1
|
Hayashida N, Urano-Tashiro Y, Horie T, Saiki K, Yamanaka Y, Takahashi Y. Transcriptome and metabolome analyses of Streptococcus gordonii DL1 under acidic conditions. J Oral Biosci 2024; 66:112-118. [PMID: 38135272 DOI: 10.1016/j.job.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES Streptococcus gordonii is associated with the formation of biofilms, especially those that comprise dental plaque. Notably, S. gordonii DL1 causes infective endocarditis (IE). Colonization of this bacterium requires a mechanism that can tolerate a drop in environmental pH by producing acid via its own sugar metabolism. The ability to survive acidic environmental conditions might allow the bacterium to establish vegetative colonization even in the endocardium due to inflammation-induced lowering of pH, increasing the risk of IE. At present, the mechanism by which S. gordonii DL1 survives under acidic conditions is not thoroughly elucidated. The present study was thus conducted to elucidate the mechanism(s) by which S. gordonii DL1 survives under acidic conditions. METHODS We analyzed dynamic changes in gene transcription and intracellular metabolites in S. gordonii DL1 exposed to acidic conditions, using transcriptome and metabolome analyses. RESULTS Transcriptome analysis revealed upregulation of genes involved in heat shock response and glycolysis, and down regulation of genes involved in phosphotransferase systems and biosynthesis of amino acids. The most upregulated genes were a beta-strand repeat protein of unknown function (SGO_RS06325), followed by copper-translocating P-type ATPase (SGO_RS09470) and malic enzyme (SGO_RS01850). The latter two of these contribute to cytoplasmic alkalinization. S. gordonii mutant strains lacking each of these genes showed significantly reduced survival under acidic conditions. Metabolome analysis revealed that cytoplasmic levels of several amino acids were reduced. CONCLUSIONS S. gordonii survives the acidic conditions by recovering the acidic cytoplasm using the various activities, which are regulated at the transcriptional level.
Collapse
Affiliation(s)
- Naoto Hayashida
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yumiko Urano-Tashiro
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Tetsuro Horie
- Research Center for Odontology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Keitarou Saiki
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yuki Yamanaka
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| | - Yukihiro Takahashi
- Department of Microbiology, The Nippon Dental University School of Life Dentistry at Tokyo, Japan.
| |
Collapse
|
2
|
Liu S, Sun Y, Liu Y, Hu F, Xu L, Zheng Q, Wang Q, Zeng G, Zhang K. Genomic and phenotypic characterization of Streptococcus mutans isolates suggests key gene clusters in regulating its interaction with Streptococcus gordonii. Front Microbiol 2022; 13:945108. [PMID: 36033899 PMCID: PMC9416482 DOI: 10.3389/fmicb.2022.945108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans (S. mutans) is one of the primary pathogens responsible for dental caries. Streptococcus gordonii (S. gordonii) is one of the early colonizers of dental plaque and can compete with S. mutans for growth. In the present analysis, we explored key target genes against S. gordonii in S. mutans using 80 S. mutans clinical isolates with varying capabilities against S. gordonii. A principal coordinate analysis revealed significant genetic diversity differences between antagonistic and non-antagonistic groups. Genomic comparisons revealed 33 and 61 genes that were, respectively, positively and negatively correlated with S. mutans against S. gordonii, with RNA-sequencing (RNA-seq) highlighting 11 and 43 genes that were, respectively, upregulated and downregulated in the antagonistic group. Through a combination of these results and antiSMASH analysis, we selected 16 genes for qRT-PCR validation in which the expression levels of SMU_137 (malate dehydrogenase, mleS), SMU_138 (malate permease, mleP), SMU_139 (oxalate decarboxylase, oxdC), and SMU_140 (glutathione reductase) were consistent with RNA-seq results. SMU_1315c-1317c (SMU_1315c transport-related gene) and SMU_1908c-1909c were, respectively, downregulated and upregulated in the antagonistic group. The expression patterns of adjacent genes were closely related, with correlation coefficient values greater than 0.9. These data reveal new targets (SMU_137–140, SMU_1315c-1317c, and SMU_1908c-1909c) for investigating the critical gene clusters against S. gordonii in S. mutans clinical isolates.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, China
| | - Yudong Liu
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, China
| | - Fuyong Hu
- Department of Epidemiology and Health Statistics, Bengbu Medical College, Bengbu, China
| | - Li Xu
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qingwei Zheng
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China
| | - Qinglong Wang
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Guojin Zeng
- Department of Stomatology, Bengbu Medical College, Bengbu, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
- *Correspondence: Kai Zhang,
| |
Collapse
|
3
|
Transcriptomic Stress Response in Streptococcus mutans following Treatment with a Sublethal Concentration of Chlorhexidine Digluconate. Microorganisms 2022; 10:microorganisms10030561. [PMID: 35336136 PMCID: PMC8950716 DOI: 10.3390/microorganisms10030561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the widespread use of antiseptics such as chlorhexidine digluconate (CHX) in dental practice and oral care, the risks of potential resistance toward these antimicrobial compounds in oral bacteria have only been highlighted very recently. Since the molecular mechanisms behind antiseptic resistance or adaptation are not entirely clear and the bacterial stress response has not been investigated systematically so far, the aim of the present study was to investigate the transcriptomic stress response in Streptococcus mutans after treatment with CHX using RNA sequencing (RNA-seq). Planktonic cultures of stationary-phase S. mutans were treated with a sublethal dose of CHX (125 µg/mL) for 5 min. After treatment, RNA was extracted, and RNA-seq was performed on an Illumina NextSeq 500. Differentially expressed genes were analyzed and validated by qRT-PCR. Analysis of differential gene expression following pathway analysis revealed a considerable number of genes and pathways significantly up- or downregulated in S. mutans after sublethal treatment with CHX. In summary, the expression of 404 genes was upregulated, and that of 271 genes was downregulated after sublethal CHX treatment. Analysis of differentially expressed genes and significantly regulated pathways showed regulation of genes involved in purine nucleotide synthesis, biofilm formation, transport systems and stress responses. In conclusion, the results show a transcriptomic stress response in S. mutans upon exposure to CHX and offer insight into potential mechanisms that may result in development of resistances.
