1
|
Yassein AAM, Teleb AA, Hassan GM, El Fiky ZA. The immune response and protective efficacy of a potential DNA vaccine against virulent Pasteurella multocida. J Genet Eng Biotechnol 2021; 19:81. [PMID: 34057640 PMCID: PMC8167001 DOI: 10.1186/s43141-021-00180-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
Background Pasteurella multocida is the main cause of several infections of farm animals, and the immunity gained from commercial vaccines is for the short term only and needs to be routinely administered, so work on new vaccines against virulent P. multocida is crucial. Results In this study, the OmpH gene was amplified from ten P. multocida strains, and the PCR products were sequenced and analyzed. The results of RFLP analysis of OmpH gene digested by MspI enzyme showed that all of ten strains examined possessed one restriction site and two fragments, 350 and 650 bp. The OmpH sequence of strain No. 10 was cloned into bacterial expression vector pUCP24, and the recombinant pUCP24-OmpH was expressed in E. coli DH5α. Serum samples obtained from the ELISA test from a group of vaccinated rats indicate that the antibodies were present at high titer in immunized rats and can be tested as a vaccine candidate with a challenge. Conclusions In rats infected with the DNA vaccine and inactivated vaccine, a significant increase in serum antibody levels was observed. In addition, the DNA vaccine provided the vaccinated rats with partial protection; however, the protective efficacy was greater than that offered by the live attenuated vaccine. This successful recombinant vaccine is immunogenic and may potentially be used as a vaccine in the future.
Collapse
Affiliation(s)
- Ahmed A M Yassein
- Genetics Department, Faculty of Agriculture, Fayoum University, 63514, Fayoum, Egypt.
| | - Ayaat A Teleb
- Genetics Department, Faculty of Agriculture, Fayoum University, 63514, Fayoum, Egypt
| | - Gamal M Hassan
- Genetics Department, Faculty of Agriculture, Fayoum University, 63514, Fayoum, Egypt
| | - Zaki A El Fiky
- Genetics Department, Faculty of Agriculture, Fayoum University, 63514, Fayoum, Egypt
| |
Collapse
|
2
|
Liu Q, Hu Y, Li P, Kong Q. Identification of Fur in Pasteurella multocida and the Potential of Its Mutant as an Attenuated Live Vaccine. Front Vet Sci 2019; 6:5. [PMID: 30778390 PMCID: PMC6369157 DOI: 10.3389/fvets.2019.00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/10/2019] [Indexed: 12/14/2022] Open
Abstract
Pasteurella multocida is a pathogenic microorganism that causes a variety of serious diseases in humans and animals worldwide. The global regulator gene, fur, plays an important role in pathogenesis and regulates the virulence of many bacteria. Here, we identified a fur gene in P. multocida by complementing a Salmonella Choleraesuis Δfur mutant, and characterized a fur mutant strain of P. multocida. The P. multocida Δfur mutant strain exhibited no significant differences in growth and outer membrane protein (OMP) profiles when the complemented strain was compared to the parent. Ducks were used as the model organism to determine the virulence and protection efficacy induced by Δfur mutant strain. Animal experiments showed that colonization by the mutant was decreased by oral infection of live Δfur mutant strain. The LD50 of the ducks infected with the Δfur mutant was 146-fold higher than that of the ducks infected with the wild-type strain when administered through the oral route. Evaluation of the immunogenicity and protective efficacy of the Δfur mutant of P. multocida revealed strong serum IgY and bile IgA immune responses following oral inoculation with the Δfur strain. Ducks that were orally inoculated with the Δfur mutant strain demonstrated 62% protection efficacy against severe lethal challenge with the wild-type P. multocida. This study provides new insights into P. multocida virulence and the potential use of an attenuated vaccine against P. multocida.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Zhao X, Liu Q, Xiao K, Hu Y, Liu X, Li Y, Kong Q. Identification of the crp gene in avian Pasteurella multocida and evaluation of the effects of crp deletion on its phenotype, virulence and immunogenicity. BMC Microbiol 2016; 16:125. [PMID: 27343075 PMCID: PMC4921010 DOI: 10.1186/s12866-016-0739-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
Background Pasteurella multocida (P. multocida) is an important veterinary pathogen that can cause severe diseases in a wide range of mammals and birds. The global regulator crp gene has been found to regulate the virulence of some bacteria, and crp mutants have been demonstrated to be effective attenuated vaccines against Salmonella enterica and Yersinia enterocolitica. Here, we first characterized the crp gene in P. multocida, and we report the effects of a crp deletion. Results The P. multocida crp mutant exhibited a similar lipopolysaccharide and outer membrane protein profile but displayed defective growth and serum complement resistance in vitro compared with the parent strain. Furthermore, crp deletion decreased virulence but did not result in full attenuation. The 50 % lethal dose (LD50) of the Δcrp mutant was 85-fold higher than that of the parent strain for intranasal infection. Transcriptome sequencing analysis showed that 92 genes were up-regulated and 94 genes were down-regulated in the absence of the crp gene. Finally, we found that intranasal immunization with the Δcrp mutant triggered both systematic and mucosal antibody responses and conferred 60 % protection against virulent P. multocida challenge in ducks. Conclusion The deletion of the crp gene has an inhibitory effect on bacterial growth and bacterial resistance to serum complement in vitro. The P. multocida crp mutant was attenuated and conferred moderate protection in ducks. This work affords a platform for analyzing the function of crp and aiding the formulation of a novel vaccine against P. multocida. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0739-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Wenjiang, 611130, China.
