale bioreactor, and the influence of bioreactor configuration on the biomass and lipolytic activity levels was studied. All the data were fitted to logistic and Luedeking & Piret models to characterize the bioprocess kinetics, concluding the growth-associated character of the produced lipolytic enzymes.
Collapse
Affiliation(s)
| | - María Arellano
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain
| | - Francisco J Deive
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain
| | - Ana Rodríguez
- Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain
| | | |
Collapse
|
12
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
13
|
Ohshida T, Hayashi J, Satomura T, Kawakami R, Ohshima T, Sakuraba H. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase. Protein Expr Purif 2016; 126:62-68. [DOI: 10.1016/j.pep.2016.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 11/28/2022]
|
14
|
Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase. J Bacteriol 2016; 198:2251-62. [PMID: 27297879 DOI: 10.1128/jb.00286-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii IMPORTANCE The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea.
Collapse
|
15
|
Transcriptional profiles of Haloferax mediterranei based on nitrogen availability. J Biotechnol 2014; 193:100-7. [PMID: 25435380 DOI: 10.1016/j.jbiotec.2014.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 11/23/2022]
Abstract
The haloarchaeon Haloferax mediterranei is able to grow in the presence of different inorganic and organic nitrogen sources by means of the assimilatory pathway under aerobic conditions. In order to identify genes of potential importance in nitrogen metabolism and its regulation in the halophilic microorganism, we have analysed its global gene expression in three culture media with different nitrogen sources: (a) cells were grown stationary and exponentially in ammonium, (b) cells were grown exponentially in nitrate, and (c) cells were shifted to nitrogen starvation conditions. The main differences in the transcriptional profiles have been identified between the cultures with ammonium as nitrogen source and the cultures with nitrate or nitrogen starvation, supporting previous results which indicate the absence of ammonium as the factor responsible for the expression of genes involved in nitrate assimilation pathway. The results have also permitted the identification of transcriptional regulators and changes in metabolic pathways related to the catabolism and anabolism of amino acids or nucleotides. The microarray data was validated by real-time quantitative PCR on 4 selected genes involved in nitrogen metabolism. This work represents the first transcriptional profiles study related to nitrogen assimilation metabolism in extreme halophilic microorganisms using microarray technology.
Collapse
|
16
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
17
|
Esclapez J, Zafrilla B, Martínez-Espinosa RM, Bonete MJ. Cu-NirK from Haloferax mediterranei as an example of metalloprotein maturation and exportation via Tat system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1003-9. [PMID: 23499847 DOI: 10.1016/j.bbapap.2013.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
The green Cu-NirK from Haloferax mediterranei (Cu-NirK) has been expressed, refolded and retrieved as a trimeric enzyme using an expression method developed for halophilic Archaea. This method utilizes Haloferax volcanii as a halophilic host and an expression vector with a constitutive and strong promoter. The enzymatic activity of recombinant Cu-NirK was detected in both cellular fractions (cytoplasmic fraction and membranes) and in the culture media. The characterization of the enzyme isolated from the cytoplasmic fraction as well as the culture media revealed important differences in the primary structure of both forms indicating that Hfx. mediterranei could carry out a maturation and exportation process within the cell before the protein is exported to the S-layer. Several conserved signals found in Cu-NirK from Hfx. mediterranei sequence indicate that these processes are closely related to the Tat system. Furthermore, the N-terminal sequence of the two Cu-NirK subunits constituting different isoforms revealed that translation of this protein could begin at two different points, identifying two possible start codons. The hypothesis proposed in this work for halophilic Cu-NirK processing and exportation via the Tat system represents the first approximation of this mechanism in the Halobacteriaceae family and in Prokarya in general.