Collapse
|
4
|
Banerjee S, Poore M, Gerdes S, Nedveck D, Lauridsen L, Kristensen HT, Jensen HM, Byrd PM, Ouwehand AC, Patterson E, Morovic W. Transcriptomics reveal different metabolic strategies for acid resistance and gamma-aminobutyric acid (GABA) production in select Levilactobacillus brevis strains. Microb Cell Fact 2021; 20:173. [PMID: 34488774 PMCID: PMC8419935 DOI: 10.1186/s12934-021-01658-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Of the many neurotransmitters in humans, gamma-aminobutyric acid (GABA) shows potential for improving several mental health indications such as stress and anxiety. The microbiota-gut-brain axis is an important pathway for GABAergic effects, as microbially-secreted GABA within the gut can affect host mental health outcomes. Understanding the molecular characteristics of GABA production by microbes within the gut can offer insight to novel therapies for mental health. RESULTS Three strains of Levilactobacillus brevis with syntenous glutamate decarboxylase (GAD) operons were evaluated for overall growth, glutamate utilization, and GABA production in typical synthetic growth media supplemented with monosodium glutamate (MSG). Levilactobacillus brevis Lbr-6108™ (Lbr-6108), formerly known as L. brevis DPC 6108, and Levilactobacillus brevis Lbr-35 ™ (Lbr-35) had similar growth profiles but differed significantly in GABA secretion and acid resistance. Lbr-6108 produced GABA early within the growth phase and produced significantly more GABA than Lbr-35 and the type strain Levilactobacillus brevis ATCC 14869 after the stationary phase. The global gene expression during GABA production at several timepoints was determined by RNA sequencing. The GAD operon, responsible for GABA production and secretion, activated in Lbr-6108 after only 6 h of fermentation and continued throughout the stationary phase. Furthermore, Lbr-6108 activated many different acid resistance mechanisms concurrently, which contribute to acid tolerance and energy production. In contrast, Lbr-35, which has a genetically similar GAD operon, including two copies of the GAD gene, showed no upregulation of the GAD operon, even when cultured with MSG. CONCLUSIONS This study is the first to evaluate whole transcriptome changes in Levilactobacillus brevis during GABA production in different growth phases. The concurrent expression of multiple acid-resistance mechanisms reveals niche-specific metabolic functionality between common human commensals and highlights the complex regulation of GABA metabolism in this important microbial species. Furthermore, the increased and rapid GABA production of Lbr-6108 highlights the strain's potential as a therapeutic and the overall value of screening microbes for effector molecule output.
Collapse
Affiliation(s)
| | - Matthew Poore
- IFF Health and Biosciences, Danisco USA, Inc., Madison, WI, USA
| | - Svetlana Gerdes
- IFF Health and Biosciences, Danisco USA, Inc., Madison, WI, USA
| | - Derek Nedveck
- IFF Health and Biosciences, Danisco USA, Inc., Madison, WI, USA
| | | | | | | | - Phillip M Byrd
- IFF Health and Biosciences, Danisco USA, Inc., Madison, WI, USA
| | - Arthur C Ouwehand
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Elaine Patterson
- IFF Health and Biosciences, Danisco Sweeteners Oy, Sokeritehtaantie 20, 02460, Kantvik, Finland
| | - Wesley Morovic
- IFF Health and Biosciences, Danisco USA, Inc., Madison, WI, USA.
| |
Collapse
|
5
|
Deacidification of Cranberry Juice Reduces Its Antibacterial Properties against Oral Streptococci but Preserves Barrier Function and Attenuates the Inflammatory Response of Oral Epithelial Cells. Foods 2021; 10:foods10071634. [PMID: 34359504 PMCID: PMC8305880 DOI: 10.3390/foods10071634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Cranberry (Vaccinium macrocarpon) may be a potent natural adjuvant for the prevention of oral diseases due to its anti-adherence, anti-cariogenic, and anti-inflammatory properties. However, the high titrable acidity of cranberry juice (CJ) has been reported to cause gastrointestinal discomfort, leading consumers to restrict their intake of this beverage. Electrodialysis with a bipolar membrane (EDBM) can reduce the organic acid content of CJ while retaining the flavonoids associated with potential health benefits. This study aimed to assess how the deacidification of CJ by EDBM impacts the antibacterial properties of the beverage against cariogenic (Streptococcus mutans, Streptococcus sobrinus) and commensal (Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius) streptococci, and how it affects oral epithelial barrier function and inflammatory response in an in vitro model. The removal of organic acids from CJ (deacidification rate ≥42%) reduced the bactericidal activity of the beverage against planktonic S. mutans and S. gordonii after a 15-min exposure, whereas only the viability of S. gordonii was significantly impacted by CJ deacidification rate when the bacteria were embedded in a biofilm. Moreover, conditioning saliva-coated hydroxyapatite with undiluted CJ samples significantly lowered the adherence of S. mutans, S. sobrinus, and S. oralis. With respect to epithelial barrier function, exposure to CJ deacidified at a rate of ≥19% maintained the integrity of a keratinocyte monolayer over the course of 24 h compared to raw CJ, as assessed by the determination of transepithelial electrical resistance (TER) and fluorescein isothiocyanate-conjugated dextran paracellular transport. These results can be in part attributed to the inability of the deacidified CJ to disrupt two tight junction proteins, zonula occludens-1 and occludin, following exposure, unlike raw CJ. Deacidification of CJ impacted the secretion of IL-6, but not of IL-8, by oral epithelial cells. In conclusion, deacidification of CJ appears to provide benefits with respect to the maintenance of oral health.
Collapse
|
6
|
Lee HJ, Song J, Kim JN. Genetic Mutations That Confer Fluoride Resistance Modify Gene Expression and Virulence Traits of Streptococcus mutans. Microorganisms 2021; 9:microorganisms9040849. [PMID: 33921039 PMCID: PMC8071458 DOI: 10.3390/microorganisms9040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 11/28/2022] Open
Abstract
Fluoride is an inorganic monatomic anion that is widely used as an anti-cariogenic agent for the control of caries development. The aims of this study were to identify the mutated genes that give rise to fluoride-resistant (FR) strains of the cariogenic pathogen Streptococcus mutans and explore how genetic alterations in the genome of an S. mutans FR strain optimize the metabolism(s) implicated in the expression of virulence-associated traits. Here, we derived an S. mutans FR strain from a wild-type UA159 strain by continuous shifts to a medium supplemented with increasing concentrations of fluoride. The FR strain exhibited a slow growth rate and low yield under aerobic and oxidative stress conditions and was highly sensitive to acid stress. Notably, microscopy observation displayed morphological changes in which the FR strain had a slightly shorter cell length. Next, using the sequencing analyses, we found six mutations in the FR genome, which decreased the gene expression of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Indeed, the ability to intake carbohydrates was relatively reduced in the FR strain. Collectively, our results provide evidence that the genetic mutations in the genome of the FR strain modulate the expression of gene(s) for carbon metabolism(s) and cellular processes, leading to diminished fitness with respect to virulence and persistence.