| | - Kangpeng Xiao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunlong Hu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xueyan Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|
4
|
Identification of the Avian Pasteurella multocida phoP Gene and Evaluation of the Effects of phoP Deletion on Virulence and Immunogenicity. Int J Mol Sci 2015; 17:ijms17010012. [PMID: 26703595 PMCID: PMC4730259 DOI: 10.3390/ijms17010012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida (P. multocida) is an animal pathogen of worldwide economic significance that causes fowl cholera in poultry and wild birds. Global gene regulators, including PhoP are important in regulating bacterial virulence and are good targets for developing attenuated vaccines against many pathogenic bacteria. However, the biological significance of phoP gene has not been identified in P. multocida. Here, we identified the phoP gene in P. multocida, and we evaluated the roles of phoP in P. multocida by deleting the phoP gene. The P. multocida phoP mutant exhibited similar growth curves and lipopolysaccharide and outer membrane protein profiles but displayed defective polymyxin resistance in vitro compared with the parent strain. Additionally, the phoP deletion resulted in decreased virulence. The LD50 of the ΔphoP mutant was 32- and 154-fold higher than the parent strain via the oral and intranasal routes, respectively. Transcriptome sequencing analysis showed that 161 genes were up-regulated and 173 genes were down-regulated in the absence of the phoP gene. Finally, the immunogenicity and protective efficacy of the ΔphoP mutant were evaluated. Immunized ducks produced significantly higher levels of serum IgY and bile IgA compared to the control ducks, and immunization with the ΔphoP mutant conferred 54.5% protection efficiency against challenge with the virulent P. multocida. This work provides a platform to dissect the function of phoP and develop a new vaccine against P. multocida.
Collapse
|
5
|
Ebanks RO, Goguen M, Knickle L, Dacanay A, Leslie A, Ross NW, Pinto DM. Analysis of a ferric uptake regulator (Fur) knockout mutant in Aeromonas salmonicida subsp. salmonicida. Vet Microbiol 2013; 162:831-841. [DOI: 10.1016/j.vetmic.2012.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
6
|
Gong Q, Qu N, Niu M, Qin C, Cheng M, Sun X, Zhang A. Immune responses and protective efficacy of a novel DNA vaccine encoding outer membrane protein of avian Pasteurella multocida. Vet Immunol Immunopathol 2013; 152:317-24. [PMID: 23340446 DOI: 10.1016/j.vetimm.2013.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 12/30/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Avian Pasteurella multocida is a causative agent of fowl cholera. Two proteins OmpH and OmpA are the major immunogenic antigens of avian P. multocida, which play an important role in inducing immune responses that confer resistance against infections. In the present study, we used pcDNA3.1(+) as a vector and constructed DNA vaccines with the genes encoding the two antigens mentioned above. These DNA vaccines include monovalent (pcDNA-OMPH, pOMPH and pcDNA-OMPA, pOMPA), divalent combination (pcDNA-OMPH+pcDNA-OMPA, pOMPH+pOMPA) and fusion of two gene vaccines (pcDNA-OMPH/OMPA, pOMPHA). The immune responses to these DNA vaccines were evaluated by serum antibody titers, lymphocyte proliferation assay and titers of a cytokines, IFN-γ. The protective efficacy after challenging with a virulent avian P. multocida strain, CVCC474, was evaluated by survival rate. A significant increase in serum antibody levels was observed in chickens vaccinated with divalent combination and fusion DNA vaccines. Additionally, the lymphocyte proliferation (SI value) and the levels of IFN-γ were both higher in chickens immunized with divalent combination and fusion DNA vaccines than in those vaccinated with monovalent DNA vaccines (P<0.05). Furthermore, the protection provided by divalent combination and fusion DNA vaccines was superior to that provided by monovalent DNA vaccines after challenging with the avian P. multocida strain CVCC474. And the protective efficacy in chickens immunized three times with the fusion DNA vaccine was equivalent to the protective efficacy in chickens vaccinated once with the attenuated live vaccine. This suggests that divalent combination and fusion DNA vaccines represent a promising approach for the prevention of fowl cholera.
