1
|
Wu J, Yang Q, Jiang X, Fan Y, Zhang Y, Huang R. Oxyresveratrol promotes biofilm formation, cell attachment and aggregation of Streptococcus gordonii in the presence of sucrose. FEMS Microbiol Lett 2021; 367:5854190. [PMID: 32504487 DOI: 10.1093/femsle/fnaa090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
Streptococcus gordonii is a commensal colonizer of oral cavity that initiates the formation of dental plaque. Oxyresveratrol is a natural purification from plants with antibacterial effects on various oral bacteria including Streptococcus mutans. The aim of this study was to investigate the effects of oxyresveratrol on S. gordonii. The basic viability, biofilm formation and cell aggregation of S. gordonii treated with oxyresveratrol were investigated. Oxyresveratrol dose-dependently inhibited the growth of S. gordonii in the absence of sucrose. However, in the presence of sucrose, it promoted biofilm formation under MIC. Both the biofilm formation and extracellular polysaccharides synthesis reached the maximum level at ½ MIC (250 μg/mL) oxyresveratrol. The gene expressions of abpA, abpB, scaA, gtfG, hsa, cshA, cshB, ccpA, srtA and sspB were upregulated when treated with 62.5 and 125 μg/mL oxyresveratrol. A total eight of the ten genes were significantly upregulated at 250 μg/mL oxyresveratrol except abpB and sspB, which were downregulated at 250 μg/mL without significance. In conclusion, oxyresveratrol has dual-effects on S. gordonii. Considering its specific biofilm suppressive effect on S. mutans, it might be a candidate for bacterial interspecies modulator applied in caries prevention.
Collapse
Affiliation(s)
- Jiayi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiyuan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuheng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Uncovering Roles of Streptococcus gordonii SrtA-Processed Proteins in the Biofilm Lifestyle. J Bacteriol 2020; 203:JB.00544-20. [PMID: 33106345 DOI: 10.1128/jb.00544-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Streptococcus gordonii is a commensal oral organism. Harmless in the oral cavity, S. gordonii is an opportunistic pathogen. S. gordonii adheres to body surfaces using surface adhesive proteins (adhesins), which are critical to subsequent formation of biofilm communities. As in most Gram-positive bacteria, S. gordonii surface proteins containing the C-terminal LPXTG motif cleavage sequence are processed by sortase A (SrtA) to become covalently attached to the cell wall. To characterize the functional diversity and redundancy in the family of SrtA-processed proteins, an S. gordonii DL1 markerless deletion mutant library was constructed of each of the 26 putative SrtA-processed proteins. Each library member was evaluated for growth in rich medium, biofilm formation on plastic, saliva and salivary fractions, cell surface hydrophobicity (CSH), hemagglutination, and integration into an ex vivo plaque biofilm community. Library members were compared to the non-SrtA-processed adhesins AbpA and AbpB. While no major growth differences in rich medium were observed, many S. gordonii LPXTG/A proteins impacted biofilm formation on one or more of the substrates. Several mutants showed significant differences in hemagglutination, hydrophobicity, or fitness in the ex vivo plaque model. From the identification of redundant and unique functions in these in vitro and ex vivo systems, functional stratification among the LPXTG/A proteins is apparent.IMPORTANCE S. gordonii interactions with its environment depend on the complement of cell wall proteins. A subset of these cell wall proteins requires processing by the enzyme sortase A (SrtA). The identification of SrtA-processed proteins and their functional characterization will help the community to better understand how S. gordonii engages with its surroundings, including other microbes, integrates into the plaque community, adheres to the tooth surface, and hematogenously disseminates to cause blood-borne infections. This study identified 26 putative SrtA-processed proteins through creation of a markerless deletion mutant library. The library was subject to functional screens that were chosen to better understand key aspects of S. gordonii physiology and pathogenesis.
