1
|
Warneke R, Herzberg C, Klein M, Elfmann C, Dittmann J, Feussner K, Feussner I, Stülke J. Coenzyme A biosynthesis in Bacillus subtilis: discovery of a novel precursor metabolite for salvage and its uptake system. mBio 2024; 15:e0177224. [PMID: 39194188 PMCID: PMC11487621 DOI: 10.1128/mbio.01772-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The Gram-positive model bacterium Bacillus subtilis is used for many biotechnological applications, including the large-scale production of vitamins. For vitamin B5, a precursor for coenzyme A synthesis, there is so far no established fermentation process available, and the metabolic pathways that involve this vitamin are only partially understood. In this study, we have elucidated the complete pathways for the biosynthesis of pantothenate and coenzyme A in B. subtilis. Pantothenate can not only be synthesized but also be taken up from the medium. We have identified the enzymes and the transporter involved in the pantothenate biosynthesis and uptake. High-affinity vitamin B5 uptake in B. subtilis requires an ATP-driven energy coupling factor transporter with PanU (previously YhfU) as the substrate-specific subunit. Moreover, we have identified a salvage pathway for coenzyme A acquisition that acts on complex medium even in the absence of pantothenate synthesis. This pathway requires rewiring of sulfur metabolism resulting in the increased expression of a cysteine transporter. In the salvage pathway, the bacteria import cysteinopantetheine, a novel naturally occurring metabolite, using the cystine transport system TcyJKLMN. This work lays the foundation for the development of effective processes for vitamin B5 and coenzyme A production using B. subtilis. IMPORTANCE Vitamins are essential components of the diet of animals and humans. Vitamins are thus important targets for biotechnological production. While efficient fermentation processes have been developed for several vitamins, this is not the case for vitamin B5 (pantothenate), the precursor of coenzyme A. We have elucidated the complete pathway for coenzyme A biosynthesis in the biotechnological workhorse Bacillus subtilis. Moreover, a salvage pathway for coenzyme A synthesis was found in this study. Normally, this pathway depends on pantetheine; however, we observed activity of the salvage pathway on complex medium in mutants lacking the pantothenate biosynthesis pathway even in the absence of supplemented pantetheine. This required rewiring of metabolism by expressing a cystine transporter due to acquisition of mutations affecting the regulation of cysteine metabolism. This shows how the hidden "underground metabolism" can give rise to the rapid formation of novel metabolic pathways.
Collapse
Affiliation(s)
- Robert Warneke
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christina Herzberg
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Moritz Klein
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Christoph Elfmann
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Josi Dittmann
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
- Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute for Microbiology & Genetics and Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Martin HA, Sundararajan A, Ermi TS, Heron R, Gonzales J, Lee K, Anguiano-Mendez D, Schilkey F, Pedraza-Reyes M, Robleto EA. Mfd Affects Global Transcription and the Physiology of Stressed Bacillus subtilis Cells. Front Microbiol 2021; 12:625705. [PMID: 33603726 PMCID: PMC7885715 DOI: 10.3389/fmicb.2021.625705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
For several decades, Mfd has been studied as the bacterial transcription-coupled repair factor. However, recent observations indicate that this factor influences cell functions beyond DNA repair. Our lab recently described a role for Mfd in disulfide stress that was independent of its function in nucleotide excision repair and base excision repair. Because reports showed that Mfd influenced transcription of single genes, we investigated the global differences in transcription in wild-type and mfd mutant growth-limited cells in the presence and absence of diamide. Surprisingly, we found 1,997 genes differentially expressed in Mfd– cells in the absence of diamide. Using gene knockouts, we investigated the effect of genetic interactions between Mfd and the genes in its regulon on the response to disulfide stress. Interestingly, we found that Mfd interactions were complex and identified additive, epistatic, and suppressor effects in the response to disulfide stress. Pathway enrichment analysis of our RNASeq assay indicated that major biological functions, including translation, endospore formation, pyrimidine metabolism, and motility, were affected by the loss of Mfd. Further, our RNASeq findings correlated with phenotypic changes in growth in minimal media, motility, and sensitivity to antibiotics that target the cell envelope, transcription, and DNA replication. Our results suggest that Mfd has profound effects on the modulation of the transcriptome and on bacterial physiology, particularly in cells experiencing nutritional and oxidative stress.