Collapse
Affiliation(s)
- J Esclapez
- Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | | | | | | |
Collapse
|
18
|
Munawar N, Engel PC. Overexpression in a non-native halophilic host and biotechnological potential of NAD+-dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014. Extremophiles 2012. [DOI: https://doi.org/10.1007/s00792-012-0446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Munawar N, Engel PC. Overexpression in a non-native halophilic host and biotechnological potential of NAD+-dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014. Extremophiles 2012; 16:463-76. [PMID: 22527040 DOI: 10.1007/s00792-012-0446-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Enzymes produced by halophilic archaea are generally heat resistant and organic solvent tolerant, and accordingly important for biocatalytic applications in 'green chemistry', frequently requiring a low-water environment. NAD(+)-dependent glutamate dehydrogenase from an extremely halophilic archaeon Halobacterium salinarum strain NRC-36014 was selected to explore the biotechnological potential of this enzyme and genetically engineered derivatives. Over-expression in a halophilic host Haloferax volcanii provided a soluble, active recombinant enzyme, not achievable in mesophilic Escherichia coli, and an efficient purification procedure was developed. pH and salt dependence, thermostability, organic solvent stability and kinetic parameters were explored. The enzyme is active up to 90 °C and fully stable up to 70 °C. It shows good tolerance of various miscible organic solvents. High concentrations of salt may be substituted with 30 % DMSO or betaine with good stability and activity. The robustness of this enzyme under a wide range of conditions offers a promising scaffold for protein engineering.
Collapse
Affiliation(s)
- Nayla Munawar
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
20
|
Tiwari MK, Singh RK, Singh R, Jeya M, Zhao H, Lee JK. Role of conserved glycine in zinc-dependent medium chain dehydrogenase/reductase superfamily. J Biol Chem 2012; 287:19429-39. [PMID: 22500022 DOI: 10.1074/jbc.m111.335752] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (K(d)) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes.
Collapse
|
21
|
Bautista V, Esclapez J, Pérez-Pomares F, Martínez-Espinosa RM, Camacho M, Bonete MJ. Cyclodextrin glycosyltransferase: a key enzyme in the assimilation of starch by the halophilic archaeon Haloferax mediterranei. Extremophiles 2011; 16:147-59. [PMID: 22134680 DOI: 10.1007/s00792-011-0414-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/10/2011] [Indexed: 11/26/2022]
Abstract
A cyclodextrin glycosyltransferase (CGTase, EC 2.4.1.19) was successfully isolated and characterized from the halophilic archaeon Haloferax mediterranei. The enzyme is a monomer with a molecular mass of 77 kDa and optimum activity at 55°C, pH 7.5 and 1.5 M NaCl. The enzyme displayed many activities related to the degradation and transformation of starch. Cyclization was found to be the predominant activity, yielding a mixture of cyclodextrins, mainly α-CD, followed by hydrolysis and to a lesser extent coupling and disproportionation activities. Gene encoding H. mediterranei CGTase was cloned and heterologously overexpressed. Sequence analysis revealed an open reading frame of 2142 bp that encodes a protein of 713 amino acids. The amino acid sequence displayed high homology with those belonging to the α-amylase family. The CGTase is secreted to the extracellular medium by the Tat pathway. Upstream of the CGTase gene, four maltose ABC transporter genes have been sequenced (malE, malF, malG, malK). The expression of the CGTase gene yielded a fully active CGTase with similar kinetic behavior to the wild-type enzyme. The H. mediterranei CGTase is the first halophilic archaeal CGTase characterized, sequenced and expressed.
Collapse
Affiliation(s)
- Vanesa Bautista
- División de Bioquímica y Biología Molecular, Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Zafrilla B, Martínez-Espinosa RM, Esclapez J, Pérez-Pomares F, Bonete MJ. SufS protein from Haloferax volcanii involved in Fe-S cluster assembly in haloarchaea. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1476-82. [PMID: 20226884 DOI: 10.1016/j.bbapap.2010.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/17/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
NifS-like proteins are pyridoxal 5'-phosphate (PLP)-dependent enzymes involved in sulphur transfer metabolism. These enzymes have been catalogued as cysteine desulphurases (CDs) which catalyse the conversion of L-cysteine into L-alanine and an enzyme-bound persulphide radical. This reaction, assisted by different scaffold protein machineries, seems to be the main source of sulphur for the synthesis of essential cofactors of the [Fe-S] cluster. CDs genes have been detected in the tree domains of life, but, up until now, there has been no biochemical characterisation or study into the physiological role of this enzyme in haloarchaea. In this study, we have cloned, expressed and characterised a cysteine desulphurase (SufS) from Haloferax volcanii and demonstrated that this protein is able to reconstitute the [Fe-S] cluster of halophilic ferredoxin.