Collapse
Affiliation(s)
- Hyeon-Jeong Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Jihee Song
- Department of Family, Youth, and Community Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Jeong Nam Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2269
| |
Collapse
|
7
|
Ahn SJ, Hull W, Desai S, Rice KC, Culp D. Understanding LrgAB Regulation of Streptococcus mutans Metabolism. Front Microbiol 2020; 11:2119. [PMID: 33013773 PMCID: PMC7496758 DOI: 10.3389/fmicb.2020.02119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
Lack of LrgAB renders cariogenic Streptococcus mutans more sensitive to oxidative stress, as well as limits the capacity of this organism to re-uptake pyruvate upon starvation. This study was aimed at investigating the ecological and metabolic contribution of LrgAB to competitive fitness, using S. mutans strains, that either lack or overexpress lrgAB. These experiments revealed that impaired aerobic growth of the ΔlrgAB mutant can be effectively restored by supplementation of pyruvate, and that perturbated expression of lrgAB significantly affects pyruvate flux and the conversion of pyruvate to acetyl-CoA by the Pdh pathway, verifying that LrgAB is closely linked to pyruvate catabolism. In vitro competition assays revealed that LrgAB plays an important role in S. mutans competition with H2O2-producing S. gordonii, an interaction which can also be modulated by external pyruvate. However, no obvious competitive disadvantage was observed against S. gordonii by either the S. mutans lrgAB mutant or lrgAB overexpression strain in vivo using a mouse caries model. Organic acid analysis of mouse dental biofilms revealed that metabolites produced by the host and/or dental plaque microbiota could complement the deficiency of a lrgAB mutant, and favored S. mutans establishment compared to S. gordonii. Collectively, these results reinforce the importance of the oral microbiota and the metabolic environment in the oral cavity battleground, and highlight that pyruvate uptake through LrgAB may be crucial for interspecies competition that drives niche occupancy.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - William Hull
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Shailja Desai
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Kelly C Rice
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - David Culp
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
8
|
Shanmugam K, Sarveswari HB, Udayashankar A, Swamy SS, Pudipeddi A, Shanmugam T, Solomon AP, Neelakantan P. Guardian genes ensuring subsistence of oral Streptococcus mutans. Crit Rev Microbiol 2020; 46:475-491. [PMID: 32720594 DOI: 10.1080/1040841x.2020.1796579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the substantial research advancements on oral diseases, dental caries remains a major healthcare burden. A disease of microbial dysbiosis, dental caries is characterised by the formation of biofilms that assist demineralisation and destruction of the dental hard tissues. While it is well understood that this is a multi-kingdom biofilm-mediated disease, it has been elucidated that acid producing and acid tolerant bacteria play pioneering roles in the process. Specifically, Streptococcus mutans houses major virulence pathways that enable it to thrive in the oral cavity and cause caries. This pathogen adheres to the tooth substrate, forms biofilms, resists external stress, produces acids, kills closely related species, and survives the acid as well as the host clearance mechanisms. For an organism to be able to confer such virulence, it requires a large and complex gene network which synergise to establish disease. In this review, we have charted how these multi-faceted genes control several caries-related functions of Streptococcus mutans. In a futuristic thinking approach, we also briefly discuss the potential roles of omics and machine learning, to ease the study of non-functional genes that may play a major role and enable the integration of experimental data.
Collapse
Affiliation(s)
- Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hema Bhagavathi Sarveswari
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akshaya Udayashankar
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Shogan Sugumar Swamy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Tamilarasi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
9
|
Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of Streptococcus mutans. Microbiol Spectr 2019; 7:10.1128/microbiolspec.GPP3-0051-2018. [PMID: 30657107 PMCID: PMC6615571 DOI: 10.1128/microbiolspec.gpp3-0051-2018] [Citation(s) in RCA: 333] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
As a major etiological agent of human dental caries, Streptococcus mutans resides primarily in biofilms that form on the tooth surfaces, also known as dental plaque. In addition to caries, S. mutans is responsible for cases of infective endocarditis with a subset of strains being indirectly implicated with the onset of additional extraoral pathologies. During the past 4 decades, functional studies of S. mutans have focused on understanding the molecular mechanisms the organism employs to form robust biofilms on tooth surfaces, to rapidly metabolize a wide variety of carbohydrates obtained from the host diet, and to survive numerous (and frequent) environmental challenges encountered in oral biofilms. In these areas of research, S. mutans has served as a model organism for ground-breaking new discoveries that have, at times, challenged long-standing dogmas based on bacterial paradigms such as Escherichia coli and Bacillus subtilis. In addition to sections dedicated to carbohydrate metabolism, biofilm formation, and stress responses, this article discusses newer developments in S. mutans biology research, namely, how S. mutans interspecies and cross-kingdom interactions dictate the development and pathogenic potential of oral biofilms and how next-generation sequencing technologies have led to a much better understanding of the physiology and diversity of S. mutans as a species.
Collapse
Affiliation(s)
- JA Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - SR Palmer
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH
| | - L Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - ZT Wen
- Dapartment of Comprehensive Dentistry and Biomaterials and Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA
| | - JK Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - IA Freires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - J Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| | - LJ Brady
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL
| |
Collapse
|
10
|
KESKİN E, BAĞLAR S. ACID TOLERANCE RESPONCE OF CARIOGENIC MICROORGANISMS AND MALOLACTIC FERMENTATION. CUMHURIYET DENTAL JOURNAL 2017. [DOI: 10.7126/cumudj.345960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
11
|
Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85. Sci Rep 2017; 7:2277. [PMID: 28536480 PMCID: PMC5442110 DOI: 10.1038/s41598-017-02628-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pH 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.
Collapse
|
12
|
Chen YYM, Chen YY, Hung JL, Chen PM, Chia JS. The GlnR Regulon in Streptococcus mutans Is Differentially Regulated by GlnR and PmrA. PLoS One 2016; 11:e0159599. [PMID: 27454482 PMCID: PMC4959772 DOI: 10.1371/journal.pone.0159599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
GlnR-mediated repression of the GlnR regulon at acidic pH is required for optimal acid tolerance in Streptococcus mutans, the etiologic agent for dental caries. Unlike most streptococci, the GlnR regulon is also regulated by newly identified PmrA (SMUGS5_RS05810) at the transcriptional level in S. mutans GS5. Results from gel mobility shift assays confirmed that both GlnR and PmrA recognized the putative GlnR box in the promoter regions of the GlnR regulon genes. By using a chemostat culture system, we found that PmrA activated the expression of the GlnR regulon at pH 7, and that this activation was enhanced by excess glucose. Deletion of pmrA (strain ΔPmrA) reduced the survival rate of S. mutans GS5 at pH 3 moderately, whereas the GlnR mutant (strain ΔGlnR) exhibited an acid-sensitive phenotype in the acid killing experiments. Elevated biofilm formation in both ΔGlnR and ΔPmrA mutant strains is likely a result of indirect regulation of the GlnR regulon since GlnR and PmrA regulate the regulon differently. Taken together, it is suggested that activation of the GlnR regulon by PmrA at pH 7 ensures adequate biosynthesis of amino acid precursor, whereas repression by GlnR at acidic pH allows greater ATP generation for acid tolerance. The tight regulation of the GlnR regulon in response to pH provides an advantage for S. mutans to better survive in its primary niche, the oral cavity.
Collapse
Affiliation(s)
- Yi-Ywan M. Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| | - Yueh-Ying Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jui-Lung Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Min Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Baker JL, Faustoferri RC, Quivey RG. Acid-adaptive mechanisms of Streptococcus mutans-the more we know, the more we don't. Mol Oral Microbiol 2016; 32:107-117. [PMID: 27115703 DOI: 10.1111/omi.12162] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
- J L Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R G Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
14
|
Cross B, Garcia A, Faustoferri R, Quivey RG. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans. MICROBIOLOGY-SGM 2016; 162:662-671. [PMID: 26850107 DOI: 10.1099/mic.0.000252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans.