Collapse
Affiliation(s)
- Holly Anne Martin
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | | | - Tatiana S Ermi
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Robert Heron
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jason Gonzales
- West Career and Technical Academy, Las Vegas, NV, United States
| | - Kaiden Lee
- The College of Idaho, Caldwell, ID, United States
| | - Diana Anguiano-Mendez
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Faye Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Mario Pedraza-Reyes
- Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Guanajuato, Mexico
| | - Eduardo A Robleto
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
3
|
Hemmadi V, Biswas M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 2020; 203:481-498. [PMID: 33048189 PMCID: PMC7551524 DOI: 10.1007/s00203-020-02071-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus is responsible for numerous instances of superficial, toxin-mediated, and invasive infections. The emergence of methicillin-resistant (MRSA), as well as vancomycin-resistant (VRSA) strains of S. aureus, poses a massive threat to human health. The tenacity of S. aureus to acquire resistance against numerous antibiotics in a very short duration makes the effort towards developing new antibiotics almost futile. S. aureus owes its destructive pathogenicity to the plethora of virulent factors it produces among which a majority of them are moonlighting proteins. Moonlighting proteins are the multifunctional proteins in which a single protein, with different oligomeric conformations, perform multiple independent functions in different cell compartments. Peculiarly, proteins involved in key ancestral functions and metabolic pathways typically exhibit moonlighting functions. Pathogens mainly employ those proteins as virulent factors which exhibit high structural conservation towards their host counterparts. Consequentially, the host immune system counteracts these invading bacterial virulent factors with minimal protective action. Additionally, many moonlighting proteins also play multiple roles in various stages of pathogenicity while augmenting the virulence of the bacterium. This has necessitated elaborative studies to be conducted on moonlighting proteins of S. aureus that can serve as drug targets. This review is a small effort towards understanding the role of various moonlighting proteins in the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
4
|
Inactivation of cysL Inhibits Biofilm Formation by Activating the Disulfide Stress Regulator Spx in Bacillus subtilis. J Bacteriol 2019; 201:JB.00712-18. [PMID: 30718304 DOI: 10.1128/jb.00712-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms biofilms in response to internal and external stimuli. I previously showed that the cysL deletion mutant was defective in biofilm formation, but the reason for this remains unidentified. CysL is a transcriptional activator of the cysJI operon, which encodes sulfite reductase, an enzyme involved in cysteine biosynthesis. Decreased production of sulfite reductase led to biofilm formation defects in the ΔcysL mutant. The ΔcysL mutation was suppressed by disrupting cysH operon genes, whose products function upstream of sulfite reductase in the cysteine biosynthesis pathway, indicating that defects in cysteine biosynthesis were not a direct cause for the defective biofilm formation observed in the ΔcysL mutant. The cysH gene encodes phosphoadenosine phosphosulfate reductase, which requires a reduced form of thioredoxin (TrxA) as an electron donor. High expression of trxA inhibited biofilm formation in the ΔcysL mutant but not in the wild-type strain. Northern blot analysis showed that trxA transcription was induced in the ΔcysL mutant in a disulfide stress-induced regulator Spx-dependent manner. On the basis of these results, I propose that the ΔcysL mutation causes phosphoadenosine phosphosulfate reductase to consume large amounts of reduced thioredoxin, inducing disulfide stress and activating Spx. The spx mutation restored biofilm formation to the ΔcysL mutant. The ΔcysL mutation reduced expression of the eps operon, which is required for exopolysaccharide production. Moreover, overexpression of the eps operon restored biofilm formation to the ΔcysL mutant. Taken together, these results suggest that the ΔcysL mutation activates Spx, which then inhibits biofilm formation through repression of the eps operon.IMPORTANCE Bacillus subtilis has been studied as a model organism for biofilm formation. In this study, I explored why the cysL deletion mutant was defective in biofilm formation. I demonstrated that the ΔcysL mutation activated the disulfide stress response regulator Spx, which inhibits biofilm formation by repressing biofilm matrix genes. Homologs of Spx are highly conserved among Gram-positive bacteria with low G+C contents. In some pathogens, Spx is also reported to inhibit biofilm formation by repressing biofilm matrix genes, even though these genes and their regulation are quite different from those of B. subtilis Thus, the negative regulation of biofilm formation by Spx is likely to be well conserved across species and may be an appropriate target for control of biofilm formation.