Collapse
Affiliation(s)
- Basilio Zafrilla
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain.
| | | | | | | | | |
Collapse
|
23
|
Alteration of coenzyme specificity in halophilic NAD(P)+ glucose dehydrogenase by site-directed mutagenesis. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Müller-Santos M, de Souza EM, Pedrosa FDO, Mitchell DA, Longhi S, Carrière F, Canaan S, Krieger N. First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:719-29. [DOI: 10.1016/j.bbalip.2009.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/03/2009] [Accepted: 03/05/2009] [Indexed: 10/21/2022]
|
25
|
Pire C, Marhuenda-egea FC, Esclapez J, Alcaraz L, Ferrer J, José Bonete M. Stability and Enzymatic Studies of Glucose Dehydrogenase from the ArchaeonHaloferax mediterraneiin reverse micelles. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420310001643179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Active site dynamics in the zinc-dependent medium chain alcohol dehydrogenase superfamily. Proc Natl Acad Sci U S A 2009; 106:779-84. [PMID: 19131516 DOI: 10.1073/pnas.0807529106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events.
Collapse
|
27
|
Re-activation of GDH(s) from Halobacterium salinarum, cloned and overexpressed in Escherichia coli. J Biotechnol 2007. [DOI: 10.1016/j.jbiotec.2007.07.476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Scheuch S, Pfeifer F. GvpD-induced breakdown of the transcriptional activator GvpE of halophilic archaea requires a functional p-loop and an arginine-rich region of GvpD. Microbiology (Reading) 2007; 153:947-958. [PMID: 17379705 DOI: 10.1099/mic.0.2006/004499-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The two proteins involved in the regulation of gas vesicle formation in Haloferax mediterranei, mcGvpE (activator) and mcGvpD (repressive function), are able to interact in vitro. It was also found that the respective proteins cGvpE and cGvpD of Halobacterium salinarum and the heterologous pairs mcGvpD-cGvpE and cGvpD-mcGvpE were able to interact. Previously constructed mcGvpD mutants with alterations in regions affecting the repressive function of GvpD (p-loop motif or the two arginine-rich regions bR1 and bR2) were tested for their ability to interact with GvpE, and all still bound GvpE. Even a deletion of or near the p-loop motif in GvpD did not affect this ability to interact. Further deletion variants lacking larger N- or C-terminal portions of mcGvpD yielded that neither the N-terminal region with the p-loop motif nor the C-terminal portion were important for the binding of GvpE, and suggested that the central portion is involved in GvpE binding. The GvpD protein also induces a reduction in the amount of GvpE in Haloferax volcanii transformants expressing both genes under fdx promoter control on a single plasmid. Such DE(ex) transformants contain GvpD, but no detectable GvpE, whereas large amounts of GvpE are found in DeltaDE(ex) transformants that have incurred a deletion within the gvpD gene. A similar reduction was observed in D(ex)+E(ex) transformants harbouring both reading frames under fdx promoter control on two different plasmids. GvpD wild-type and also GvpD mutants were tested, and a significant reduction in the amount of GvpE was obtained in the case of GvpD wild-type and the super-repressor mutant GvpD(3-AAA). In contrast, transformants harbouring GvpD mutants with alterations in the p-loop motif or the bR1 region still contained GvpE. Since the amount of gvpE transcript was not reduced, the reduction occurred at the protein level. These results underlined that a functional p-loop and the arginine-rich region bR1 of GvpD were required for the GvpD-mediated reduction in the amount of GvpE.