Collapse
Affiliation(s)
- Benjamin Cross
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ariana Garcia
- Center for Oral Biology in the Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Roberta Faustoferri
- Center for Oral Biology in the Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
15
|
Ipe DS, Ben Zakour NL, Sullivan MJ, Beatson SA, Ulett KB, Benjamin WH, Davies MR, Dando SJ, King NP, Cripps AW, Schembri MA, Dougan G, Ulett GC. Discovery and Characterization of Human-Urine Utilization by Asymptomatic-Bacteriuria-Causing Streptococcus agalactiae. Infect Immun 2016; 84:307-19. [PMID: 26553467 PMCID: PMC4694007 DOI: 10.1128/iai.00938-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/01/2015] [Indexed: 12/27/2022] Open
Abstract
Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU.
Collapse
Affiliation(s)
- Deepak S Ipe
- School of Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD, Australia
| | - Nouri L Ben Zakour
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Matthew J Sullivan
- School of Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kimberly B Ulett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William H Benjamin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark R Davies
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Nathan P King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Allan W Cripps
- School of Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Glen C Ulett
- School of Medical Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD, Australia Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
16
|
Loss of NADH Oxidase Activity in Streptococcus mutans Leads to Rex-Mediated Overcompensation in NAD+ Regeneration by Lactate Dehydrogenase. J Bacteriol 2015; 197:3645-57. [PMID: 26350138 DOI: 10.1128/jb.00383-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Previous studies of the oral pathogen Streptococcus mutans have determined that this Gram-positive facultative anaerobe mounts robust responses to both acid and oxidative stresses. The water-forming NADH oxidase (Nox; encoded by nox) is thought to be critical for the regeneration of NAD(+), for use in glycolysis, and for the reduction of oxygen, thereby preventing the formation of damaging reactive oxygen species. In this study, the free NAD(+)/NADH ratio in a nox deletion strain (Δnox) was discovered to be remarkably higher than that in the parent strain, UA159, when the strains were grown in continuous culture. This unanticipated result was explained by significantly elevated lactate dehydrogenase (Ldh; encoded by ldh) activity and ldh transcription in the Δnox strain, which was mediated in part by the redox-sensing regulator Rex. cDNA microarray analysis of S. mutans cultures exposed to simultaneous acid stress (growth at a low pH) and oxidative stress (generated through the deletion of nox or the addition of exogenous oxygen) revealed a stress response synergistically heightened over that with either stress alone. In the Δnox strain, this elevated stress response included increased glucose phosphoenolpyruvate phosphotransferase system (PTS) activity, which appeared to be due to elevated manL transcription, mediated in part, like elevated ldh transcription, by Rex. While the Δnox strain does possess a membrane composition different from that of the parent strain, it did not appear to have defects in either membrane permeability or ATPase activity. However, the altered transcriptome and metabolome of the Δnox strain were sufficient to impair its ability to compete with commensal peroxigenic oral streptococci during growth under aerobic conditions. IMPORTANCE Streptococcus mutans is an oral pathogen whose ability to outcompete commensal oral streptococci is strongly linked to the formation of dental caries. Previous work has demonstrated that the S. mutans water-forming NADH oxidase is critical for both carbon metabolism and the prevention of oxidative stress. The results of this study show that upregulation of lactate dehydrogenase, mediated through the redox sensor Rex, overcompensates for the loss of nox. Additionally, nox deletion led to the upregulation of mannose and glucose transport, also mediated through Rex. Importantly, the loss of nox rendered S. mutans defective in its ability to compete directly with two species of commensal streptococci, suggesting a role for nox in the pathogenic potential of this organism.
Collapse
|
17
|
Baker JL, Abranches J, Faustoferri RC, Hubbard CJ, Lemos JA, Courtney MA, Quivey R. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans. Mol Oral Microbiol 2015; 30:496-517. [PMID: 26042838 DOI: 10.1111/omi.12110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 01/10/2023]
Abstract
The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Hence, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of branched chain amino acid biosynthesis, DNA/protein repair mechanisms, reactive oxygen species metabolizers and phosphoenolpyruvate:phosphotransferase systems occurred in the initial acute phase, immediately following glucose-shock, while upregulation of F1 F0 -ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from the synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains, provide a starting point for elucidation of the acid tolerance response in S. mutans.
Collapse
Affiliation(s)
- J L Baker
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J Abranches
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - C J Hubbard
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J A Lemos
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M A Courtney
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R Quivey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
18
|
Quivey RG, Grayhack EJ, Faustoferri RC, Hubbard CJ, Baldeck JD, Wolf AS, MacGilvray ME, Rosalen PL, Scott-Anne K, Santiago B, Gopal S, Payne J, Marquis RE. Functional profiling in Streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants. Mol Oral Microbiol 2015; 30:474-95. [PMID: 25973955 DOI: 10.1111/omi.12107] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 12/17/2022]
Abstract
A collection of tagged deletion mutant strains was created in Streptococcus mutans UA159 to facilitate investigation of the aciduric capability of this oral pathogen. Gene-specific barcoded deletions were attempted in 1432 open reading frames (representing 73% of the genome), and resulted in the isolation of 1112 strains (56% coverage) carrying deletions in distinct non-essential genes. As S. mutans virulence is predicated upon the ability of the organism to survive an acidic pH environment, form biofilms on tooth surfaces, and out-compete other oral microflora, we assayed individual mutant strains for the relative fitness of the deletion strain, compared with the parent strain, under acidic and oxidative stress conditions, as well as for their ability to form biofilms in glucose- or sucrose-containing medium. Our studies revealed a total of 51 deletion strains with defects in both aciduricity and biofilm formation. We have also identified 49 strains whose gene deletion confers sensitivity to oxidative damage and deficiencies in biofilm formation. We demonstrate the ability to examine competitive fitness of mutant organisms using the barcode tags incorporated into each deletion strain to examine the representation of a particular strain in a population. Co-cultures of deletion strains were grown either in vitro in a chemostat to steady-state values of pH 7 and pH 5 or in vivo in an animal model for oral infection. Taken together, these data represent a mechanism for assessing the virulence capacity of this pathogenic microorganism and a resource for identifying future targets for drug intervention to promote healthy oral microflora.
Collapse
Affiliation(s)
- R G Quivey
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA.,Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - E J Grayhack
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - R C Faustoferri
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - C J Hubbard
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - J D Baldeck
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - A S Wolf
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - M E MacGilvray
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - P L Rosalen
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - K Scott-Anne
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - B Santiago
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - S Gopal
- Department of Biological Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - J Payne
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | - R E Marquis
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
19
|
Liu Y, Tang H, Lin Z, Xu P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol Adv 2015; 33:1484-92. [PMID: 26057689 DOI: 10.1016/j.biotechadv.2015.06.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 02/05/2023]
Abstract
Acidogenic and aciduric bacteria have developed several survival systems in various acidic environments to prevent cell damage due to acid stress such as that on the human gastric surface and in the fermentation medium used for industrial production of acidic products. Common mechanisms for acid resistance in bacteria are proton pumping by F1-F0-ATPase, the glutamate decarboxylase system, formation of a protective cloud of ammonia, high cytoplasmic urease activity, repair or protection of macromolecules, and biofilm formation. The field of synthetic biology has rapidly advanced and generated an ever-increasing assortment of genetic devices and biological modules for applications in biofuel and novel biomaterial productions. Better understanding of aspects such as overproduction of general shock proteins, molecular mechanisms, and responses to cell density adopted by microorganisms for survival in low pH conditions will prove useful in synthetic biology for potential industrial and environmental applications.