Collapse
|
5
|
Computational analysis of cysteine and methionine metabolism and its regulation in dairy starter and related bacteria. J Bacteriol 2012; 194:3522-33. [PMID: 22522891 DOI: 10.1128/jb.06816-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfuric volatile compounds derived from cysteine and methionine provide many dairy products with a characteristic odor and taste. To better understand and control the environmental dependencies of sulfuric volatile compound formation by the dairy starter bacteria, we have used the available genome sequence and experimental information to systematically evaluate the presence of the key enzymes and to reconstruct the general modes of transcription regulation for the corresponding genes. The genomic organization of the key genes is suggestive of a subdivision of the reaction network into five modules, where we observed distinct differences in the modular composition between the families Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, on the one hand, and the family Streptococcaceae, on the other. These differences are mirrored by the way in which transcription regulation of the genes is structured in these families. In the Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, the main shared mode of transcription regulation is methionine (Met) T-box-mediated regulation. In addition, the gene metK, encoding S-adenosylmethionine (SAM) synthetase, is controlled via the S(MK) box (SAM). The S(MK) box is also found upstream of metK in species of the family Streptococcaceae. However, the transcription control of the other modules is mediated via three different LysR-family regulators, MetR/MtaR (methionine), CmbR (O-acetyl[homo]serine), and HomR (O-acetylhomoserine). Redefinition of the associated DNA-binding motifs helped to identify/disentangle the related regulons, which appeared to perfectly match the proposed subdivision of the reaction network.
Collapse
|
6
|
Procópio L, Alvarez VM, Jurelevicius DA, Hansen L, Sørensen SJ, Cardoso JS, Pádula M, Leitão ÁC, Seldin L, van Elsas JD. Insight from the draft genome of Dietzia cinnamea P4 reveals mechanisms of survival in complex tropical soil habitats and biotechnology potential. Antonie van Leeuwenhoek 2011; 101:289-302. [PMID: 21901521 PMCID: PMC3261415 DOI: 10.1007/s10482-011-9633-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/20/2011] [Indexed: 01/17/2023]
Abstract
The draft genome of Dietzia cinnamea strain P4 was determined using pyrosequencing. In total, 428 supercontigs were obtained and analyzed. We here describe and interpret the main features of the draft genome. The genome contained a total of 3,555,295 bp, arranged in a single replicon with an average G+C percentage of 70.9%. It revealed the presence of complete pathways for basically all central metabolic routes. Also present were complete sets of genes for the glyoxalate and reductive carboxylate cycles. Autotrophic growth was suggested to occur by the presence of genes for aerobic CO oxidation, formate/formaldehyde oxidation, the reverse tricarboxylic acid cycle and the 3-hydropropionate cycle for CO2 fixation. Secondary metabolism was evidenced by the presence of genes for the biosynthesis of terpene compounds, frenolicin, nanaomycin and avilamycin A antibiotics. Furthermore, a probable role in azinomycin B synthesis, an important product with antitumor activity, was indicated. The complete alk operon for the degradation of n-alkanes was found to be present, as were clusters of genes for biphenyl ring dihydroxylation. This study brings new insights in the genetics and physiology of D. cinnamea P4, which is useful in biotechnology and bioremediation.