Collapse
|
3
|
Wu J, Li M, Huang R. The effect of smoking on caries-related microorganisms. Tob Induc Dis 2019; 17:32. [PMID: 31516475 PMCID: PMC6662784 DOI: 10.18332/tid/105913] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/23/2019] [Accepted: 03/24/2019] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Epidemiological studies have shown a close relationship between smoking and dental caries. Bacteria are one of the essential factors of caries formation. The imbalance of cariogenic bacteria and commensal bacteria in dental plaque results in higher production of acid that can corrode dental hard tissue. The aim of our review is to summarize the effect of smoking on caries-related bacteria. METHODS English articles available in Pubmed and ScienceDirect databases and published before December 2018 were searched. A variety of evidence was collected including not only the influence of cigarette products on bacteria strains in vitro but also their effect on bacterial composition in saliva and dental plaque in vivo. We particularly emphasize the mechanisms by which nicotine acts on oral bacteria. RESULTS The components of cigarettes promote the growth of cariogenic microorganisms. The mechanisms of how nicotine enhances Streptococcus mutans, Lactobacilli, Streptococcus gordonii, Actinomyces and Candida albicans are described separately in detail. The commensal bacteria, Streptococcus sanguinis, show less competitive capability in the presence of nicotine. Smoking influences saliva by lowering the buffer capability, altering its chemical agent and bacterial components, and therefore promotes the formation of a caries-susceptible environment. CONCLUSIONS Cigarette smoking and nicotine exposure promote the cariogenic activity of oral microorganisms and the formation of a caries-susceptible environment. This suggests that smokers should quit smoking, amongst other health reasons, also for their oral health.
Collapse
Affiliation(s)
- Jiayi Wu
- Department of Endodontic Dentistry, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
The role of natural salivary defences in maintaining a healthy oral microbiota. J Dent 2019; 80 Suppl 1:S3-S12. [DOI: 10.1016/j.jdent.2018.08.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/22/2018] [Indexed: 01/19/2023] Open
|
5
|
Haase EM, Kou Y, Sabharwal A, Liao YC, Lan T, Lindqvist C, Scannapieco FA. Comparative genomics and evolution of the amylase-binding proteins of oral streptococci. BMC Microbiol 2017; 17:94. [PMID: 28427348 PMCID: PMC5399409 DOI: 10.1186/s12866-017-1005-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/08/2017] [Indexed: 01/19/2023] Open
Abstract
Background Successful commensal bacteria have evolved to maintain colonization in challenging environments. The oral viridans streptococci are pioneer colonizers of dental plaque biofilm. Some of these bacteria have adapted to life in the oral cavity by binding salivary α-amylase, which hydrolyzes dietary starch, thus providing a source of nutrition. Oral streptococcal species bind α-amylase by expressing a variety of amylase-binding proteins (ABPs). Here we determine the genotypic basis of amylase binding where proteins of diverse size and function share a common phenotype. Results ABPs were detected in culture supernatants of 27 of 59 strains representing 13 oral Streptococcus species screened using the amylase-ligand binding assay. N-terminal sequences from ABPs of diverse size were obtained from 18 strains representing six oral streptococcal species. Genome sequencing and BLAST searches using N-terminal sequences, protein size, and key words identified the gene associated with each ABP. Among the sequenced ABPs, 14 matched amylase-binding protein A (AbpA), 6 matched amylase-binding protein B (AbpB), and 11 unique ABPs were identified as peptidoglycan-binding, glutamine ABC-type transporter, hypothetical, or choline-binding proteins. Alignment and phylogenetic analyses performed to ascertain evolutionary relationships revealed that ABPs cluster into at least six distinct, unrelated families (AbpA, AbpB, and four novel ABPs) with no phylogenetic evidence that one group evolved from another, and no single ancestral gene found within each group. AbpA-like sequences can be divided into five subgroups based on the N-terminal sequences. Comparative genomics focusing on the abpA gene locus provides evidence of horizontal gene transfer. Conclusion The acquisition of an ABP by oral streptococci provides an interesting example of adaptive evolution. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1005-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elaine M Haase
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | - Yurong Kou
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Oral Biology, School of Stomatology, China Medical University, Shenyang, People's Republic of China
| | - Amarpreet Sabharwal
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Yu-Chieh Liao
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Frank A Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
6
|
A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property. Sci Rep 2016; 6:30966. [PMID: 27492581 PMCID: PMC4974636 DOI: 10.1038/srep30966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase.