Collapse
Affiliation(s)
- Yuping Liu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, One Tsinghua Garden Road, Beijing 100084, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
20
|
Streptococcus pyogenes malate degradation pathway links pH regulation and virulence. Infect Immun 2015; 83:1162-71. [PMID: 25583521 DOI: 10.1128/iai.02814-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability of Streptococcus pyogenes to infect different niches within its human host most likely relies on its ability to utilize alternative carbon sources. In examining this question, we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme (ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). Analysis of transcription indicated that expression of maeP and maeE is induced by both malate and low pH, and induction in response to both cues is dependent on the MaeK sensor kinase. Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme (PtsI), as a PtsI(-) mutant fails to express the ME genes and is unable to utilize malate. Virulence of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP(-), MaeK(-), and MaeR(-) mutants were attenuated for virulence, whereas a MaeE(-) mutant showed enhanced virulence compared to that of the wild type. Taken together, these data show that ME contributes to S. pyogenes' carbon source repertory, that malate utilization is a highly regulated process, and that a single regulator controls ME expression in response to diverse signals. Furthermore, malate uptake and utilization contribute to the adaptive pH response, and ME can influence the outcome of infection.
Collapse
|
21
|
Faustoferri RC, Hubbard CJ, Santiago B, Buckley AA, Seifert TB, Quivey RG. Regulation of fatty acid biosynthesis by the global regulator CcpA and the local regulator FabT in Streptococcus mutans. Mol Oral Microbiol 2014; 30:128-46. [PMID: 25131436 DOI: 10.1111/omi.12076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 11/30/2022]
Abstract
SMU.1745c, encoding a putative transcriptional regulator of the MarR family, maps to a location proximal to the fab gene cluster in Streptococcus mutans. Deletion of the SMU.1745c (fabTS m ) coding region resulted in a membrane fatty acid composition comprised of longer-chained, unsaturated fatty acids (UFA), compared with the parent strain. Previous reports have indicated a role for FabT in regulation of genes in the fab gene cluster in other organisms, through binding to a palindromic DNA sequence. Consensus FabT motif sequences were identified in S. mutans in the intergenic regions preceding fabM, fabTSm and fabK in the fab gene cluster. Chloramphenicol acetyltransferase (cat) reporter fusions, using the fabM promoter, revealed elevated transcription in a ∆fabTS m background. Transcription of fabTS m was dramatically elevated in cells grown at pH values of 5 and 7 in the ∆ fabTS m background. Transcription of fabTS m was also elevated in a strain carrying a deletion for the carbon catabolite repressor CcpA. Purified FabTS m and CcpA bound to the promoter regions of fabTS m and fabM. Hence, the data indicate that FabTS m acts as a repressor of fabM and fabTS m itself and the global regulator CcpA acts as a repressor for fabTS m .
Collapse
Affiliation(s)
- R C Faustoferri
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | |
Collapse
|
22
|
Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels. J Bacteriol 2014; 196:2166-77. [PMID: 24682329 DOI: 10.1128/jb.01542-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
NADH oxidase (Nox, encoded by nox) is a flavin-containing enzyme used by the oral pathogen Streptococcus mutans to reduce diatomic oxygen to water while oxidizing NADH to NAD(+). The critical nature of Nox is 2-fold: it serves to regenerate NAD(+), a carbon cycle metabolite, and to reduce intracellular oxygen, preventing formation of destructive reactive oxygen species (ROS). As oxygen and NAD(+) have been shown to modulate the activity of the global transcription factors Spx and Rex, respectively, Nox is potentially poised at a critical junction of two stress regulons. In this study, microarray data showed that either addition of oxygen or loss of nox resulted in altered expression of genes involved in energy metabolism and transport and the upregulation of genes encoding ROS-metabolizing enzymes. Loss of nox also resulted in upregulation of several genes encoding transcription factors and signaling molecules, including the redox-sensing regulator gene rex. Characterization of the nox promoter revealed that nox was regulated by oxygen, through SpxA, and by Rex. These data suggest a regulatory loop in which the roles of nox in reduction of oxygen and regeneration of NAD(+) affect the activity levels of Spx and Rex, respectively, and their regulons, which control several genes, including nox, crucial to growth of S. mutans under conditions of oxidative stress.
Collapse
|
23
|
Malic enzyme and malolactic enzyme pathways are functionally linked but independently regulated in Lactobacillus casei BL23. Appl Environ Microbiol 2013; 79:5509-18. [PMID: 23835171 DOI: 10.1128/aem.01177-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus casei is the only lactic acid bacterium in which two pathways for l-malate degradation have been described: the malolactic enzyme (MLE) and the malic enzyme (ME) pathways. Whereas the ME pathway enables L. casei to grow on l-malate, MLE does not support growth. The mle gene cluster consists of three genes encoding MLE (mleS), the putative l-malate transporter MleT, and the putative regulator MleR. The mae gene cluster consists of four genes encoding ME (maeE), the putative transporter MaeP, and the two-component system MaeKR. Since both pathways compete for the same substrate, we sought to determine whether they are coordinately regulated and their role in l-malate utilization as a carbon source. Transcriptional analyses revealed that the mle and mae genes are independently regulated and showed that MleR acts as an activator and requires internalization of l-malate to induce the expression of mle genes. Notwithstanding, both l-malate transporters were required for maximal l-malate uptake, although only an mleT mutation caused a growth defect on l-malate, indicating its crucial role in l-malate metabolism. However, inactivation of MLE resulted in higher growth rates and higher final optical densities on l-malate. The limited growth on l-malate of the wild-type strain was correlated to a rapid degradation of the available l-malate to l-lactate, which cannot be further metabolized. Taken together, our results indicate that L. casei l-malate metabolism is not optimized for utilization of l-malate as a carbon source but for deacidification of the medium by conversion of l-malate into l-lactate via MLE.
Collapse
|
24
|
The Streptococcus mutans aminotransferase encoded by ilvE is regulated by CodY and CcpA. J Bacteriol 2013; 195:3552-62. [PMID: 23749978 DOI: 10.1128/jb.00394-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aminotransferase IlvE was implicated in the acid tolerance response of Streptococcus mutans when a mutation in its gene resulted in an acid-sensitive phenotype (B. Santiago, M. MacGilvray, R. C. Faustoferri, and R. G. Quivey, Jr., J. Bacteriol. 194:2010-2019, 2012). The phenotype suggested that amino acid metabolism is important for acid adaptation, as turnover of branched-chain amino acids (bcAAs) could provide important signals to modulate expression of genes involved in the adaptive process. Previous studies have demonstrated that ilvE is regulated in response to the external pH, though the mechanism is not yet established. CodY and CcpA have been shown to regulate expression of branched-chain amino acid biosynthetic genes, suggesting that the ability to sense carbon flow and the nutritional state of the cell also plays a role in the regulation of ilvE. Electrophoretic mobility shift assays using the ilvE promoter and a purified recombinant CodY protein provided evidence of the physical interaction between CodY and ilvE. In order to elucidate the signals that contribute to ilvE regulation, cat reporter fusions were utilized. Transcriptional assays demonstrated that bcAAs are signaling molecules involved in the repression of ilvE through regulation of CodY. In a codY deletion background, ilvE transcription was elevated, indicating that CodY acts a repressor of ilvE transcription. Conversely, in a ccpA deletion background, ilvE transcription was reduced, showing that CcpA activated ilvE transcription. The effects of both regulators were directly relevant for transcription of ilvE under conditions of acid stress, demonstrating that both regulators play a role in acid adaptation.