Collapse
Affiliation(s)
- Luciano Procópio
- Microbial Ecology Laboratory, Department of Microbial Ecology, CEES, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Ilha do Fundão, Rio de Janeiro, RJ 21941-901 Brazil
| | - Vanessa M. Alvarez
- Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Ilha do Fundão, Rio de Janeiro, RJ 21941-901 Brazil
| | - Diogo A. Jurelevicius
- Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Ilha do Fundão, Rio de Janeiro, RJ 21941-901 Brazil
| | - Lars Hansen
- Department of Microbiology, Institute of Biology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen, Denmark
| | - Søren J. Sørensen
- Department of Microbiology, Institute of Biology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen, Denmark
| | - Janine S. Cardoso
- Laboratório de Diagnóstico Molecular e Hematologia, Faculdade de Farmácia, UFRJ, CCS, Ilha do Fundão, Rio de Janeiro, RJ 21941-540 Brazil
| | - Marcelo Pádula
- Laboratório de Diagnóstico Molecular e Hematologia, Faculdade de Farmácia, UFRJ, CCS, Ilha do Fundão, Rio de Janeiro, RJ 21941-540 Brazil
| | - Álvaro C. Leitão
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Ilha do Fundão, Rio de Janeiro, RJ 21941-540 Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Ilha do Fundão, Rio de Janeiro, RJ 21941-901 Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology Laboratory, Department of Microbial Ecology, CEES, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
7
|
André G, Haudecoeur E, Monot M, Ohtani K, Shimizu T, Dupuy B, Martin-Verstraete I. Global regulation of gene expression in response to cysteine availability in Clostridium perfringens. BMC Microbiol 2010; 10:234. [PMID: 20822510 PMCID: PMC2940859 DOI: 10.1186/1471-2180-10-234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022] Open
Abstract
Background Cysteine has a crucial role in cellular physiology and its synthesis is tightly controlled due to its reactivity. However, little is known about the sulfur metabolism and its regulation in clostridia compared with other firmicutes. In Clostridium perfringens, the two-component system, VirR/VirS, controls the expression of the ubiG operon involved in methionine to cysteine conversion in addition to the expression of several toxin genes. The existence of links between the C. perfringens virulence regulon and sulfur metabolism prompted us to analyze this metabolism in more detail. Results We first performed a tentative reconstruction of sulfur metabolism in C. perfringens and correlated these data with the growth of strain 13 in the presence of various sulfur sources. Surprisingly, C. perfringens can convert cysteine to methionine by an atypical still uncharacterized pathway. We further compared the expression profiles of strain 13 after growth in the presence of cystine or homocysteine that corresponds to conditions of cysteine depletion. Among the 177 genes differentially expressed, we found genes involved in sulfur metabolism and controlled by premature termination of transcription via a cysteine specific T-box system (cysK-cysE, cysP1 and cysP2) or an S-box riboswitch (metK and metT). We also showed that the ubiG operon was submitted to a triple regulation by cysteine availability via a T-box system, by the VirR/VirS system via the VR-RNA and by the VirX regulatory RNA. In addition, we found that expression of pfoA (theta-toxin), nagL (one of the five genes encoding hyaluronidases) and genes involved in the maintenance of cell redox status was differentially expressed in response to cysteine availability. Finally, we showed that the expression of genes involved in [Fe-S] clusters biogenesis and of the ldh gene encoding the lactate dehydrogenase was induced during cysteine limitation. Conclusion Several key functions for the cellular physiology of this anaerobic bacterium were controlled in response to cysteine availability. While most of the genes involved in sulfur metabolism are regulated by premature termination of transcription, other still uncharacterized mechanisms of regulation participated in the induction of gene expression during cysteine starvation.
Collapse
Affiliation(s)
- Gaelle André
- Institut Pasteur, Unité de Génétique des Génomes Bactériens and Unité des Bactéries Anaérobies et Toxines, 28 rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Shirzadian-Khorramabad R, Jing HC, Everts GE, Schippers JHM, Hille J, Dijkwel PP. A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis. BMC PLANT BIOLOGY 2010; 10:80. [PMID: 20429919 PMCID: PMC2890954 DOI: 10.1186/1471-2229-10-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 04/29/2010] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol) lyase (OAS-TL) catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified. RESULTS The seedling lethal phenotype of the Arabidopsis onset of leaf death3-1 (old3-1) mutant is due to a point mutation in the OAS-A1 gene, encoding the cytosolic OAS-TL. The mutation causes a single amino acid substitution from Gly162 to Glu162, abolishing old3-1 OAS-TL activity in vitro. The old3-1 mutation segregates as a monogenic semi-dominant trait when backcrossed to its wild type accession Landsberg erecta (Ler-0) and the Di-2 accession. Consistent with its semi-dominant behaviour, wild type Ler-0 plants transformed with the mutated old3-1 gene, displayed the early leaf death phenotype. However, the old3-1 mutation segregates in an 11:4:1 (wild type: semi-dominant: mutant) ratio when backcrossed to the Colombia-0 and Wassilewskija accessions. Thus, the early leaf death phenotype depends on two semi-dominant loci. The second locus that determines the old3-1 early leaf death phenotype is referred to as odd-ler (for old3 determinant in the Ler accession) and is located on chromosome 3. The early leaf death phenotype is temperature dependent and is associated with increased expression of defence-response and oxidative-stress marker genes. Independent of the presence of the odd-ler gene, OAS-A1 is involved in maintaining sulphur and thiol levels and is required for resistance against cadmium stress. CONCLUSIONS The cytosolic OAS-TL is involved in maintaining organic sulphur levels. The old3-1 mutation causes genome-dependent and independent phenotypes and uncovers a novel function for the mutated OAS-TL in cell death regulation.