Collapse
Affiliation(s)
- Qiang Gong
- He Nan University of Science and Technology, Luoyang, PR China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Fernández-Piñar R, Cámara M, Soriano MI, Dubern JF, Heeb S, Ramos JL, Espinosa-Urgel M. PpoR, an orphan LuxR-family protein of Pseudomonas putida KT2440, modulates competitive fitness and surface motility independently of N-acylhomoserine lactones. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:79-85. [PMID: 23761234 DOI: 10.1111/j.1758-2229.2010.00190.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas putida KT2440 does not produce any of the common molecules involved in quorum sensing signalling described in other bacteria. However, as is the case in other microorganisms, the genome of this strain contains an open reading frame (PP_4647) coding for a transcriptional regulator belonging to the LuxR protein family. In this article, we present evidence indicating that this protein, named PpoR, modulates swarming motility in KT2440 and plays a role in the survival of this strain in the presence of potential competitors. These functions appear to be independent of known N-acylhomoserine lactones (AHLs), since we show that P. putida KT2440 does not produce significant quantities of these molecules under any condition tested and PpoR does not influence the expression of quorum sensing-dependent promoters even in the presence of exogenous AHLs. A ppoR mutant shows increased sensitivity to the iron chelator 2,2'-dipyridyl, while iron supplementation compensates the fitness loss of the mutant in competition with other Pseudomonas. All these data suggest that PpoR participates in both inter- and intraspecific processes relevant to the fitness of P. putida related to iron acquisition, and not necessarily mediated by canonical quorum sensing signal molecules.
Collapse
Affiliation(s)
- Regina Fernández-Piñar
- Department of Environmental Protection. Estación Experimental del Zaidín. CSIC. Profesor Albareda, 1. Granada, Spain. School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Outer membrane proteins of Pasteurella multocida. Vet Microbiol 2010; 144:1-17. [DOI: 10.1016/j.vetmic.2010.01.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/23/2010] [Accepted: 01/28/2010] [Indexed: 02/05/2023]
|
9
|
Aranda J, Garrido ME, Fittipaldi N, Cortés P, Llagostera M, Gottschalk M, Barbé J. The cation-uptake regulators AdcR and Fur are necessary for full virulence of Streptococcus suis. Vet Microbiol 2010; 144:246-9. [PMID: 20133089 DOI: 10.1016/j.vetmic.2009.12.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 12/04/2009] [Accepted: 12/28/2009] [Indexed: 02/08/2023]
Abstract
In streptococci, the pleiotropic regulators AdcR and Fur control the transport of, zinc and iron, respectively, which are essential components of many proteins. In this work, DeltaadcR, Deltafur, and DeltaadcR Deltafur mutants of Streptococcus suis, a serious pathogen in pigs and humans, were assayed in a mouse model to determine their involvement in the virulence of this bacterium. The results showed, for the first time, that the virulence of S. suis mutants carrying an inactivation of adcR, fur, or both genes is significantly attenuated compared to the wild-type parent strain. Furthermore, all mutants were found to be more sensitive to oxidative stress. Our data provide evidence that the adcR and fur genes play important roles in the oxidative stress response of S. suis as well as in the full virulence of this bacterium.