Collapse
|
25
|
Klein MI, Xiao J, Lu B, Delahunty CM, Yates JR, Koo H. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS One 2012; 7:e45795. [PMID: 23049864 PMCID: PMC3458072 DOI: 10.1371/journal.pone.0045795] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 08/24/2012] [Indexed: 01/15/2023] Open
Abstract
Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other organisms. Our data provide insights about how S. mutans optimizes its metabolism and adapts/survives within the mixed-species community in response to a dynamically changing environment. This reflects the intricate physiological processes linked to expression of virulence by this bacterium within complex biofilms.
Collapse
Affiliation(s)
- Marlise I. Klein
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| | - Jin Xiao
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, People’s Republic of China
| | - Bingwen Lu
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Claire M. Delahunty
- The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- The Scripps Research Institute, La Jolla, California, United States of America
| | - Hyun Koo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail: (MIK); (HK)
| |
Collapse
|
26
|
Liu YL, Nascimento M, Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci 2012; 4:135-40. [PMID: 22996271 PMCID: PMC3465751 DOI: 10.1038/ijos.2012.54] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease.
Collapse
Affiliation(s)
- Ya-Ling Liu
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
27
|
Price CE, Zeyniyev A, Kuipers OP, Kok J. From meadows to milk to mucosa - adaptation of Streptococcus and Lactococcus species to their nutritional environments. FEMS Microbiol Rev 2012; 36:949-71. [PMID: 22212109 DOI: 10.1111/j.1574-6976.2011.00323.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/20/2023] Open
Abstract
Lactic acid bacteria (LAB) are indigenous to food-related habitats as well as associated with the mucosal surfaces of animals. The LAB family Streptococcaceae consists of the genera Lactococcus and Streptococcus. Members of the family include the industrially important species Lactococcus lactis, which has a long history safe use in the fermentative food industry, and the disease-causing streptococci Streptococcus pneumoniae and Streptococcus pyogenes. The central metabolic pathways of the Streptococcaceae family have been extensively studied because of their relevance in the industrial use of some species, as well as their influence on virulence of others. Recent developments in high-throughput proteomic and DNA-microarray techniques, in in vivo NMR studies, and importantly in whole-genome sequencing have resulted in new insights into the metabolism of the Streptococcaceae family. The development of cost-effective high-throughput sequencing has resulted in the publication of numerous whole-genome sequences of lactococcal and streptococcal species. Comparative genomic analysis of these closely related but environmentally diverse species provides insight into the evolution of this family of LAB and shows that the relatively small genomes of members of the Streptococcaceae family have been largely shaped by the nutritionally rich environments they inhabit.
Collapse
Affiliation(s)
- Claire E Price
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands; Biochemistry Department, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands; Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Xue X, Li J, Wang W, Sztajer H, Wagner-Döbler I. The global impact of the delta subunit RpoE of the RNA polymerase on the proteome of Streptococcus mutans. Microbiology (Reading) 2012; 158:191-206. [DOI: 10.1099/mic.0.047936-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xiaoli Xue
- Research Group Microbial Communication, Division of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Jinshan Li
- Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, 100101 Beijing, PR China
- Institute of Bioprocess and Biosystems Engineering, Technical University Hamburg-Harburg, Denickestr. 15, D-21071 Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Technical University Hamburg-Harburg, Denickestr. 15, D-21071 Hamburg, Germany
| | - Helena Sztajer
- Research Group Microbial Communication, Division of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Irene Wagner-Döbler
- Research Group Microbial Communication, Division of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| |
Collapse
|
29
|
Wang JC, Zhang WY, Zhong Z, Wei AB, Bao QH, Zhang Y, Sun TS, Postnikoff A, Meng H, Zhang HP. Transcriptome analysis of probiotic Lactobacillus casei Zhang during fermentation in soymilk. ACTA ACUST UNITED AC 2012; 39:191-206. [DOI: 10.1007/s10295-011-1015-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/25/2011] [Indexed: 12/01/2022]
Abstract
Abstract
Lactobacillus casei Zhang is a widely recognized probiotic bacterium, which is being commercially used in China. To study the gene expression dynamics of L. casei Zhang during fermentation in soymilk, a whole genome microarray was used to screen for differentially expressed genes when grown to the lag phase, the late logarithmic phase, and the stationary phase. Comparisons of different transcripts next to each other revealed 162 and 63 significantly induced genes in the late logarithmic phase and stationary phase, of which the expression was at least threefold up-regulated and down-regulated, respectively. Approximately 38.4% of the up-regulated genes were associated with amino acid transport and metabolism notably for histidine and lysine biosynthesis, followed by genes/gene clusters involved in carbohydrate transport and metabolism, lipid transport and metabolism, and inorganic ion transport and metabolism. The analysis results suggest a complex stimulatory effect of soymilk-based ecosystem on the L. casei Zhang growth. On the other hand, it provides the very first insight into the molecular mechanism of L. casei strain for how it will adapt to the protein-rich environment.
Collapse
Affiliation(s)
- Ji-Cheng Wang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Wen-Yi Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Zhi Zhong
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Ai-Bin Wei
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Qiu-Hua Bao
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Yong Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Tian-Song Sun
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - Andrew Postnikoff
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| | - He Meng
- grid.16821.3c 0000000403688293 School of Agriculture and Biology Shanghai Jiao Tong University 200240 Shanghai China
| | - He-Ping Zhang
- grid.411638.9 0000000417569607 Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, School of Food Science and Engineering Inner Mongolia Agricultural University 010018 Huhhot China
| |
Collapse
|
30
|
Peterson SN, Snesrud E, Schork NJ, Bretz WA. Dental caries pathogenicity: a genomic and metagenomic perspective. Int Dent J 2011; 61 Suppl 1:11-22. [PMID: 21726221 DOI: 10.1111/j.1875-595x.2011.00025.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In this review we address the subject of dental caries pathogenicity from a genomic and metagenomic perspective. The application of genomic technologies is certain to yield novel insights into the relationship between the bacterial flora, dental health and disease. Three primary attributes of bacterial species are thought to have direct impact on caries development, these include: adherence on tooth surfaces (biofilm formation), acid production and acid tolerance. Attempts to define the specific aetiological agents of dental caries have proven to be elusive, supporting the notion that caries aetiology is perhaps complex and multi-faceted. The recently introduced Human Microbiome Project (HMP) that endeavors to characterise the micro-organisms living in and on the human body is likely to shed new light on these questions and improve our understanding of polymicrobial disease, microbial ecology in the oral cavity and provide new avenues for therapeutic and molecular diagnostics developments.