Collapse
Affiliation(s)
- Sandra Scheuch
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| | - Felicitas Pfeifer
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
| |
Collapse
|
29
|
Esclapez J, Pire C, Bautista V, Martínez-Espinosa RM, Ferrer J, Bonete MJ. Analysis of acidic surface ofHaloferax mediterraneiglucose dehydrogenase by site-directed mutagenesis. FEBS Lett 2007; 581:837-42. [PMID: 17289028 DOI: 10.1016/j.febslet.2007.01.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/22/2007] [Accepted: 01/22/2007] [Indexed: 11/13/2022]
Abstract
Generally, halophilic enzymes present a characteristic amino acid composition, showing an increase in the content of acidic residues and a decrease in the content of basic residues, particularly lysines. The latter decrease appears to be responsible for a reduction in the proportion of solvent-exposed hydrophobic surface. This role was investigated by site-directed mutagenesis of glucose dehydrogenase from Haloferax mediterranei, in which surface aspartic residues were changed to lysine residues. From the biochemical analysis of the mutant proteins, it is concluded that the replacement of the aspartic residues by lysines results in slightly less halotolerant proteins, although they retain the same enzymatic activities and kinetic parameters compared to the wild type enzyme.
Collapse
Affiliation(s)
- J Esclapez
- Departamento de Agroquímica y Bioquímica, División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Domenech J, Ferrer J. A new D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity from Haloferax mediterranei, sequence analysis and heterologous overexpression. Biochim Biophys Acta Gen Subj 2006; 1760:1667-74. [PMID: 17049749 DOI: 10.1016/j.bbagen.2006.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 08/29/2006] [Accepted: 08/30/2006] [Indexed: 11/30/2022]
Abstract
A gene encoding a new D-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although alpha-ketoisoleucine was the most favourable of all alpha-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity.
Collapse
Affiliation(s)
- J Domenech
- Departamento de Agroquímica y Bioquímica, Division de Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, 03080 Alicante, Spain
| | | |
Collapse
|
31
|
Shi W, Tang XF, Huang Y, Gan F, Tang B, Shen P. An extracellular halophilic protease SptA from a halophilic archaeon Natrinema sp. J7: gene cloning, expression and characterization. Extremophiles 2006; 10:599-606. [PMID: 16896523 DOI: 10.1007/s00792-006-0003-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
A gene encoding an extracellular protease, sptA, was cloned from the halophilic archaeon Natrinema sp. J7. It encoded a polypeptide of 565 amino acids containing a putative 49-amino acid signal peptide, a 103-amino acid propeptide, as well as a mature region and C-terminal extension, with a high proportion of acidic amino acid residues. The sptA gene was expressed in Haloferax volcanii WFD11, and the recombinant enzyme could be secreted into the medium as an active mature form. The N-terminal amino acid sequencing and MALDI-TOF mass spectrometry analysis of the purified SptA protease indicated that the 152-amino acid prepropeptide was cleaved and the C-terminal extension was not processed after secretion. The SptA protease was optimally active at 50 degrees C in 2.5 M NaCl at pH 8.0. The NaCl removed enzyme retained 20% of its activity, and 60% of the activity could be restored by reintroducing 2.5 M NaCl into the NaCl removed enzyme. When the twin-arginine motif in the signal peptide of SptA protease was replaced with a twin-lysine motif, the enzyme was not exported from Hfx. volcanii WFD11, suggesting that the SptA protease was a Tat-dependent substrate.