Collapse
Affiliation(s)
- Reza Shirzadian-Khorramabad
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- University of Guilan, Department of Agronomy and Plant Breeding, P.O. Box 41635-1314, Rasht, Iran
| | - Hai-Chun Jing
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- Centre for Bioenergy Plants Research and Development, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Gerja E Everts
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | - Jos HM Schippers
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- University of Potsdam, Department of Molecular Biology, Karl-Liebknecht-Str. 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Jacques Hille
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | - Paul P Dijkwel
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
- Institute of Molecular BioSciences (IMBS), Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
9
|
Hullo MF, Auger S, Soutourina O, Barzu O, Yvon M, Danchin A, Martin-Verstraete I. Conversion of methionine to cysteine in Bacillus subtilis and its regulation. J Bacteriol 2006; 189:187-97. [PMID: 17056751 PMCID: PMC1797209 DOI: 10.1128/jb.01273-06] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacillus subtilis can use methionine as the sole sulfur source, indicating an efficient conversion of methionine to cysteine. To characterize this pathway, the enzymatic activities of CysK, YrhA and YrhB purified in Escherichia coli were tested. Both CysK and YrhA have an O-acetylserine-thiol-lyase activity, but YrhA was 75-fold less active than CysK. An atypical cystathionine beta-synthase activity using O-acetylserine and homocysteine as substrates was observed for YrhA but not for CysK. The YrhB protein had both cystathionine lyase and homocysteine gamma-lyase activities in vitro. Due to their activity, we propose that YrhA and YrhB should be renamed MccA and MccB for methionine-to-cysteine conversion. Mutants inactivated for cysK or yrhB grew similarly to the wild-type strain in the presence of methionine. In contrast, the growth of an DeltayrhA mutant or a luxS mutant, inactivated for the S-ribosyl-homocysteinase step of the S-adenosylmethionine recycling pathway, was strongly reduced with methionine, whereas a DeltayrhA DeltacysK or cysE mutant did not grow at all under the same conditions. The yrhB and yrhA genes form an operon together with yrrT, mtnN, and yrhC. The expression of the yrrT operon was repressed in the presence of sulfate or cysteine. Both purified CysK and CymR, the global repressor of cysteine metabolism, were required to observe the formation of a protein-DNA complex with the yrrT promoter region in gel-shift experiments. The addition of O-acetyl-serine prevented the formation of this protein-DNA complex.
Collapse
Affiliation(s)
- Marie-Françoise Hullo
- Unité de Génétique des Génomes Bactériens, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I. Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 2006; 188:2184-97. [PMID: 16513748 PMCID: PMC1428143 DOI: 10.1128/jb.188.6.2184-2197.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
YrzC has previously been identified as a repressor controlling ytmI expression via its regulation of YtlI activator synthesis in Bacillus subtilis. We identified YrzC as a master regulator of sulfur metabolism. Gene expression profiles of B. subtilis delta yrzC mutant and wild-type strains grown in minimal medium with sulfate as the sole sulfur source were compared. In the mutant, increased expression was observed for 24 genes previously identified as repressed in the presence of sulfate. Since several genes involved in the pathways leading to cysteine formation were found, we propose to rename YrzC CymR, for "cysteine metabolism repressor." A CymR-dependent binding to the promoter region of the ytlI, ssuB, tcyP, yrrT, yxeK, cysK, or ydbM gene was demonstrated using gel shift experiments. A potential CymR target site, TAAWNCN2ANTWNAN3ATMGGAATTW, was found in the promoter region of these genes. In a DNase footprint experiment, the protected region in the ytlI promoter region contained this consensus sequence. Partial deletion or introduction of point mutations in this sequence confirmed its involvement in ytlI, yrrT, and yxeK regulation. The addition of O-acetylserine in gel shift experiments prevented CymR-dependent binding to DNA for all of the targets characterized. Transcriptome analysis of a delta cymR mutant and the wild-type strain also brought out significant changes in the expression level of a large set of genes related to stress response or to transition toward anaerobiosis.