Collapse
Affiliation(s)
- Jesús Aranda
- Department de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
AbstractPasteurella multocidais a pathogenic Gram-negative bacterium that has been classified into three subspecies, five capsular serogroups and 16 serotypes.P. multocidaserogroup A isolates are bovine nasopharyngeal commensals, bovine pathogens and common isolates from bovine respiratory disease (BRD), both enzootic calf pneumonia of young dairy calves and shipping fever of weaned, stressed beef cattle.P. multocidaA:3 is the most common serotype isolated from BRD, and these isolates have limited heterogeneity based on outer membrane protein (OMP) profiles and ribotyping. Development ofP. multocida-induced pneumonia is associated with environmental and stress factors such as shipping, co-mingling, and overcrowding as well as concurrent or predisposing viral or bacterial infections. Lung lesions consist of an acute to subacute bronchopneumonia that may or may not have an associated pleuritis. Numerous virulence or potential virulence factors have been described for bovine respiratory isolates including adherence and colonization factors, iron-regulated and acquisition proteins, extracellular enzymes such as neuraminidase, lipopolysaccharide, polysaccharide capsule and a variety of OMPs. Immunity of cattle against respiratory pasteurellosis is poorly understood; however, high serum antibodies to OMPs appear to be important for enhancing resistance to the bacterium. Currently availableP. multocidavaccines for use in cattle are predominately traditional bacterins and a live streptomycin-dependent mutant. The field efficacy of these vaccines is not well documented in the literature.
Collapse
|
11
|
Gioia J, Highlander SK. Identification and characterization of transcriptional regulation of the Mannheimia haemolytica ferric uptake regulator. Vet Microbiol 2007; 124:298-309. [PMID: 17544233 DOI: 10.1016/j.vetmic.2007.04.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 04/20/2007] [Accepted: 04/25/2007] [Indexed: 11/18/2022]
Abstract
The ferric uptake regulator (Fur) is an iron-dependent transcriptional regulator that regulates genes related to iron acquisition, oxidative stress response, and various other functions. Transcription of fur is typically self-regulating and sensitive to iron and oxidative stress. Following the identification of a fur gene in the genome of the bovine pathogen Mannheimia haemolytica, an attempt was made to characterize the transcriptional control of M. haemolytica fur. Northern blotting, RT-PCR, and primer extension were done to determine that M. haemolytica fur is transcribed using three distinct promoters, two of which are located within the upstream fldA gene. The third promoter is located upstream of a conserved hypothetical protein and drives transcription of a tricistronic message. Quantitative real time PCR experiments indicated that unlike current models of Fur regulation, M. haemolytica fur transcription is unchanged by iron depletion at logarithmic phase and repressed by iron depletion at stationary phase.
Collapse
Affiliation(s)
- Jason Gioia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
12
|
Harper M, Cox A, St Michael F, Parnas H, Wilkie I, Blackall PJ, Adler B, Boyce JD. Decoration of Pasteurella multocida lipopolysaccharide with phosphocholine is important for virulence. J Bacteriol 2007; 189:7384-91. [PMID: 17704225 PMCID: PMC2168462 DOI: 10.1128/jb.00948-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to complement-mediated killing. The lipopolysaccharide (LPS) structure of Pasteurella multocida strain Pm70, whose genome sequence is known, has recently been determined and does not contain PCho. However, LPS structures from the closely related, virulent P. multocida strains VP161 and X-73 were shown to contain PCho on their terminal galactose sugar residues. To determine if PCho was involved in the virulence of P. multocida, we used subtractive hybridization of the VP161 genome against the Pm70 genome to identify a four-gene locus (designated pcgDABC) which we show is required for the addition of the PCho residues to LPS. The proteins predicted to be encoded by pcgABC showed identity to proteins involved in choline uptake, phosphorylation, and nucleotide sugar activation of PCho. We constructed a P. multocida VP161 pcgC mutant and demonstrated that this strain produces LPS that lacks PCho on the terminal galactose residues. This pcgC mutant displayed reduced in vivo growth in a chicken infection model and was more sensitive to the chicken antimicrobial peptide fowlicidin-1 than the wild-type P. multocida strain.
Collapse
Affiliation(s)
- Marina Harper
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, VIC, Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bigas A, Garrido MAE, Badiola I, Barbé J, Llagostera M. Non-viability of Haemophilus parasuis fur-defective mutants. Vet Microbiol 2006; 118:107-16. [PMID: 16911861 DOI: 10.1016/j.vetmic.2006.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 06/22/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
By complementation of an Escherichia coli fur mutant, the Haemophilus parasuis fur gene has been isolated from a genomic library of this organism. The H. parasuis fur gene is the distal one of a three-gene operon. Two genes placed upstream of the H. parasuis fur open-reading frame encode for a hypothetical protein and a flavodoxin, respectively. Attempts performed to isolate an H. parasuis fur-defective mutant either through manganese-resistance selection or exchange markers were unsuccessful. Likewise, anaerobic growth conditions do not enable the attainment of H. parasuis fur-defective mutants either. Nevertheless, H. parasuis clones carrying a knockout mutation in the chromosomal fur gene by insertion of a KmR cassette were obtained when a stable plasmid, containing an additional copy of the transcriptional unit to which the fur gene belongs, was present. Likewise, the presence of a plasmid in which the H. parasuis fur gene is under the control of the Escherichia coli tac promoter allows for the isolation of fur::Km mutants of this organism. Nonetheless, no fur-defective mutants may be isolated from H. parasuis cells harbouring a stable plasmid in which only the single fur gene is contained. These data clearly indicate that H. parasuis cell viability requires the presence of a wild-type fur gene.
