1
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
2
|
Janisch N, Levendosky K, Budell WC, Quadri LEN. Genetic Underpinnings of Carotenogenesis and Light-Induced Transcriptome Remodeling in the Opportunistic Pathogen Mycobacterium kansasii. Pathogens 2023; 12:86. [PMID: 36678434 PMCID: PMC9861118 DOI: 10.3390/pathogens12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium kansasii (Mk) causes opportunistic pulmonary infections with tuberculosis-like features. The bacterium is well known for its photochromogenicity, i.e., the production of carotenoid pigments in response to light. The genetics defining the photochromogenic phenotype of Mk has not been investigated and defined pigmentation mutants to facilitate studies on the role of carotenes in the bacterium's biology are not available thus far. In this study, we set out to identify genetic determinants involved in Mk photochromogenicity. We screened a library of ~150,000 transposon mutants for colonies with pigmentation abnormalities. The screen rendered a collection of ~200 mutants. Each of these mutants could be assigned to one of four distinct phenotypic groups. The insertion sites in the mutant collection clustered in three chromosomal regions. A combination of phenotypic analysis, sequence bioinformatics, and gene expression studies linked these regions to carotene biosynthesis, carotene degradation, and monounsaturated fatty acid biosynthesis. Furthermore, introduction of the identified carotenoid biosynthetic gene cluster into non-pigmented Mycobacterium smegmatis endowed the bacterium with photochromogenicity. The studies also led to identification of MarR-type and TetR/AcrR-type regulators controlling photochromogenicity and carotenoid breakdown, respectively. Lastly, the work presented also provides a first insight into the Mk transcriptome changes in response to light.
Collapse
Affiliation(s)
- Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - William C. Budell
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Biochemistry Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
3
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
4
|
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, Gagneux S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016; 48:1535-1543. [PMID: 27798628 PMCID: PMC5238942 DOI: 10.1038/ng.3704] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leïla Jeljeli
- Forschungszentrum Borstel, Germany.,Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Qingyun Liu
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Gao
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | | | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Matthias Egger
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Rita Macedo
- Laboratòrio de Saùde Publica, Lisbon, Portugal
| | - Helmi Mardassi
- Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | | | | | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eddie Wampande
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.,Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Indira Basu
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - James Bower
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Anastasia Koch
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Robert Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa.,Department of Medicine, Imperial College London, UK.,The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Linda Gail-Bekker
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Bijaya Malla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, PNG
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Kadri Toit
- Tartu University Hospital United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | | | - Ana Gil-Brusola
- Department of Microbiology, University Hospital La Fe, Valencia, Spain
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Veronique N Penlap Beng
- Institute Laboratory for Tuberculosis Research (LTR), Biotechnology Center (BTC), University of Yaoundé I, Yaoundé, Cameroon
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Issam Alani
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Perpetual Wangui Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital (AKUH), Nairobi, Kenya
| | - Florian Gehre
- Insitute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council, Fajara, the Gambia
| | | | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Université Marien Gouabi, Brazzaville, Congo
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyanda E Ntinginya
- National Institute of Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Riga, Latvia
| | - Sven Hoffner
- WHO Supranational TB Reference Laboratory, Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Daiva Bakonyte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Petras Stakenas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Valeriu Crudu
- National Tuberculosis Reference Laboratory, Phthysiopneumology Institute, Chisinau, Republic of Moldova
| | - Olga Moldovan
- 'Marius Nasta' Pneumophtisiology Institute, Bucharest, Romania
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Barletta
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Jane Carter
- Alpert School of Medicine at Brown University, Providence, Rhode Island, USA.,Moi University School of Medicine, Eldoret, Kenya
| | - Lameck Diero
- Moi University School of Medicine, Eldoret, Kenya
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), 46010, Valencia, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Stefan Niemann
- Forschungszentrum Borstel, Germany.,German Center for Infection Research, Borstel Site, Borstel, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
5
|
Goldstone DC, Metcalf P, Baker EN. Structure of the ectodomain of the electron transporter Rv2874 fromMycobacterium tuberculosisreveals a thioredoxin-like domain combined with a carbohydrate-binding module. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2016; 72:40-8. [DOI: 10.1107/s2059798315021488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022]
Abstract
The members of the CcdA family are integral membrane proteins that use a disulfide cascade to transport electrons from the thioredoxin–thioredoxin reductase system in the interior of the cell into the extracytoplasmic space. The core transmembrane portion of this family is often elaborated with additional hydrophilic domains that act as adapters to deliver reducing potential to targets outside the cellular membrane. To investigate the function of family members inMycobacterium tuberculosis, the structure of the C-terminal ectodomain from Rv2874, one of three CcdA-family members present in the genome, was determined. The crystal structure, which was refined at 1.9 Å resolution withR= 0.195 andRfree= 0.219, reveals the predicted thioredoxin-like domain with its conserved Cys-X-X-Cys active-site motif. Unexpectedly, this domain is combined with a second domain with a carbohydrate-binding module (CBM) fold, this being the first reported example of a CBM in association with a thioredoxin-like domain fold. A cavity in the CBM adjacent to the thioredoxin active site suggests a likely carbohydrate-binding site, representing a broadening of the substrate range for CcdA-family members and an expansion of the thioredoxin-domain functionality to carbohydrate modification.