Collapse
Affiliation(s)
- Sergine Even
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
11
|
Albanesi D, Mansilla MC, Schujman GE, de Mendoza D. Bacillus subtilis cysteine synthetase is a global regulator of the expression of genes involved in sulfur assimilation. J Bacteriol 2005; 187:7631-8. [PMID: 16267287 PMCID: PMC1280300 DOI: 10.1128/jb.187.22.7631-7638.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synthesis of L-cysteine, the major mechanism by which sulfur is incorporated into organic compounds in microorganisms, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis the cysH operon, encoding several proteins involved in cysteine biosynthesis, is induced by sulfur starvation and tightly repressed by cysteine. We show that a null mutation in the cysK gene encoding an O-acetylserine-(thiol)lyase, the enzyme that catalyzes the final step in cysteine biosynthesis, results in constitutive expression of the cysH operon. Using DNA microarrays we found that, in addition to cysH, almost all of the genes required for sulfate assimilation are constitutively expressed in cysK mutants. These results indicate that CysK, besides its enzymatic role in cysteine biosynthesis, is a global negative regulator of genes involved in sulfur metabolism.
Collapse
Affiliation(s)
- Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | | | |
Collapse
|
12
|
Burguière P, Fert J, Guillouard I, Auger S, Danchin A, Martin-Verstraete I. Regulation of the Bacillus subtilis ytmI operon, involved in sulfur metabolism. J Bacteriol 2005; 187:6019-30. [PMID: 16109943 PMCID: PMC1196162 DOI: 10.1128/jb.187.17.6019-6030.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The YtlI regulator of Bacillus subtilis activates the transcription of the ytmI operon encoding an l-cystine ABC transporter, a riboflavin kinase, and proteins of unknown function. The expression of the ytlI gene and the ytmI operon was high with methionine and reduced with sulfate. Using deletions and site-directed mutagenesis, a cis-acting DNA sequence important for YtlI-dependent regulation was identified upstream from the -35 box of ytmI. Gel mobility shift assays confirmed that YtlI specifically interacted with this sequence. The replacement of the sulfur-regulated ytlI promoter by the xylA promoter led to constitutive expression of a ytmI'-lacZ fusion in a ytlI mutant, suggesting that the repression of ytmI expression by sulfate was mainly at the level of YtlI synthesis. We further showed that the YrzC regulator negatively controlled ytlI expression while this repressor also acted on ytmI expression via YtlI. The cascade of regulation observed in B. subtilis is conserved in Listeria spp. Both a YtlI-like regulator and a ytmI-type operon are present in Listeria spp. Indeed, the Lmo2352 protein from Listeria monocytogenes was able to replace YtlI for the activation of ytmI expression and a lmo2352'-lacZ fusion was repressed in the presence of sulfate via YrzC in B. subtilis. A common motif, AT(A/T)ATTCCTAT, was found in the promoter region of the ytlI and lmo2352 genes. Deletion of part of this motif or the introduction of point mutations in this sequence confirmed its involvement in ytlI regulation.
Collapse
Affiliation(s)
- Pierre Burguière
- Unité de Génétique des Génomes Bactériens, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
13
|
Rückert C, Koch DJ, Rey DA, Albersmeier A, Mormann S, Pühler A, Kalinowski J. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 2005; 6:121. [PMID: 16159395 PMCID: PMC1266029 DOI: 10.1186/1471-2164-6-121] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/13/2005] [Indexed: 11/11/2022] Open
Abstract
Background Corynebacterium glutamicum is a high-GC Gram-positive soil bacterium of great biotechnological importance for the production of amino acids. To facilitate the rational design of sulphur amino acid-producing strains, the pathway for assimilatory sulphate reduction providing the necessary reduced sulfur moieties has to be known. Although this pathway has been well studied in Gram-negative bacteria like Escherichia coli and low-GC Gram-positives like Bacillus subtilis, little is known for the Actinomycetales and other high-GC Gram-positive bacteria. Results The genome sequence of C. glutamicum was searched for genes involved in the assimilatory reduction of inorganic sulphur compounds. A cluster of eight candidate genes could be identified by combining sequence similarity searches with a subsequent synteny analysis between C. glutamicum and the closely related C. efficiens. Using mutational analysis, seven of the eight candidate genes, namely cysZ, cysY, cysN, cysD, cysH, cysX, and cysI, were demonstrated to be involved in the reduction of inorganic sulphur compounds. For three of the up to now unknown genes possible functions could be proposed: CysZ is likely to be the sulphate permease, while CysX and CysY are possibly involved in electron transfer and cofactor biosynthesis, respectively. Finally, the candidate gene designated fpr2 influences sulphur utilisation only weakly and might be involved in electron transport for the reduction of sulphite. Real-time RT-PCR experiments revealed that cysIXHDNYZ form an operon and that transcription of the extended cluster fpr2 cysIXHDNYZ is strongly influenced by the availability of inorganic sulphur, as well as L-cysteine. Mapping of the fpr2 and cysIXHDNYZ promoters using RACE-PCR indicated that both promoters overlap with binding-sites of the transcriptional repressor McbR, suggesting an involvement of McbR in the observed regulation. Comparative genomics revealed that large parts of the extended cluster are conserved in 11 of 17 completely sequenced members of the Actinomycetales. Conclusion The set of C. glutamicum genes involved in assimilatory sulphate reduction was identified and four novel genes involved in this pathway were found. The high degree of conservation of this cluster among the Actinomycetales supports the hypothesis that a different metabolic pathway for the reduction of inorganic sulphur compounds than that known from the well-studied model organisms E. coli and B. subtilis is used by members of this order, providing the basis for further biochemical studies.