Collapse
Affiliation(s)
- Wanliang Shi
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Britton KL, Baker PJ, Fisher M, Ruzheinikov S, Gilmour DJ, Bonete MJ, Ferrer J, Pire C, Esclapez J, Rice DW. Analysis of protein solvent interactions in glucose dehydrogenase from the extreme halophile Haloferax mediterranei. Proc Natl Acad Sci U S A 2006; 103:4846-51. [PMID: 16551747 PMCID: PMC1458758 DOI: 10.1073/pnas.0508854103] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Indexed: 11/18/2022] Open
Abstract
The structure of glucose dehydrogenase from the extreme halophile Haloferax mediterranei has been solved at 1.6-A resolution under crystallization conditions which closely mimic the "in vivo" intracellular environment. The decoration of the enzyme's surface with acidic residues is only partially neutralized by bound potassium counterions, which also appear to play a role in substrate binding. The surface shows the expected reduction in hydrophobic character, surprisingly not from changes associated with the loss of exposed hydrophobic residues but rather arising from a loss of lysines consistent with the genome wide-reduction of this residue in extreme halophiles. The structure reveals a highly ordered, multilayered solvation shell that can be seen to be organized into one dominant network covering much of the exposed surface accessible area to an extent not seen in almost any other protein structure solved. This finding is consistent with the requirement of the enzyme to form a protective shell in a dehydrating environment.
Collapse
Affiliation(s)
- K. Linda Britton
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - Patrick J. Baker
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - Martin Fisher
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - Sergey Ruzheinikov
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - D. James Gilmour
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| | - María-José Bonete
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Juan Ferrer
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Carmen Pire
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Julia Esclapez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080 Alicante, Spain
| | - David W. Rice
- *Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; and
| |
Collapse
|
33
|
Siebers B, Schönheit P. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 2005; 8:695-705. [PMID: 16256419 DOI: 10.1016/j.mib.2005.10.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 10/13/2005] [Indexed: 11/29/2022]
Abstract
Sugar-utilizing hyperthermophilic and halophilic Archaea degrade glucose and glucose polymers to acetate or to CO2 using O2, nitrate, sulfur or sulfate as electron acceptors. Comparative analyses of glycolytic pathways in these organisms indicate a variety of differences from the classical Emden-Meyerhof and Entner-Doudoroff pathways that are operative in Bacteria and Eukarya, respectively. The archaeal pathways are characterized by the presence of numerous novel enzymes and enzyme families that catalyze, for example, the phosphorylation of glucose and of fructose 6-phosphate, the isomerization of glucose 6-phosphate, the cleavage of fructose 1,6-bisphosphate, the oxidation of glyceraldehyde 3-phosphate and the conversion of acetyl-CoA to acetate. Recent major advances in deciphering the complexity of archaeal central carbohydrate metabolism were gained by combination of classical biochemical and genomic-based approaches.
Collapse
Affiliation(s)
- Bettina Siebers
- Universität Duisburg-Essen, Campus Essen, FB Biologie und Geografie, Mikrobiologie, Universitätsstr.5, D-45117 Essen, Germany
| | | |
Collapse
|
34
|
Díaz S, Pérez-Pomares F, Pire C, Ferrer J, Bonete MJ. Gene cloning, heterologous overexpression and optimized refolding of the NAD-glutamate dehydrogenase from Haloferax mediterranei. Extremophiles 2005; 10:105-15. [PMID: 16200391 DOI: 10.1007/s00792-005-0478-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Accepted: 08/10/2005] [Indexed: 11/25/2022]
Abstract
The NAD-dependent glutamate dehydrogenase (GDH) gene from the halophilic archaeon Haloferax mediterranei has been cloned. The analysis of the nucleotide sequence revealed an open reading frame of 1323 bp that encodes a NAD-GDH. The amino acid sequence displayed high homology with those from other sources, especially the highly conserved residues involved in 2-oxoglutarate binding. The expression of this gene in Escherichia coli, the refolding and further characterization, yielded a fully active NAD-GDH with the same features than those found for the wild-type enzyme. This halophilic NAD-GDH showed a highly dependence on salts for both stability and activity, being essential for the refolding of the recombinant enzyme.