Collapse
|
31
|
Kajfasz JK, Abranches J, Lemos JA. Transcriptome analysis reveals that ClpXP proteolysis controls key virulence properties of Streptococcus mutans. MICROBIOLOGY-SGM 2011; 157:2880-2890. [PMID: 21816882 DOI: 10.1099/mic.0.052407-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ClpXP proteolytic complex is critical for maintaining cellular homeostasis, as well as expression of virulence properties. However, with the exception of the Spx global regulator, the molecular mechanisms by which the ClpXP complex exerts its influence in Streptococcus mutans are not well understood. Here, microarray analysis was used to provide novel insights into the scope of ClpXP proteolysis in S. mutans. In a ΔclpP strain, 288 genes showed significant changes in relative transcript amounts (P≤0.001, twofold cut-off) as compared with the parent. Similarly, 242 genes were differentially expressed by a ΔclpX strain, 113 (47 %) of which also appeared in the ΔclpP microarrays. Several genes associated with cell growth were downregulated in both mutants, consistent with the slow-growth phenotype of the Δclp strains. Among the upregulated genes were those encoding enzymes required for the biosynthesis of intracellular polysaccharides (glg genes) and malolactic fermentation (mle genes). Enhanced expression of glg and mle genes in ΔclpP and ΔclpX strains correlated with increased storage of intracellular polysaccharide and enhanced malolactic fermentation activity, respectively. Expression of several genes known or predicted to be involved in competence and mutacin production was downregulated in the Δclp strains. Follow-up transformation efficiency and deferred antagonism assays validated the microarray data by showing that competence and mutacin production were dramatically impaired in the Δclp strains. Collectively, our results reveal the broad scope of ClpXP regulation in S. mutans homeostasis and identify several virulence-related traits that are influenced by ClpXP proteolysis.
Collapse
Affiliation(s)
- Jessica K Kajfasz
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacqueline Abranches
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - José A Lemos
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
32
|
Nicolas GG, Lavoie MC. [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol 2011; 57:1-20. [PMID: 21217792 DOI: 10.1139/w10-095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The human oral microbial biota represents a highly diverse biofilm. Twenty-five species of oral streptococci inhabit the human oral cavity and represent about 20 % of the total oral bacteria. Taxonomy of these bacteria is complex and remains provisional. Oral streptococci encompass friends and foes bacteria. Each species has developed specific properties for colonizing the different oral sites subjected to constantly changing conditions, for competing against competitors, and for resisting external agressions (host immune system, physico-chemical shocks, and mechanical frictions). Imbalance in the indigenous microbial biota generates oral diseases, and under proper conditions, commensal streptococci can switch to opportunistic pathogens that initiate disease in and damage to the host. The group of "mutans streptococci" was described as the most important bacteria related to the formation of dental caries. Streptococcus mutans, although naturally present among the human oral microbiota, is the microbial species most strongly associated with carious lesions. This minireview describes the oral streptococci ecology and their biofilm life style by focusing on the mutans group, mainly S. mutans. Virulence traits, interactions in the biofilm, and influence of S. mutans in dental caries etiology are discussed.
Collapse
Affiliation(s)
- Guillaume G Nicolas
- Département de biochimie microbiologie et bioinformatique, Université Laval, Québec, Canada.
| | | |
Collapse
|
33
|
Liu J, Wu C, Huang IH, Merritt J, Qi F. Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. MICROBIOLOGY-SGM 2011; 157:2433-2444. [PMID: 21565931 DOI: 10.1099/mic.0.048314-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the oral biofilm, the 'mitis' streptococci are among the first group of organisms to colonize the tooth surface. Their proliferation is thought to be an important factor required for antagonizing the growth of cariogenic species such as Streptococcus mutans. In this study, we used a three-species mixed culture to demonstrate that another ubiquitous early colonizing species, Veillonella parvula, can greatly affect the outcome of the competition between a pair of antagonists such as S. mutans and Streptococcus gordonii. Transcriptome analysis further revealed that S. mutans responds differentially to its friend (V. parvula) and foe (S. gordonii). In the mixed culture with S. gordonii, all but one of the S. mutans sugar uptake and metabolic genes were downregulated, while genes for alternative energy source utilization and H₂O₂ tolerance were upregulated, resulting in a slower but persistent growth. In contrast, when cultured with V. parvula, S. mutans grew equally well or better than in monoculture and exhibited relatively few changes within its transcriptome. When V. parvula was introduced into the mixed culture of S. mutans and S. gordonii, it rescued the growth inhibition of S. mutans. In this three-species environment, S. mutans increased the expression of genes required for the uptake and metabolism of minor sugars, while genes required for oxidative stress tolerance were downregulated. We conclude that the major factors that affect the competition between S. mutans and S. gordonii are carbohydrate utilization and H₂O₂ resistance. The presence of V. parvula in the tri-species culture mitigates these two major factors and allows S. mutans to proliferate, despite the presence of S. gordonii.
Collapse
Affiliation(s)
- Jinman Liu
- College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chenggang Wu
- College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - I-Hsiu Huang
- College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin Merritt
- College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Fengxia Qi
- College of Dentistry, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
34
|
Abstract
Diverse mechanisms for pH sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments with a pH of below 3 or above 11. Here, we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH homeostasis. These insights may help us to target certain pathogens more accurately and to harness the capacities of environmental bacteria more efficiently.
Collapse
Affiliation(s)
- Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, 1 Gustave L. Levy Place, New York, NY 10029, USA; Tel. 212-241-7280; Fax. 212-996-7214
| | - George Sachs
- Departments of Physiology and Medicine, David Geffen School of Medicine at UCLA, 405 Hilgard Ave., Los Angeles, California 90024, USA Tel. 310-268-3923, Fax 310-312-9478
| | - Etana Padan
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel, Tel. 972 2 6585094, Fax 972 2 658947
| |
Collapse
|
35
|
Nguyen PTM, Marquis RE. Antimicrobial actions of α-mangostin against oral streptococci. Can J Microbiol 2011; 57:217-25. [PMID: 21358763 DOI: 10.1139/w10-122] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of dental caries is making it more of a major world health problem. Caries is the direct result of acid production by cariogenic oral bacteria, especially Streptococcus mutans. New and better antimicrobial agents active against cariogenic bacteria are badly needed, especially natural agents derived directly from plants. We have evaluated the inhibitory actions of α-mangostin, a xanthone purified from ethanolic extracts of the tropical plant Garcinia mangostana L., by repeated silica gel chromatography. α-Mangostin was found to be a potent inhibitor of acid production by S. mutans UA159, active against membrane enzymes, including the F(H+)-ATPase and the phosphoenolpyruvate - sugar phosphotransferase system. α-Mangostin also inhibited the glycolytic enzymes aldolase, glyceraldehyde-3-phosphate dehydrogenase, and lactic dehydrogenase. Glycolysis by intact cells in suspensions or biofilms was inhibited by α-mangostin at concentrations of 12 and 120 µmol·L⁻¹, respectively, in a pH-dependent manner, with greater potency at lower pH values. Other targets for inhibition by α-mangostin included (i) malolactic fermentation, involved in alkali production from malate, and (ii) NADH oxidase, the major respiratory enzyme for S. mutans. The overall conclusion is that α-mangostin is a multitarget inhibitor of mutans streptococci and may be useful as an anticaries agent.