Collapse
|
6
|
In silico DETERMINATION OF T-EPITOPES OF Mycobacterium tuberculosis PROTEINS. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Medeiros LDS, Marassi CD, Figueiredo EES, Lilenbaum W. Potential application of new diagnostic methods for controlling bovine tuberculosis in Brazil. Braz J Microbiol 2010; 41:531-41. [PMID: 24031527 PMCID: PMC3768653 DOI: 10.1590/s1517-83822010005000002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/20/2009] [Accepted: 02/18/2010] [Indexed: 11/22/2022] Open
Abstract
Bovine tuberculosis, a chronic infection in cattle caused by Mycobacterium bovis, remains an economic and public health problem for several countries. Due to its economic impact on international trade, contagious nature, and implications for human health, global programs to eradicate the disease were implemented worldwide. Those programs are based on slaughtering PPD-reactive animals. Despite the National Programs in Brazil, complete eradication has not been achieved, and the disease remains, albeit at a lower prevalence. The central purpose of this review is to address diagnostic tests for tuberculosis. Considering the course of the infection in cattle, at least two tests, ideally complementary to one another, may be necessary for an adequate diagnosis: the first based on the cellular response, and the second capable of identifying anergic animals by detection of specific anti-M.bovis antibodies.
Collapse
|
8
|
|
9
|
González-Zamorano M, Mendoza-Hernández G, Xolalpa W, Parada C, Vallecillo AJ, Bigi F, Espitia C. Mycobacterium tuberculosis Glycoproteomics Based on ConA-Lectin Affinity Capture of Mannosylated Proteins. J Proteome Res 2009; 8:721-33. [DOI: 10.1021/pr800756a] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margarita González-Zamorano
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Guillermo Mendoza-Hernández
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Wendy Xolalpa
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Antonio J. Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Fabiana Bigi
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, México, D.F. México, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, C.P. 04510, México, and Instituto de Biotecnología, CICVyA-INTA Castelar, Los Reseros y Las Cabañas B1712WAA Hurlingham, Argentina
| |
Collapse
|
10
|
Abstract
Previous studies have established that members of the Mycobacterium tuberculosis complex exhibit variable production of the antigenic proteins MPT70 and MPT83 due to mutations in their positive regulator, SigK (sigma factor K), and their negative regulator, RskA (regulator of sigma K). To further understand this highly specific SigK-controlled regulon, we have undertaken evolutionary studies to determine the presence of homologues of SigK-regulated genes in other organisms and to predict its transcriptional network. Evolutionary analysis indicates that the positive and negative regulators are conserved across many organisms, but that the genes under their control are variable. Moreover, the addition, loss, and movement of various genes in the mpt70/83 locus suggest that these genes are unlikely to be cotranscribed. To test predictions from sequence analysis, we have used promoter luciferase fusions and Northern blots to show that the majority of genes in this locus have their own promoters, of which a subset are SigK regulated (mpt83, dipZ, mpt70, and Rv0449c). Next, we have shown that the intracellular inducibility of mpt70 and mpt83 is a conserved property, shared between M. tuberculosis and Mycobacterium marinum. In addition, we have shown that SigK and RskA from an environmental mycobacterium isolate (M. gilvum PYR-GCK) complemented the regulatory activity of M. tuberculosis delta sigK rskA. Together, our data indicate that the regulatory system SigK/RskA is conserved across the Mycobacterium genus, whereas the regulon under its control varies considerably across species.