Collapse
Affiliation(s)
- Susana Díaz
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Spain
| | | | | | | | | |
Collapse
|
35
|
Esclapez J, Britton KL, Baker PJ, Fisher M, Pire C, Ferrer J, Bonete MJ, Rice DW. Crystallization and preliminary X-ray analysis of binary and ternary complexes of Haloferax mediterranei glucose dehydrogenase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:743-6. [PMID: 16511145 PMCID: PMC1952350 DOI: 10.1107/s1744309105019949] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/23/2005] [Indexed: 11/10/2022]
Abstract
Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse the significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous.
Collapse
Affiliation(s)
- Julia Esclapez
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99 Alicante 03080, Spain
| | - K. Linda Britton
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Patrick J. Baker
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Martin Fisher
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Carmen Pire
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99 Alicante 03080, Spain
| | - Juan Ferrer
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99 Alicante 03080, Spain
| | - María José Bonete
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, Ap. 99 Alicante 03080, Spain
| | - David W. Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| |
Collapse
|
36
|
Johnsen U, Schönheit P. Novel xylose dehydrogenase in the halophilic archaeon Haloarcula marismortui. J Bacteriol 2004; 186:6198-207. [PMID: 15342590 PMCID: PMC515137 DOI: 10.1128/jb.186.18.6198-6207.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
During growth of the halophilic archaeon Haloarcula marismortui on D-xylose, a specific D-xylose dehydrogenase was induced. The enzyme was purified to homogeneity. It constitutes a homotetramer of about 175 kDa and catalyzed the oxidation of xylose with both NADP+ and NAD+ as cosubstrates with 10-fold higher affinity for NADP+. In addition to D-xylose, D-ribose was oxidized at similar kinetic constants, whereas D-glucose was used with about 70-fold lower catalytic efficiency (kcat/Km). With the N-terminal amino acid sequence of the subunit, an open reading frame (ORF)-coding for a 39.9-kDA protein-was identified in the partially sequenced genome of H. marismortui. The function of the ORF as the gene designated xdh and coding for xylose dehydrogenase was proven by its functional overexpression in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization in urea and refolding in the presence of salts, reduced and oxidized glutathione, and substrates. Xylose dehydrogenase showed the highest sequence similarity to glucose-fructose oxidoreductase from Zymomonas mobilis and other putative bacterial and archaeal oxidoreductases. Activities of xylose isomerase and xylulose kinase, the initial reactions of xylose catabolism of most bacteria, could not be detected in xylose-grown cells of H. marismortui, and the genes that encode them, xylA and xylB, were not found in the genome of H. marismortui. Thus, we propose that this first characterized archaeal xylose dehydrogenase catalyzes the initial step in xylose degradation by H. marismortui.
Collapse
Affiliation(s)
- Ulrike Johnsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | |
Collapse
|
37
|
Bräsen C, Schönheit P. Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Arch Microbiol 2004; 182:277-87. [PMID: 15340786 DOI: 10.1007/s00203-004-0702-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 06/16/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
ADP-forming acetyl-CoA synthetase (ACD), the novel enzyme of acetate formation and energy conservation in archaea Acety - CoA + ADP + Pi<==>acetate + ATP CoA), has been studied only in few hyperthermophilic euryarchaea. Here, we report the characterization of two ACDs with unique molecular and catalytic features, from the mesophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. ACD from H. marismortui was purified and characterized as a salt-dependent, mesophilic ACD of homodimeric structure (166 kDa). The encoding gene was identified in the partially sequenced genome of H. marismortui and functionally expressed in Escherichia coli. The recombinant enzyme was reactivated from inclusion bodies following solubilization and refolding in the presence of salts. The ACD catalyzed the reversible ADP- and Pi-dependent conversion of acetyl-CoA to acetate. In addition to acetate, propionate, butyrate, and branched-chain acids (isobutyrate, isovalerate) were accepted as substrates, rather than the aromatic acids, phenylacetate and indol-3-acetate. In the genome of P. aerophilum, the ORFs PAE3250 and PAE 3249, which code for alpha and beta subunits of an ACD, overlap each other by 1 bp, indicating a novel gene organization among identified ACDs. The two ORFs were separately expressed in E. coli and the recombinant subunits alpha (50 kDa) and beta (28 kDa) were in-vitro reconstituted to an active heterooligomeric protein of high thermostability. The first crenarchaeal ACD showed the broadest substrate spectrum of all known ACDs, catalyzing the conversion of acetyl-CoA, isobutyryl-CoA, and phenylacetyl-CoA at high rates. In contrast, the conversion of phenylacetyl-CoA in euryarchaeota is catalyzed by specific ACD isoenzymes.