Collapse
Affiliation(s)
- Christian Rückert
- International NRW Graduate School in Bioinformatics & Genome Research, Universität Bielefeld, D-33594 Bielefeld, Germany
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Daniel J Koch
- International NRW Graduate School in Bioinformatics & Genome Research, Universität Bielefeld, D-33594 Bielefeld, Germany
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Daniel A Rey
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Andreas Albersmeier
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Sascha Mormann
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Jörn Kalinowski
- lnstitut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| |
Collapse
|
14
|
Smits WK, Dubois JYF, Bron S, van Dijl JM, Kuipers OP. Tricksy business: transcriptome analysis reveals the involvement of thioredoxin A in redox homeostasis, oxidative stress, sulfur metabolism, and cellular differentiation in Bacillus subtilis. J Bacteriol 2005; 187:3921-30. [PMID: 15937154 PMCID: PMC1151711 DOI: 10.1128/jb.187.12.3921-3930.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thioredoxins are important thiol-reactive proteins. Most knowledge about this class of proteins is derived from proteome studies, and little is known about the global transcriptional response of cells to various thioredoxin levels. In Bacillus subtilis, thioredoxin A is encoded by trxA and is essential for viability. In this study, we report the effects of minimal induction of a strain carrying an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible trxA gene (ItrxA) on transcription levels, as determined by DNA macroarrays. The effective depletion of thioredoxin A leads to the induction of genes involved in the oxidative stress response (but not those dependent on PerR), phage-related functions, and sulfur utilization. Also, several stationary-phase processes, such as sporulation and competence, are affected. The majority of these phenotypes are rescued by a higher induction level of ItrxA, leading to an approximately wild-type level of thioredoxin A protein. A comparison with other studies shows that the effects of thioredoxin depletion are distinct from, but show some similarity to, oxidative stress and disulfide stress. Some of the transcriptional effects may be linked to thioredoxin-interacting proteins. Finally, thioredoxin-linked processes appear to be conserved between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Lithgow JK, Hayhurst EJ, Cohen G, Aharonowitz Y, Foster SJ. Role of a cysteine synthase in Staphylococcus aureus. J Bacteriol 2004; 186:1579-90. [PMID: 14996787 PMCID: PMC355971 DOI: 10.1128/jb.186.6.1579-1590.2004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-positive human pathogen Staphylococcus aureus is often isolated with media containing potassium tellurite, to which it has a higher level of resistance than Escherichia coli. The S. aureus cysM gene was isolated in a screen for genes that would increase the level of tellurite resistance of E. coli DH5alpha. The protein encoded by S. aureus cysM is sequentially and functionally homologous to the O-acetylserine (thiol)-lyase B family of cysteine synthase proteins. An S. aureus cysM knockout mutant grows poorly in cysteine-limiting conditions, and analysis of the thiol content in cell extracts showed that the cysM mutant produced significantly less cysteine than wild-type S. aureus SH1000. S. aureus SH1000 cannot use sulfate, sulfite, or sulfonates as the source of sulfur in cysteine biosynthesis, which is explained by the absence of genes required for the uptake and reduction of these compounds in the S. aureus genome. S. aureus SH1000, however, can utilize thiosulfate, sulfide, or glutathione as the sole source of sulfur. Mutation of cysM caused increased sensitivity of S. aureus to tellurite, hydrogen peroxide, acid, and diamide and also significantly reduced the ability of S. aureus to recover from starvation in amino acid- or phosphate-limiting conditions, indicating a role for cysteine in the S. aureus stress response and survival mechanisms.