Collapse
Affiliation(s)
- Anna Bigas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | |
Collapse
|
14
|
Parker D, Kennan RM, Myers GS, Paulsen IT, Rood JI. Identification of a Dichelobacter nodosus ferric uptake regulator and determination of its regulatory targets. J Bacteriol 2005; 187:366-75. [PMID: 15601721 PMCID: PMC538842 DOI: 10.1128/jb.187.1.366-375.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of iron regulated genes in bacteria is typically controlled by the ferric uptake regulator (Fur) protein, a global transcriptional repressor that regulates functions as diverse as iron acquisition, oxidative stress, and virulence. We have identified a fur homologue in Dichelobacter nodosus, the causative agent of ovine footrot, and shown that it complements an Escherichia coli fur mutant. Homology modeling of the D. nodosus Fur protein with the recently solved crystal structure of Fur from Pseudomonas aeruginosa indicated extensive structural conservation. As Southern hybridization analysis of different clinical isolates of D. nodosus indicated that the fur gene was present in all of these strains, the fur gene was insertionally inactivated to determine its functional role. Analysis of these mutants by various techniques did not indicate any significant differences in the expression of known virulence genes or in iron-dependent growth. However, we determined several Fur regulatory targets by two-dimensional gel electrophoresis coupled with mass spectrometry. Analysis of proteins from cytoplasmic, membrane, and extracellular fractions revealed numerous differentially expressed proteins. The transcriptional basis of these differences was analyzed by using quantitative reverse transcriptase PCR. Proteins with increased expression in the fur mutant were homologues of the periplasmic iron binding protein YfeA and a cobalt chelatase, CbiK. Down-regulated proteins included a putative manganese superoxide dismutase and ornithine decarboxylase. Based on these data, it is suggested that in D. nodosus the Fur protein functions as a regulator of iron and oxidative metabolism.
Collapse
Affiliation(s)
- Dane Parker
- ARC Centre for Structural and Functional Microbial Genomics and Victorian Bioinformatics Consortium, Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
15
|
Bigas A, Garrido ME, de Rozas AMP, Badiola I, Barbé J, Llagostera M. Development of a genetic manipulation system for Haemophilus parasuis. Vet Microbiol 2004; 105:223-8. [PMID: 15708819 DOI: 10.1016/j.vetmic.2004.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 10/07/2004] [Accepted: 10/22/2004] [Indexed: 11/24/2022]
Abstract
Haemophilus parasuis is a member of the family Pasteurellaceae and an important respiratory-tract pathogen of swine, which is the etiological agent of Glasser's disease. Because no genetic manipulation system is available for H. parasuis so far, in vivo studies about the role of its genes involved in virulence are unfeasible. Here we demonstrate that H. parasuis has a cyclic AMP (cAMP)-dependent natural transformation system that enables the uptake of DNA in which the ACCGAACTC sequence signal must be present. After improving DNA transformation parameters, such as cAMP and DNA concentration and exposition time of the exogenous DNA, a knockout mutant of H. parasuis defective in the thy gene, encoding the thymidylate synthase enzyme, has been constructed. Data presented in this work open the possibility for the functional analysis of genes involved in the infectious process of this animal pathogen.