Collapse
Affiliation(s)
- Christopher Bräsen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | | |
Collapse
|
38
|
Zimmermann P, Pfeifer F. Regulation of the expression of gas vesicle genes in Haloferax mediterranei: interaction of the two regulatory proteins GvpD and GvpE. Mol Microbiol 2003; 49:783-94. [PMID: 12864859 DOI: 10.1046/j.1365-2958.2003.03593.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gas vesicle formation in Haloferax mediterranei occurs in the stationary growth phase and involves the 14 genes mc-gvpACNO and mc-gvpDEFGHIJKLM. The appearance of the two regulatory proteins GvpD and GvpE, and also of GvpF, was investigated during the growth of H. mediterranei. GvpD was only found during the stationary growth phase, GvpE was present from the late exponential to stationary growth phase, and GvpF was present only during the exponential growth, although the three genes were co-transcribed. The impact of GvpD and GvpE on the activity of the promoter of the mc-gvpACNO gene cluster encoding the gas vesicle structural proteins was analysed in H. volcanii transformants containing the mc-gvpA gene or a fusion of the mcA promoter with the bgaH reading frame encoding a halobacterial beta-galactosidase as reporter. The experiments proved that GvpE is a transcriptional activator, whereas GvpD is involved in the repression. Protein-protein affinity chromatography was used to search for putative binding partners of GvpD and GvpE. Both proteins were synthesized in Escherichia coli as his-tagged proteins, isolated under denaturing conditions and refolded by dialysis against buffers containing decreasing urea and increasing KCl concentrations up to 2.5 M. The Ni-NTA matrix tagged with GvpD-his or GvpE-his was incubated with soluble proteins of gas vesicle producing H. mediterranei cells. A 21 kDa protein was purified using the matrix tagged with GvpD-his which proved to be GvpE by Western analysis. Vice versa, GvpD was purified using the GvpE-his-Ni-NTA matrix. These results strongly suggested that GvpD and GvpE were able to interact and might constitute a regulatory system.
Collapse
Affiliation(s)
- Peter Zimmermann
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
39
|
Ishibashi M, Sakashita K, Tokunaga H, Arakawa T, Tokunaga M. Activation of halophilic nucleoside diphosphate kinase by a non-ionic osmolyte, trimethylamine N-oxide. JOURNAL OF PROTEIN CHEMISTRY 2003; 22:345-51. [PMID: 13678298 DOI: 10.1023/a:1025338106922] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The folding and activity of halophilic enzymes are believed to require the presence of salts at high concentrations. When the inactivated nucleoside diphosphate kinase (NDK) from extremely halophilic archaea was incubated with low salt media, no activity was regained over the course of 8 days. When it was incubated with approximately 2 M NaCl or 3 M KCl, however, it gradually regained activity. To our surprise, trimethylamine N-oxide (TMAO) also was able to induce activation at 4.0 M. The enzyme activity and secondary structure of refolded NDK in 4 M TMAO were comparable with those of the native NDK or the refolded NDK in 3.8 M NaCl. TMAO is not an electrolyte, meaning that the presence of concentrated salts is not an absolute requirement, and that charge shielding or ion binding is not a sole factor for the folding and activation of NDK. Although both NaCl and TMAO are effective in refolding NDK, the mechanism of their actions appears to be different: the effect of protein concentration and pH on refolding is qualitatively different between these two, and at pH 8.0 NDK could be refolded in the presence of 4 M TMAO only when low concentrations of NaCl are included.