Collapse
|
7
|
Dynamics of the Streptococcus gordonii Transcriptome in Response to Medium, Salivary α-Amylase, and Starch. Appl Environ Microbiol 2015; 81:5363-74. [PMID: 26025889 DOI: 10.1128/aem.01221-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/22/2015] [Indexed: 01/14/2023] Open
Abstract
Streptococcus gordonii, a primary colonizer of the tooth surface, interacts with salivary α-amylase via amylase-binding protein A (AbpA). This enzyme hydrolyzes starch to glucose, maltose, and maltodextrins that can be utilized by various oral bacteria for nutrition. Microarray studies demonstrated that AbpA modulates gene expression in response to amylase, suggesting that the amylase-streptococcal interaction may function in ways other than nutrition. The goal of this study was to explore the role of AbpA in gene regulation through comparative transcriptional profiling of wild-type KS1 and AbpA(-) mutant KS1ΩabpA under various environmental conditions. A portion of the total RNA isolated from mid-log-phase cells grown in 5% CO2 in (i) complex medium with or without amylase, (ii) defined medium (DM) containing 0.8% glucose with/without amylase, and (iii) DM containing 0.2% glucose and amylase with or without starch was reverse transcribed to cDNA and the rest used for RNA sequencing. Changes in the expression of selected genes were validated by quantitative reverse transcription-PCR. Maltodextrin-associated genes, fatty acid synthesis genes and competence genes were differentially expressed in a medium-dependent manner. Genes in another cluster containing a putative histidine kinase/response regulator, peptide methionine sulfoxide reductase, thioredoxin protein, lipoprotein, and cytochrome c-type protein were downregulated in KS1ΩabpA under all of the environmental conditions tested. Thus, AbpA appears to modulate genes associated with maltodextrin utilization/transport and fatty acid synthesis. Importantly, in all growth conditions AbpA was associated with increased expression of a potential two-component signaling system associated with genes involved in reducing oxidative stress, suggesting a role in signal transduction and stress tolerance.
Collapse
|
8
|
Draft genome sequences of 18 oral streptococcus strains that encode amylase-binding proteins. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00510-15. [PMID: 25999552 PMCID: PMC4440966 DOI: 10.1128/genomea.00510-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of commensal oral streptococcal species produce a heterogeneous group of proteins that mediate binding of salivary α-amylase. This interaction likely influences streptococcal colonization of the oral cavity. Here, we present draft genome sequences of several strains of oral streptococcal species that bind human salivary amylase.
Collapse
|
9
|
|
10
|
Huang R, Li M, Ye M, Yang K, Xu X, Gregory RL. Effects of Nicotine on Streptococcus gordonii Growth, Biofilm Formation, and Cell Aggregation. Appl Environ Microbiol 2014; 80:7212-8. [PMID: 25217021 PMCID: PMC4249166 DOI: 10.1128/aem.02395-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 02/05/2023] Open
Abstract
Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.
Collapse
Affiliation(s)
- R Huang
- Department of Oral Biology and Tobacco Cessation and Biobehavioral Group, School of Dentistry, Indiana University, Indianapolis, Indiana, USA State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Li
- Department of Oral Biology and Tobacco Cessation and Biobehavioral Group, School of Dentistry, Indiana University, Indianapolis, Indiana, USA State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - M Ye
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - K Yang
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - X Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - R L Gregory
- Department of Oral Biology and Tobacco Cessation and Biobehavioral Group, School of Dentistry, Indiana University, Indianapolis, Indiana, USA Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Maddi A, Haase E, Scannapieco F. Mass Spectrometric Analysis of Whole Secretome and Amylase-precipitated Secretome Proteins from Streptococcus gordonii.. ACTA ACUST UNITED AC 2014; 7:287-295. [PMID: 25605983 PMCID: PMC4297671 DOI: 10.4172/jpb.1000331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oral biofilm (dental plaque) is formed by the initial adhesion of “pioneer species” to salivary proteins that form the dental pellicle on the tooth surface. One such pioneer species, Streptococcus gordonii, is known to bind salivary amylase through specific amylase-binding proteins such as amylase-binding protein A (AbpA). Recent studies have demonstrated that once bound, salivary amylase appears to modulate gene expression in S. gordonii. However, it is not known if this amylase-induced gene expression leads to secretion of proteins that play a role in plaque biofilm formation. In this study we examined the differences in secreted proteomes between S. gordonii KS1 (wild type) and AbpA-deficient (ΔAbpA) strains. We also examined the differentially precipitated secretome proteins following incubation with salivary amylase. The culture supernatants from KS1 and ΔAbpA were analyzed by nano-LC/MS/MS to characterize the whole secreted proteomes of the KS1 and ΔAbpA. A total of 107 proteins were identified in the KS1 and ΔAbpA secretomes of which 72 proteins were predicted to have an N-terminal signal peptide for secretion. Five proteins were differentially expressed between the KS1 and ΔAbpA secretomes; AbpA and sortase B were expressed exclusively by KS1, whereas Gdh, AdcA and GroEL were expressed only by ΔAbpA. Incubation of culture supernatants from KS1 and ΔAbpA with amylase (50 μg/ml) at room temperature for 2 h resulted in the differential precipitation of secretome proteins. Hypothetical protein (SGO_0483), cation-transporting ATPase YfgQ (Aha1), isocitrate dehydrogenase (Icd), sortase A (SrtA), beta-N-acetylhexosaminidase (SGO_0405), peptide chain release factor 1(PrfA) and cardiolipin synthase (SGO_2037) were precipitated by amylase from the KS1 culture supernatant. Among the identified secreted proteins and amylase-precipitated proteins, transcriptional regulator LytR (SGO_0535) and cation-transporting ATPase YfgQ (Aha1) are potential signaling proteins.