Collapse
Affiliation(s)
- Anna Bigas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Garrido ME, Bosch M, Medina R, Bigas A, Llagostera M, Pérez de Rozas AM, Badiola I, Barbé J. fur-independent regulation of the Pasteurella multocida hbpA gene encoding a haemin-binding protein. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2273-2281. [PMID: 12904567 DOI: 10.1099/mic.0.26370-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Treatment of bacterial cultures with chelating agents such as 2,2'-dipyridyl (DPD) induces expression of iron-regulated genes. It is known that in the gamma-Proteobacteria, the Fur protein is the major regulator of genes encoding haem- or haemoglobin-binding proteins. Electrophoretic analysis of outer-membrane proteins of the gamma-proteobacterium Pasteurella multocida has revealed the induction of two proteins of 60 and 40 kDa in DPD-treated cultures in both wild-type and fur-defective strains. These two proteins have the same N-terminal amino acid sequence, which identifies this protein as the product of the PM0592 ORF. Analysis of the sequence of this ORF, which encodes a protein of 60 kDa, revealed the presence of a hexanucleotide (AAAAAA) at which a programmed translational frameshift can occur giving rise to a 40 kDa protein. Analyses conducted in Escherichia coli, using the complete PM0592 ORF and a derivative truncated at the hexanucleotide position, have shown that both polypeptides bind haemin. For this reason, the PM0592 ORF product has been designated HbpA (for haemin-binding protein). Expression studies using both RT-PCR and lacZ fusions, as well as electrophoretic profiles of outer-membrane protein composition, have demonstrated that the hbpA gene is negatively regulated by iron, manganese and haemin through a fur-independent pathway. Despite the fact that serum of mice infected with P. multocida contained antibodies that reacted with both the 60 and 40 kDa products of the hbpA gene, these proteins did not offer protection when used in immunization assays against this micro-organism.
Collapse
Affiliation(s)
- M Elena Garrido
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Montserrat Bosch
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Ricardo Medina
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Anna Bigas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Montserrat Llagostera
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| | - Ana M Pérez de Rozas
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
| | - Ignacio Badiola
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 - Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 - Barcelona, Spain
| |
Collapse
|
17
|
Garrido ME, Bosch M, Medina R, Llagostera M, Pérez de Rozas AM, Badiola I, Barbé J. The high-affinity zinc-uptake system znuACB is under control of the iron-uptake regulator (fur) gene in the animal pathogen Pasteurella multocida. FEMS Microbiol Lett 2003; 221:31-7. [PMID: 12694907 DOI: 10.1016/s0378-1097(03)00131-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Pasteurella multocida znuACB genes encoding a high-affinity zinc-uptake system have been identified and cloned. In contrast to what happens in Escherichia coli, znuA is not physically linked to znuCB. Through lacZ transcriptional fusions it has been demonstrated that zinc negatively regulates both znuA and znuCB operons. Nevertheless, and contrary to that determined so far for all other znuACB bacterial systems known, P. multocida znuACB genes are not under control of the zur gene, which is absent in this bacterial species, but rather are under its iron-uptake regulator (fur) gene. Furthermore, construction of defective mutants has demonstrated that P. multocida znuA and znuCB transcriptional units are required for virulence of this organism in a mouse model.
Collapse
Affiliation(s)
- M Elena Garrido
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Campoy S, Jara M, Busquets N, de Rozas AMP, Badiola I, Barbé J. Intracellular cyclic AMP concentration is decreased in Salmonella typhimurium fur mutants. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1039-1048. [PMID: 11932449 DOI: 10.1099/00221287-148-4-1039] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It is known that the Fur protein negatively regulates iron-uptake systems in different bacterial species, including Salmonella typhimurium. In this study it has been shown that the intracellular concentration of cyclic AMP (cAMP) is lower in a knockout S. typhimurium fur mutant than in the wild-type strain. According to this, the expression of two cAMP-regulated genes, such as pepE (encoding an alpha-aspartyl dipeptidase) and the Escherichia coli lac operon, is decreased in S. typhimurium fur cells in comparison with wild-type cells. Introduction of an additional mutation in cpdA, encoding a cyclic 3',5'-cAMP phosphodiesterase, recovers wild-type intracellular cAMP concentration in the S. typhimurium fur mutant. Likewise, expression of pepE and the E. coli lac operon was the same in the S. typhimurium fur cpdA double mutant and the wild-type strain. Moreover, these results also demonstrate that the S. typhimurium Fur protein positively regulates the expression of the flhD master operon governing the flagellar regulon. This positive control must be mediated by binding of the S. typhimurium Fur protein to the flhD promoter as indicated by the fact that this promoter tests positive in a Fur titration assay.
Collapse
Affiliation(s)
- Susana Campoy
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona1 and Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA)2, Bellaterra, 08193 Barcelona, Spain
| | - Mónica Jara
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona1 and Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA)2, Bellaterra, 08193 Barcelona, Spain
| | - Núria Busquets
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona1 and Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA)2, Bellaterra, 08193 Barcelona, Spain
| | - Ana M Pérez de Rozas
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona1 and Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA)2, Bellaterra, 08193 Barcelona, Spain
| | - Ignacio Badiola
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona1 and Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA)2, Bellaterra, 08193 Barcelona, Spain
| | - Jordi Barbé
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona1 and Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA)2, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|