Collapse
|
11
|
McCann JR, McDonough JA, Pavelka MS, Braunstein M. Beta-lactamase can function as a reporter of bacterial protein export during Mycobacterium tuberculosis infection of host cells. MICROBIOLOGY-SGM 2007; 153:3350-3359. [PMID: 17906134 PMCID: PMC2635098 DOI: 10.1099/mic.0.2007/008516-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis is an intracellular pathogen that is able to avoid destruction by host immune defences. Exported proteins of M. tuberculosis, which include proteins localized to the bacterial surface or secreted into the extracellular environment, are ideally situated to interact with host factors. As a result, these proteins are attractive candidates for virulence factors, drug targets and vaccine components. Here we describe a beta-lactamase reporter system capable of identifying exported proteins of M. tuberculosis during growth in host cells. Because beta-lactams target bacterial cell-wall synthesis, beta-lactamases must be exported beyond the cytoplasm to protect against these drugs. When used in protein fusions, beta-lactamase can report on the subcellular location of another protein as measured by protection from beta-lactam antibiotics. Here we demonstrate that a truncated TEM-1 beta-lactamase lacking a signal sequence for export ('BlaTEM-1) can be used in this manner directly in a mutant strain of M. tuberculosis lacking the major beta-lactamase, BlaC. The 'BlaTEM-1 reporter conferred beta-lactam resistance when fused to both Sec and Tat export signal sequences. We further demonstrate that beta-lactamase fusion proteins report on protein export while M. tuberculosis is growing in THP-1 macrophage-like cells. This genetic system should facilitate the study of proteins exclusively exported in the host environment by intracellular M. tuberculosis.
Collapse
Affiliation(s)
- Jessica R. McCann
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7290
| | - Justin A. McDonough
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7290
| | - Martin S. Pavelka
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7290
- Corresponding author. Mailing address: Department of Microbiology and Immunology, CB#7290, 804 Mary Ellen Jones, University of North Carolina, Chapel Hill, NC 27599-7290. Phone: (919) 966-5051. Fax: (919) 962-8103. E-mail:
| |
Collapse
|
12
|
Rehren G, Walters S, Fontan P, Smith I, Zárraga AM. Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007; 87:347-59. [PMID: 17433778 PMCID: PMC2080781 DOI: 10.1016/j.tube.2007.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/31/2007] [Accepted: 02/20/2007] [Indexed: 12/23/2022]
Abstract
The high sequence identity among the Mycobacterium bovis and Mycobacterium tuberculosis genomes contrasts with the physiological differences reported between these pathogens, suggesting that variations in gene expression may be involved. In this study, microarray hybridization was used to compare the total transcriptome of M. bovis and M. tuberculosis, during the exponential phase of growth. Differential expression was detected in 258 genes, representing a 6% of the total genome. Variable genes were grouped according to functional categories. The main variations were found in genes encoding proteins involved in intermediary metabolism and respiration, cell wall processes, and hypothetical proteins. It is noteworthy that, compared to M. tuberculosis, the expression of a higher number of transcriptional regulators were detected in M. bovis. Likewise, in M. tuberculosis we found a higher expression of the PE/PPE genes, some of which code for cell wall related proteins. Also, in both pathogens we detected the expression of a number of genes not annotated in the M. tuberculosis H37Rv or M. bovis 2122 genomes, but annotated in the M. tuberculosis CDC1551 genome. Our results provide new evidence concerning differences in gene expression between both pathogens, and confirm previous hypotheses inferred from genome comparisons and proteome analysis. This study may shed some new light on our understanding of the mechanisms relating to differences in gene expression and pathogenicity in mycobacteria.
Collapse
Affiliation(s)
- Germán Rehren
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | | | | | |
Collapse
|
13
|
Stirnimann CU, Rozhkova A, Grauschopf U, Grütter MG, Glockshuber R, Capitani G. Structural Basis and Kinetics of DsbD-Dependent Cytochrome c Maturation. Structure 2005; 13:985-93. [PMID: 16004871 DOI: 10.1016/j.str.2005.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 11/16/2022]
Abstract
DsbD from Escherichia coli transports two electrons from cytoplasmic thioredoxin to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of an N-terminal periplasmic domain (nDsbD), a C-terminal periplasmic domain, and a central transmembrane domain. Each domain possesses two cysteines required for electron transport. Herein, we demonstrate fast (3.9 x 10(5) M(-1)s(-1)) and direct disulfide exchange between nDsbD and CcmG, a highly specific disulfide reductase essential for cytochrome c maturation. We determined the crystal structure of the disulfide-linked complex between nDsbD and the soluble part of CcmG at 1.94 A resolution. In contrast to the other two known complexes of nDsbD with target proteins, the N-terminal segment of nDsbD contributes to specific recognition of CcmG. This and other features, like the possibility of using an additional interaction surface, constitute the structural basis for the adaptability of nDsbD to different protein substrates.