Collapse
Affiliation(s)
- A Maddi
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA ; Periodontics and Endodontics, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Em Haase
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | - Fa Scannapieco
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
12
|
Ochiai A, Harada K, Hashimoto K, Shibata K, Ishiyama Y, Mitsui T, Tanaka T, Taniguchi M. α-Amylase is a potential growth inhibitor of Porphyromonas gingivalis
, a periodontal pathogenic bacterium. J Periodontal Res 2013; 49:62-8. [DOI: 10.1111/jre.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/19/2022]
Affiliation(s)
- A. Ochiai
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| | - K. Harada
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| | - K. Hashimoto
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| | - K. Shibata
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| | - Y. Ishiyama
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| | - T. Mitsui
- Department of Applied Biological Chemistry; Faculty of Agriculture; Niigata University; Niigata Japan
| | - T. Tanaka
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| | - M. Taniguchi
- Department of Materials Science and Technology; Faculty of Engineering; Niigata University; Niigata Japan
| |
Collapse
|
13
|
Taking the starch out of oral biofilm formation: molecular basis and functional significance of salivary α-amylase binding to oral streptococci. Appl Environ Microbiol 2012; 79:416-23. [PMID: 23144140 DOI: 10.1128/aem.02581-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-Amylase-binding streptococci (ABS) are a heterogeneous group of commensal oral bacterial species that comprise a significant proportion of dental plaque microfloras. Salivary α-amylase, one of the most abundant proteins in human saliva, binds to the surface of these bacteria via specific surface-exposed α-amylase-binding proteins. The functional significance of α-amylase-binding proteins in oral colonization by streptococci is important for understanding how salivary components influence oral biofilm formation by these important dental plaque species. This review summarizes the results of an extensive series of studies that have sought to define the molecular basis for α-amylase binding to the surface of the bacterium as well as the biological significance of this phenomenon in dental plaque biofilm formation.
Collapse
|
14
|
Nikitkova AE, Haase EM, Scannapieco FA. Effect of starch and amylase on the expression of amylase-binding protein A in Streptococcus gordonii. Mol Oral Microbiol 2012; 27:284-94. [PMID: 22759313 DOI: 10.1111/j.2041-1014.2012.00644.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Streptococcus gordonii is a common oral commensal bacterial species in tooth biofilm (dental plaque) and specifically binds to salivary amylase through the surface exposed amylase-binding protein A (AbpA). When S. gordonii cells are pretreated with amylase, amylase bound to AbpA facilitates growth with starch as a primary nutrition source. The goal of this study was to explore possible regulatory effects of starch, starch metabolites and amylase on the expression of S. gordonii AbpA. An amylase ligand-binding assay was used to assess the expression of AbpA in culture supernatants and on bacterial cells from S. gordonii grown in defined medium supplemented with 1% starch, 0.5 mg ml(-1) amylase, with starch and amylase together, or with various linear malto-oligosaccharides. Transcription of abpA was determined by reverse transcription quantitative polymerase chain reaction. AbpA was not detectable in culture supernatants containing either starch alone or amylase alone. In contrast, the amount of AbpA was notably increased when starch and amylase were both present in the medium. The expression of abpA was significantly increased (P < 0.05) following 40 min of incubation in defined medium supplemented with starch and amylase. Similar results were obtained in the presence of maltose and other short-chain malto-oligosacchrides. These results suggest that the products of starch hydrolysis produced from the action of salivary α-amylase, particularly maltose and maltotriose, up-regulate AbpA expression in S. gordonii.