Collapse
Affiliation(s)
- James K Lithgow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Fukamachi H, Nakano Y, Yoshimura M, Koga T. Cloning and characterization of the L-cysteine desulfhydrase gene of Fusobacterium nucleatum. FEMS Microbiol Lett 2002; 215:75-80. [PMID: 12393204 DOI: 10.1111/j.1574-6968.2002.tb11373.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hydrogen sulfide and methyl mercaptan are the two major compounds associated with oral malodor. These compounds are highly toxic, and are thought to play an important role in periodontal disease. Fusobacterium nucleatum, an oral bacterium, produces large amounts of hydrogen sulfide from L-cysteine by the enzymatic action of L-cysteine desulfhydrase. We cloned and sequenced the cdl gene encoding L-cysteine desulfhydrase from F. nucleatum ATCC 10953, and revealed that the structural cdl gene consists of 921 bp and encodes a 33.4-kDa protein. The cloned gene was inserted into an expression vector, pDEST17, and expressed in Escherichia coli as a fused protein. The purified enzyme was tested for substrate specificity using various SH-containing compounds. Only L-cysteine served as a substrate for L-cysteine desulfhydrase to produce hydrogen sulfide.
Collapse
Affiliation(s)
- Haruka Fukamachi
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
17
|
Auger S, Danchin A, Martin-Verstraete I. Global expression profile of Bacillus subtilis grown in the presence of sulfate or methionine. J Bacteriol 2002; 184:5179-86. [PMID: 12193636 PMCID: PMC135312 DOI: 10.1128/jb.184.18.5179-5186.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA arrays were used to investigate the global transcriptional profile of Bacillus subtilis grown in the presence of sulfate or methionine as the sole sulfur source. The expression of at least 56 genes differed significantly under the two growth conditions. The expression of several genes belonging to the S-box regulon was repressed in the presence of methionine probably in response to S-adenosylmethionine availability. The expression of genes encoding transporters (yhcL, ytmJKLMN, and yxeMO) was high when the sulfur source was methionine or taurine and reduced when it was sulfate.
Collapse
Affiliation(s)
- Sandrine Auger
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
18
|
Guillouard I, Auger S, Hullo MF, Chetouani F, Danchin A, Martin-Verstraete I. Identification of Bacillus subtilis CysL, a regulator of the cysJI operon, which encodes sulfite reductase. J Bacteriol 2002; 184:4681-9. [PMID: 12169591 PMCID: PMC135269 DOI: 10.1128/jb.184.17.4681-4689.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The way in which the genes involved in cysteine biosynthesis are regulated is poorly characterized in Bacillus subtilis. We showed that CysL (formerly YwfK), a LysR-type transcriptional regulator, activates the transcription of the cysJI operon, which encodes sulfite reductase. We demonstrated that a cysL mutant and a cysJI mutant have similar phenotypes. Both are unable to grow using sulfate or sulfite as the sulfur source. The level of expression of the cysJI operon is higher in the presence of sulfate, sulfite, or thiosulfate than in the presence of cysteine. Conversely, the transcription of the cysH and cysK genes is not regulated by these sulfur sources. In the presence of thiosulfate, the expression of the cysJI operon was reduced 11-fold, whereas the expression of the cysH and cysK genes was increased, in a cysL mutant. A cis-acting DNA sequence located upstream of the transcriptional start site of the cysJI operon (positions -76 to -70) was shown to be necessary for sulfur source- and CysL-dependent regulation. CysL also negatively regulates its own transcription, a common characteristic of the LysR-type regulators. Gel mobility shift assays and DNase I footprint experiments showed that the CysL protein specifically binds to cysJ and cysL promoter regions. This is the first report of a regulator of some of the genes involved in cysteine biosynthesis in B. subtilis.
Collapse
Affiliation(s)
- Isabelle Guillouard
- Unité de Génétique des Génomes Bactériens, URA CNRS 2171, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|