Collapse
Affiliation(s)
- Christian U Stirnimann
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA. Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol 2005; 56:1302-13. [PMID: 15882422 DOI: 10.1111/j.1365-2958.2005.04618.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium bovis Bacille Calmette-Guerin (BCG) strains are genetically and phenotypically heterogeneous. Expression of the antigenic proteins MPB70 and MPB83 is known to vary considerably across BCG strains; however, the reason for this phenotypic difference has remained unknown. By immunoblot, we separated BCG into high- and low-producing strains. By quantitative reverse transcription polymerase chain reaction (RT-PCR), we determined that transcription of the antigen-encoding genes, mpb70 and mpb83, follows the same strain pattern with mRNA levels reduced over 50-fold in low-producing strains. Transcriptome comparison of the same BCG strains by DNA microarray revealed two gene regions consistently downregulated in low-producing strains compared with high-producing strains, one including mpb70 (Rv2875) and mpb83 (Rv2873) and a second that includes the predicted sigma factor, sigK. DNA sequence analysis revealed a point mutation in the start codon of sigK in all low-producing BCG strains. Complementation of a low-producing strain, BCG Pasteur, with wild-type sigK fully restored MPB70 and MPB83 production. Microarray-based analysis and confirmatory RT-PCR of the complemented strains revealed an upregulation in gene transcription limited to the sigK and the mpb83/mpb70 gene regions. These data demonstrate that a mutation of sigK is responsible for decreased expression of MPB70 and MPB83 in low-producing BCG strains and provide clues into the role of Mycobacterium tuberculosis SigK.
Collapse
Affiliation(s)
- Danielle Charlet
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Lara M, Servín-González L, Singh M, Moreno C, Cohen I, Nimtz M, Espitia C. Expression, secretion, and glycosylation of the 45- and 47-kDa glycoprotein of Mycobacterium tuberculosis in Streptomyces lividans. Appl Environ Microbiol 2004; 70:679-85. [PMID: 14766542 PMCID: PMC348798 DOI: 10.1128/aem.70.2.679-685.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene encoding the 45/47 kDa glycoprotein (Rv1860) of Mycobacterium tuberculosis was expressed in Streptomyces lividans under its own promoter and under the thiostrepton-inducible Streptomyces promoter PtipA. The recombinant protein was released into the culture medium and, like the native protein, migrated as a double band at 45 and 47 kDa in sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) gels. However, in contrast to the native protein, only the 47-kDa recombinant protein could be labeled with concanavalin A (ConA). Carbohydrate digestion with jack bean alpha-D-mannosidase resulted in a reduction in the molecular mass of the recombinant protein upper band and completely eliminated ConA binding. Two-dimensional gel electrophoresis revealed only one isoelectric point for the recombinant protein. Comparative fingerprinting analysis of the individually purified upper and lower recombinant protein bands, treated under the same conditions with specific proteases, resulted in similar peptide patterns, and the peptides had the same N-terminal sequence, suggesting that migration of the recombinant protein as two bands in SDS-PAGE gels could be due to differences in glycosylation. Mass spectrometry analysis of the recombinant protein indicated that as in native protein, both the N-terminal and C-terminal domains of the recombinant protein are glycosylated. Furthermore, it was determined that antibodies of human tuberculosis patients reacted mainly against the carbohydrate residues of the glycoprotein. Altogether, these observations show that expression of genes for mycobacterial antigens in S. lividans is very useful for elucidation of the functional role and molecular mechanisms of glycosylation in bacteria.
Collapse
Affiliation(s)
- Martha Lara
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F., México
| | | | | | | | | | | | | |
Collapse
|
16
|
Carr MD, Bloemink MJ, Dentten E, Whelan AO, Gordon SV, Kelly G, Frenkiel TA, Hewinson RG, Williamson RA. Solution structure of the Mycobacterium tuberculosis complex protein MPB70: from tuberculosis pathogenesis to inherited human corneal desease. J Biol Chem 2003; 278:43736-43. [PMID: 12917404 DOI: 10.1074/jbc.m307235200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The closely related mycobacteria responsible for tuberculosis produce an unusually high number of secreted proteins, many of which are clearly implicated in pathogenesis and protective immunity. Falling within this category are the closely related proteins MPB70 and MPB83. The structure of MPB70 reveals a complex and novel bacterial fold, which has clear structural homology to the two C-terminal FAS1 domains of the cell adhesion protein fasciclin I, whose structures were reported very recently. Assessment of the surface features of MPB70, the sequence divergence between MPB70 and MPB83, the conservation of residues across a group of FAS1 domains, and the locations of disease-inducing mutations in betaig-h3 strongly suggests that MPB70 and MPB83 contain two functional surfaces on opposite faces, which are probably involved in binding to host cell proteins. This analysis also suggests that these functional surfaces are retained in the FAS1 proteins associated with mediating interactions between cells and the extracellular matrix (fasciclin I, periostin, and betaig-h3) and furthermore that some of the human corneal disease-inducing substitutions identified in betaig-h3 will perturb interactions at these sites.
Collapse
Affiliation(s)
- Mark D Carr
- Department of Biochemistry, University of Leicester, Adrian Bldg., University Road, Leicester LE1 7RH United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|