Collapse
Affiliation(s)
- A E Nikitkova
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
15
|
Response of fatty acid synthesis genes to the binding of human salivary amylase by Streptococcus gordonii. Appl Environ Microbiol 2012; 78:1865-75. [PMID: 22247133 DOI: 10.1128/aem.07071-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Streptococcus gordonii, an important primary colonizer of dental plaque biofilm, specifically binds to salivary amylase via the surface-associated amylase-binding protein A (AbpA). We hypothesized that a function of amylase binding to S. gordonii may be to modulate the expression of chromosomal genes, which could influence bacterial survival and persistence in the oral cavity. Gene expression profiling by microarray analysis was performed to detect genes in S. gordonii strain CH1 that were differentially expressed in response to the binding of purified human salivary amylase versus exposure to purified heat-denatured amylase. Selected genes found to be differentially expressed were validated by quantitative reverse transcription-PCR (qRT-PCR). Five genes from the fatty acid synthesis (FAS) cluster were highly (10- to 35-fold) upregulated in S. gordonii CH1 cells treated with native amylase relative to those treated with denatured amylase. An abpA-deficient strain of S. gordonii exposed to amylase failed to show a response in FAS gene expression similar to that observed in the parental strain. Predicted phenotypic effects of amylase binding to S. gordonii strain CH1 (associated with increased expression of FAS genes, leading to changes in fatty acid synthesis) were noted; these included increased bacterial growth, survival at low pH, and resistance to triclosan. These changes were not observed in the amylase-exposed abpA-deficient strain, suggesting a role for AbpA in the amylase-induced phenotype. These results provide evidence that the binding of salivary amylase elicits a differential gene response in S. gordonii, resulting in a phenotypic adjustment that is potentially advantageous for bacterial survival in the oral environment.
Collapse
|
16
|
Vorrasi J, Chaudhuri B, Haase EM, Scannapieco FA. Identification and characterization of amylase-binding protein C from Streptococcus mitis NS51. Mol Oral Microbiol 2010; 25:150-6. [PMID: 20331802 DOI: 10.1111/j.2041-1014.2009.00554.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A substantial proportion of the streptococcal species found in dental plaque biofilms are able to interact with the abundant salivary enzyme alpha-amylase. These streptococci produce proteins that specifically bind amylase. An important plaque species, Streptococcus mitis, secretes a 36-kDa amylase-binding protein into the extracellular milieu. Proteins precipitated from S. mitis NS51 cell culture supernatant by the addition of purified salivary amylase were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to a membrane, and a prominent 36-kDa band was cut from the membrane and sequenced to yield the N-terminal amino acid sequence DSQAQYSNGV. Searching the S. mitis genome sequence database revealed a single open reading frame containing this sequence, and the gene was amplified by the S. mitis genomic DNA polymerase chain reaction. The coding region of this open reading frame, designated amylase-binding protein C (AbpC), was cloned into an Escherichia coli expression vector and the recombinant AbpC (rAbpC) was purified from the soluble fraction of the E. coli cell lysate. Purified AbpC was found to interact with immobilized amylase, confirming AbpC as a new streptococcal amylase-binding protein.
Collapse
Affiliation(s)
- J Vorrasi
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
17
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
18
|
Amylase-binding protein B of Streptococcus gordonii is an extracellular dipeptidyl-peptidase. Infect Immun 2008; 76:4530-7. [PMID: 18678669 DOI: 10.1128/iai.00186-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral commensal bacterium Streptococcus gordonii interacts with salivary amylase via two amylase-binding proteins, AbpA and AbpB. Based on sequence analysis, the 20-kDa AbpA protein is unique to S. gordonii, whereas the 82-kDa AbpB protein appears to share sequence homology with other bacterial dipeptidases. The aim of this study was to verify the peptidase activity of AbpB and further explore its potential functions. The abpB gene was cloned, and histidine-tagged AbpB (His-AbpB) was expressed in Escherichia coli and purified. Its amylase-binding activity was verified in an amylase ligand binding assay, and its cross-reactivity was verified with an anti-AbpB antibody. Both recombinant His-AbpB and partially purified native AbpB displayed dipeptidase activity and degraded human type VI collagen and fibrinogen, but not salivary amylase. Salivary amylase precipitates not only AbpA and AbpB but also glucosyltransferase G (Gtf-G) from S. gordonii supernatants. Since Streptococcus mutans also releases Gtf enzymes that could also be involved in multispecies plaque interactions, the effect of S. gordonii AbpB on S. mutans Gtf-B activity was also tested. Salivary amylase and/or His-AbpB caused a 1.4- to 2-fold increase of S. mutans Gtf-B sucrase activity and a 3- to 6-fold increase in transferase activity. An enzyme-linked immunosorbent assay verified the interaction of His-AbpB and amylase with Gtf-B. In summary, AbpB demonstrates proteolytic activity and interacts with and modulates Gtf activity. These activities may help explain the crucial role AbpB appears to play in S. gordonii oral colonization.