Collapse
Affiliation(s)
- Matsujiro Ishibashi
- Laboratory of Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
40
|
Bitan-Banin G, Ortenberg R, Mevarech M. Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene. J Bacteriol 2003; 185:772-8. [PMID: 12533452 PMCID: PMC142808 DOI: 10.1128/jb.185.3.772-778.2003] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
So far, the extremely halophilic archaeon Haloferax volcanii has the best genetic tools among the archaea. However, the lack of an efficient gene knockout system for this organism has hampered further genetic studies. In this paper we describe the development of pyrE-based positive selection and counterselection systems to generate an efficient gene knockout system. The H. volacanii pyrE1 and pyrE2 genes were isolated, and the pyrE2 gene was shown to code for the physiological enzyme orotate phosphoribosyl transferase. A DeltapyrE2 strain was constructed and used to isolate deletion mutants by the following two steps: (i) integration of a nonreplicative plasmid carrying both the pyrE2 wild-type gene, as a selectable marker, and a cloned chromosomal DNA fragment containing a deletion in the desired gene; and (ii) excision of the integrated plasmid after selection with 5-fluoroorotic acid. Application of this gene knockout system is described.
Collapse
Affiliation(s)
- Gili Bitan-Banin
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
41
|
Hayden BM, Bonete MJ, Brown PE, Moir AJG, Engel PC. Glutamate dehydrogenase of Halobacterium salinarum: evidence that the gene sequence currently assigned to the NADP+-dependent enzyme is in fact that of the NAD+-dependent glutamate dehydrogenase. FEMS Microbiol Lett 2002; 211:37-41. [PMID: 12052548 DOI: 10.1111/j.1574-6968.2002.tb11200.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A GDH gene from Halobacterium salinarum has been cloned and sequenced and the publication assigns the sequence to the NADP+-glutamate dehydrogenase of this organism. We have expressed this gene in Escherichia coli and find that it encodes an NAD+-dependent glutamate dehydrogenase without activity towards NADP+. Further, peptide sequence from the two corresponding proteins supports the view that the deposited sequence is indeed that of the NAD+-dependent glutamate dehydrogenase. Sequence from the NAD+-dependent protein matches the published gene sequence, whereas sequence from the NADP+ glutamate dehydrogenase does not.
Collapse
Affiliation(s)
- Bronagh M Hayden
- Department of Biochemistry and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
42
|
Camacho M, Rodríguez-Arnedo A, Bonete MJ. NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii: cloning, sequence determination and overexpression in Escherichia coli. FEMS Microbiol Lett 2002; 209:155-60. [PMID: 12007799 DOI: 10.1111/j.1574-6968.2002.tb11125.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A gene encoding NADP-dependent Ds-threo-isocitrate dehydrogenase was isolated from Haloferax volcanii genomic DNA by using a combination of polymerase chain reaction and screening of a lambda EMBL3 library. Analysis of the nucleotide sequence revealed an open reading frame of 1260 bp encoding a protein of 419 amino acids with 45837 Da molecular mass. This sequence is highly similar to previously sequenced isocitrate dehydrogenases. In the alignment of the amino acid sequences with those from several archaeal and mesophilic NADP-dependent isocitrate dehydrogenases, the residues involved in dinucleotide binding and isocitrate binding are well conserved. We have developed methods for the expression in Escherichia coli and purification of the enzyme from H. volcanii. This expression was carried out in E. coli as inclusion bodies using the cytoplasmic expression vector pET3a. The enzyme was refolded by solubilisation in 8 M urea followed by dilution into a buffer containing EDTA, MgCl(2) and 3 M NaCl. Maximal activity was obtained after several hours incubation at room temperature.
Collapse
Affiliation(s)
- Mónica Camacho
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, E-03080, Spain
| | | | | |
Collapse
|