Collapse
|
19
|
Zhang W, Lu CP. Immunoproteomics of extracellular proteins of Chinese virulent strains ofStreptococcus suis type 2. Proteomics 2007; 7:4468-76. [DOI: 10.1002/pmic.200700294] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Tanzer JM, Thompson AM, Grant LP, Vickerman MM, Scannapieco FA. Streptococcus gordonii's sequenced strain CH1 glucosyltransferase determines persistent but not initial colonization of teeth of rats. Arch Oral Biol 2007; 53:133-40. [PMID: 17961499 DOI: 10.1016/j.archoralbio.2007.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Extracellular glucan synthesis from sucrose by Streptococcus gordonii, a major dental plaque biofilm bacterium, is assumed important for colonization of teeth; but this hypothesis is un-tested in vivo. METHODS To do so, we studied an isogenic glucosyltransferase (Gtf)-negative mutant (strain AMS12, gtfG(-)) of S. gordonii sequenced wild type (WT, strain Challis CH1, gtfG(+)), comparing their in vitro abilities to grow in the presence of glucose and sucrose and, in vivo, to colonize and persist on teeth and induce caries in rats. Weanling rats of two breeding colonies, TAN:SPFOM(OM)BR and TAN:SPFOM(OMASF)BR, eating high sucrose diet, were inoculated with either the WT (gtfG(+)), its isogenic gtfG(-) mutant, or reference strains of Streptococcus mutans. Control animals were not inoculated. RESULTS In vitro, the gtfG(-) strain grew at least as rapidly in the presence of sucrose as its WT gtfG(+) progenitor, but formed soft colonies on sucrose agar, consistent with its lack of insoluble glucan synthesis. It also had a higher growth yield due apparently to its inability to channel carbon flow into extracellular glucan. In vivo, the gtfG(-) mutant initially colonized as did the WT but, unlike the WT, failed to persist on the teeth as shown over time. By comparison to three S. mutans strains, S. gordonii WT, despite its comparable ecological success on the teeth, was associated with only modest caries induction. Failure of the gtfG(-) mutant to persistently colonize was associated with slight diminution of caries scores by comparison with its gtfG(+) WT. CONCLUSIONS Initial S. gordonii colonization does not depend on Gtf-G synthesis; rather, Gtf-G production determines S. gordonii's ability to persist on the teeth of sucrose-fed rats. S. gordonii appears weakly cariogenic by comparison with S. mutans reference strains.
Collapse
Affiliation(s)
- J M Tanzer
- Division of Oral Medicine, Department of Oral Health and Diagonistic Science, University of Connecticut Health Center, Farmington, CT 06030-1605, USA.
| | | | | | | | | |
Collapse
|
21
|
Interaction of salivary alpha-amylase and amylase-binding-protein A (AbpA) of Streptococcus gordonii with glucosyltransferase of S. gordonii and Streptococcus mutans. BMC Microbiol 2007; 7:60. [PMID: 17593303 PMCID: PMC3225810 DOI: 10.1186/1471-2180-7-60] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 06/25/2007] [Indexed: 11/16/2022] Open
Abstract
Background Glucosyltransferases (Gtfs), enzymes that produce extracellular glucans from dietary sucrose, contribute to dental plaque formation by Streptococcus gordonii and Streptococcus mutans. The alpha-amylase-binding protein A (AbpA) of S. gordonii, an early colonizing bacterium in dental plaque, interacts with salivary amylase and may influence dental plaque formation by this organism. We examined the interaction of amylase and recombinant AbpA (rAbpA), together with Gtfs of S. gordonii and S. mutans. Results The addition of salivary alpha-amylase to culture supernatants of S. gordonii precipitated a protein complex containing amylase, AbpA, amylase-binding protein B (AbpB), and the glucosyltransferase produced by S. gordonii (Gtf-G). rAbpA was expressed from an inducible plasmid, purified from Escherichia coli and characterized. Purified rAbpA, along with purified amylase, interacted with and precipitated Gtfs from culture supernatants of both S. gordonii and S. mutans. The presence of amylase and/or rAbpA increased both the sucrase and transferase component activities of S. mutans Gtf-B. Enzyme-linked immunosorbent assay (ELISA) using anti-Gtf-B antibody verified the interaction of rAbpA and amylase with Gtf-B. A S. gordonii abpA-deficient mutant showed greater biofilm growth under static conditions than wild-type in the presence of sucrose. Interestingly, biofilm formation by every strain was inhibited in the presence of saliva. Conclusion The results suggest that an extracellular protein network of AbpA-amylase-Gtf may influence the ecology of oral biofilms, likely during initial phases of colonization.
Collapse
|
22
|
Oh Y, Varmanen P, Han XY, Bennett G, Xu Z, Lu T, Palva A. Lactobacillus plantarum for oral peptide delivery. ACTA ACUST UNITED AC 2007; 22:140-4. [PMID: 17311639 DOI: 10.1111/j.1399-302x.2007.00338.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate strains of lactobacilli for their ability to persist and secrete heterologous protein in the oral cavity. METHODS AND RESULTS Four different strains of common oral lactobacilli, Lactobacillus brevis, Lactobacillus johnsonii, Lactobacillus murinus and Lactobacillus plantarum, were transformed with the plasmid pKTH2121, which contains a secretion cassette for beta-lactamase. Lactobacilli isolated from the mouth of host mice were also transformed with pKTH2121 for later feeding. Lactococcus lactis, transformed with pKTH2121, was also fed to mice as a negative control. All transformed isolates were fed to C57Black mice in varying schedules. The number of transformed bacteria persisting in the mouth was reported as a percentage of total oral bacteria recovered by swabbing. CONCLUSIONS The transformed L. lactis, L. brevis, L. johnsonii, L. murinus, and the endogenous murine lactobacillus strain failed to persist in the mouth. Transformed L. plantarum, however, persisted in the mouth and comprised up to 25% of the total lactobacilli at 18 h and 10% at 24 h after feeding. L. plantarum recovered after feeding retained its ability to secrete beta-lactamase into culture medium efficiently. Beta-lactamase activity could be detected in oral secretions at 8 h after feedings. After repeated feedings, however, the L. plantarum containing pKTH2121 gradually lost its ability to persist after feedings. This experiment demonstrates that L. plantarum can transiently colonize the oral mucosa in large numbers, while continuously secreting foreign proteins, raising the possibility of using lactobacilli as a vector for delivery of oral mucosal peptides.
Collapse
Affiliation(s)
- Y Oh
- Department of Thoracic/Head & Neck Medical Oncology, UT M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
24
|
Zhang Y, Lei Y, Nobbs A, Khammanivong A, Herzberg MC. Inactivation of Streptococcus gordonii SspAB alters expression of multiple adhesin genes. Infect Immun 2005; 73:3351-7. [PMID: 15908361 PMCID: PMC1111841 DOI: 10.1128/iai.73.6.3351-3357.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SspA and SspB (antigen I/II family proteins) can bind Streptococcus gordonii to other oral bacteria and also to salivary agglutinin glycoprotein, a constituent of the salivary film or pellicle that coats the tooth. To learn if SspA and SspB are essential for adhesion and initial biofilm formation on teeth, S. gordonii DL1 was incubated with saliva-coated hydroxyapatite (sHA) for 2 h in Todd-Hewitt broth with 20% saliva to develop initial biofilms. Sessile cells attached to sHA, surrounding planktonic cells, and free-growing cells were recovered separately. Free-growing cells expressed more sspA-specific mRNA and sspB-specific mRNA than sessile cells. Free-growing cells expressed the same levels of sspA and sspB as planktonic cells. Surprisingly, an SspA(-) SspB(-) mutant strain showed 2.2-fold greater biofilm formation on sHA than wild-type S. gordonii DL1. To explain this observation, we tested the hypothesis that inactivation of sspA and sspB genes altered the expression of other adhesin genes during initial biofilm formation in vitro. When compared to wild-type cells, expression of scaA and abpB was significantly up-regulated in the SspA(-) SspB(-) strain in sessile, planktonic, and free-growing cells. Consistent with this finding, ScaA antigen was also overexpressed in planktonic and free-growing SspA(-) SspB(-) cells compared to the wild type. SspA/B adhesins, therefore, were strongly suggested to be involved in the regulation of multiple adhesin genes.
Collapse
Affiliation(s)
- Yongshu Zhang
- Department of Oral Sciences and Mucosal and Vaccine Research Center, University of Minnesota, 17-164 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
25
|
Tanzer JM, Grant L, Thompson A, Li L, Rogers JD, Haase EM, Scannapieco FA. Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats' teeth by Streptococcus gordonii. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2653-2660. [PMID: 12949189 DOI: 10.1099/mic.0.26022-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus gordonii produces two alpha-amylase-binding proteins, AbpA and AbpB, that have been extensively studied in vitro. Little is known, however, about their significance in oral colonization and cariogenicity (virulence). To clarify these issues, weanling specific pathogen-free Osborne-Mendel rats, TAN : SPFOM(OM)BR, were inoculated either with wild-type strains FAS4-S or Challis-S or with strains having isogenic mutations of abpA, abpB, or both, to compare their colonization abilities and persistence on the teeth. Experiments were done with rats fed a sucrose-rich diet containing low amounts of starch or containing only starch. The mutants and wild-types were quantified in vivo and carious lesions were scored. In 11 experiments, S. gordonii was a prolific colonizer of the teeth when rats were fed the sucrose (with low starch)-supplemented diet, often dominating the flora. Sucrose-fed rats had several-fold higher recoveries of inoculants than those eating the sucrose-free, starch-supplemented diet, regardless of inoculant type. The strain defective in AbpB could not colonize teeth of starch-only-eating rats, but could colonize rats if sucrose was added to the diet. Strains defective in AbpA surprisingly colonized better than their wild-types. A double mutant deficient in both AbpA and AbpB (abpA/abpB) colonized like its wild-type. Wild-types FAS4-S and Challis-S had no more than marginal cariogenicity. Notably, in the absence of AbpA, cariogenicity was slightly augmented. Both the rescue of colonization by the AbpB- mutant and the augmentation of colonization by AbpA- mutant in the presence of dietary sucrose suggested additional amylase-binding protein interactions relevant to colonization. Glucosyltransferase activity was greater in mutants defective in abpA and modestly increased in the abpB mutant. It was concluded that AbpB is required for colonization of teeth of starch-eating rats and its deletion is partially masked if rats eat a sucrose-starch diet. AbpA appears to inhibit colonization of the plaque biofilm in vivo. This unexpected effect in vivo may be associated with interaction of AbpA with glucosyltransferase or with other colonization factors of these cells. These data illustrate that the complex nature of the oral environment may not be adequately modelled by in vitro systems.
Collapse
Affiliation(s)
- J M Tanzer
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030-1605, USA
| | - L Grant
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030-1605, USA
| | - A Thompson
- School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030-1605, USA
| | - L Li
- School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - J D Rogers
- School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - E M Haase
- School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - F A Scannapieco
- School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
26
|
Xu DQ, Thompson J, Cisar JO. Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38. J Bacteriol 2003; 185:5419-30. [PMID: 12949094 PMCID: PMC193766 DOI: 10.1128/jb.185.18.5419-5430.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall polysaccharide of Streptococcus gordonii 38 functions as a coaggregation receptor for surface adhesins on other members of the oral biofilm community. The structure of this receptor polysaccharide (RPS) is defined by a heptasaccharide repeat that includes a GalNAcbeta1-->3Gal-containing recognition motif. The same RPS has now been identified from S. gordonii AT, a partially sequenced strain. PCR primers designed from sequences in the genomic database of strain AT were used to identify and partially characterize the S. gordonii 38 RPS gene cluster. This cluster includes genes for seven putative glycosyltransferases, a polysaccharide polymerase (Wzy), an oligosaccharide repeating unit transporter (Wzx), and a galactofuranose mutase, the enzyme that promotes synthesis of UDP-Galf, one of five predicted RPS precursors. Genes outside this region were identified for the other four nucleotide-linked sugar precursors of RPS biosynthesis, namely, those for formation of UDP-Glc, UDP-Gal, UDP-GalNAc, and dTDP-Rha. Two genes for putative galactose 4-epimerases were identified. The first, designated galE1, was identified as a pseudogene in the galactose operon, and the second, designated galE2, was transcribed with three of the four genes for dTDP-Rha biosynthesis (i.e., rmlA, rmlC, and rmlB). Insertional inactivation of galE2 abolished (i) RPS production, (ii) growth on galactose, and (iii) both UDP-Gal and UDP-GalNAc 4-epimerase activities in cell extracts. Repair of the galE1 pseudogene in this galE2 mutant restored growth on galactose but not RPS production. Cell extracts containing functional GalE1 but not GalE2 contained UDP-Gal 4-epimerase but not UDP-GalNAc 4-epimerase activity. Thus, provision of both UDP-Gal and UDP-GalNAc for RPS production by S. gordonii 38 depends on the dual specificity of the epimerase encoded by galE2.
Collapse
Affiliation(s)
- De-Qi Xu
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|