Collapse
Affiliation(s)
- Phuong T M Nguyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology, Hanoi, Vietnam
| | | |
Collapse
|
36
|
Martinez AR, Abranches J, Kajfasz JK, Lemos JA. Characterization of the Streptococcus sobrinus acid-stress response by interspecies microarrays and proteomics. Mol Oral Microbiol 2011; 25:331-42. [PMID: 20883222 DOI: 10.1111/j.2041-1014.2010.00580.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Streptococcus mutans and Streptococcus sobrinus are considered the primary organisms responsible for human dental caries. The ability to generate acids and to adapt to low pH conditions is directly associated with the cariogenic potential of these bacteria. To survive acidic conditions, both species have been shown to mount an acid-tolerance response (ATR). However, previous characterization of the S. sobrinus ATR identified critical differences in the mechanisms of acid adaptation between S. mutans and S. sobrinus. Here, interspecies microarray and proteomic approaches were used to identify novel, previously unrecognized genes and pathways that participate in the S. sobrinus acid-stress response. The results revealed that, among other things, metabolic alterations that enhance energy generation and upregulation of the malolactic fermentation enzyme activity constitute important acid-resistance properties in S. sobrinus. Some of these acid adaptive traits are shared by S. mutans and might be considered optimal targets for therapeutic treatments designed to control dental caries.
Collapse
Affiliation(s)
- A R Martinez
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
37
|
Sheng J, Baldeck JD, Nguyen PTM, Quivey RG, Marquis RE. Alkali production associated with malolactic fermentation by oral streptococci and protection against acid, oxidative, or starvation damage. Can J Microbiol 2010; 56:539-47. [PMID: 20651853 DOI: 10.1139/w10-039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alkali production by oral streptococci is considered important for dental plaque ecology and caries moderation. Recently, malolactic fermentation (MLF) was identified as a major system for alkali production by oral streptococci, including Streptococcus mutans. Our major objectives in the work described in this paper were to further define the physiology and genetics of MLF of oral streptococci and its roles in protection against metabolic stress damage. L-Malic acid was rapidly fermented to L-lactic acid and CO(2) by induced cells of wild-type S. mutans, but not by deletion mutants for mleS (malolactic enzyme) or mleP (malate permease). Mutants for mleR (the contiguous regulator gene) had intermediate capacities for MLF. Loss of capacity to catalyze MLF resulted in loss of capacity for protection against lethal acidification. MLF was also found to be protective against oxidative and starvation damage. The capacity of S. mutans to produce alkali from malate was greater than its capacity to produce acid from glycolysis at low pH values of 4 or 5. MLF acted additively with the arginine deiminase system for alkali production by Streptococcus sanguinis, but not with urease of Streptococcus salivarius. Malolactic fermentation is clearly a major process for alkali generation by oral streptococci and for protection against environmental stresses.
Collapse
Affiliation(s)
- Jiangyun Sheng
- Department of Microbiology and Immunology, Center for Oral Biology, University of Rochester Medical Center, NY 14642-8672, USA
| | | | | | | | | |
Collapse
|
38
|
The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation. J Bacteriol 2010; 192:5081-92. [PMID: 20675470 DOI: 10.1128/jb.00653-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The delta subunit of RNA polymerase, RpoE, is widespread in low-G+C Gram-positive bacteria and is thought to play a role in enhancing transcriptional specificity by blocking RNA polymerase binding at weak promoter sites and stimulating RNA synthesis by accelerating core enzyme recycling. Despite the well-studied biochemical properties of RpoE, a role for this protein in vivo has not been defined in depth. In this study, we show that inactivation of rpoE in the human dental caries pathogen Streptococcus mutans causes impaired growth and loss of important virulence traits, including biofilm formation, resistance to antibiotics, and tolerance to environmental stresses. Complementation of the mutant with rpoE expressed in trans restored its phenotype to wild type. The luciferase fusion reporter showed that rpoE was highly transcribed throughout growth and that acid and hydrogen peroxide stresses repressed rpoE expression. Transcriptome profiling of wild-type and ΔrpoE cells in the exponential and early stationary phase of growth, under acid and hydrogen peroxide stress and under both stresses combined, revealed that genes involved in histidine synthesis, malolactic fermentation, biofilm formation, and antibiotic resistance were downregulated in the ΔrpoE mutant under all conditions. Moreover, the loss of RpoE resulted in dramatic changes in transport and metabolism of carbohydrates and amino acids. Interestingly, differential expression, mostly upregulation, of 330 noncoding regions was found. In conclusion, this study demonstrates that RpoE is an important global modulator of gene expression in S. mutans which is required for optimal growth and environmental adaptation.
Collapse
|
39
|
Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J Bacteriol 2010; 192:2445-58. [PMID: 20207759 DOI: 10.1128/jb.01618-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study investigated features of the acid tolerance response (ATR) in Lactobacillus casei ATCC 334. To optimize ATR induction, cells were acid adapted for 10 or 20 min at different pH values (range, 3.0 to 5.0) and then acid challenged at pH 2.0. Adaptation over a broad range of pHs improved acid tolerance, but the highest survival was noted in cells acid adapted for 10 or 20 min at pH 4.5. Analysis of cytoplasmic membrane fatty acids (CMFAs) in acid-adapted cells showed that they had significantly (P < 0.05) higher total percentages of saturated and cyclopropane fatty acids than did control cells. Specifically, large increases in the percentages of C(14:0), C(16:1n(9)), C(16:0), and C(19:0(11c)) were noted in the CMFAs of acid-adapted and acid-adapted, acid-challenged cells, while C(18:1n(9)) and C(18:1n(11)) showed the greatest decrease. Comparison of the transcriptome from control cells (grown at pH 6.0) against that from cells acid adapted for 20 min at pH 4.5 indicated that acid adaption invoked a stringent-type response that was accompanied by other functions which likely helped these cells resist acid damage, including malolactic fermentation and intracellular accumulation of His. Validation of microarray data was provided by experiments that showed that L. casei survival at pH 2.5 was improved at least 100-fold by chemical induction of the stringent response or by the addition of 30 mM malate or 30 mM histidine to the acid challenge medium. To our knowledge, this is the first report that intracellular histidine accumulation may be involved in bacterial acid resistance.
Collapse
|
40
|
Abstract
Since its discovery in 1924 by J Clarke, Streptococcus mutans has been the focus of rigorous research efforts due to its involvement in caries initiation and progression. Its ability to ferment a range of dietary carbohydrates can rapidly drop the external environmental pH, thereby making dental plaque inhabitable to many competing species and can ultimately lead to tooth decay. Acid production by this oral pathogen would prove suicidal if not for its remarkable ability to withstand the acid onslaught by utilizing a wide variety of highly evolved acid-tolerance mechanisms. The elucidation of these mechanisms will be discussed, serving as the focus of this review.
Collapse
Affiliation(s)
- Robert Matsui
- Room 449A Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada, Tel.: +1 416 979 4917 ext. 4592, Fax: +1 416 978 4936
| | - Dennis Cvitkovitch
- Room 449A Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON, M5G 1G6, Canada, Tel.: +1 416 979 4917 ext. 4592, Fax: +1 416 978 4936
| |
Collapse
|
41
|
Lemme A, Sztajer H, Wagner-Döbler I. Characterization of mleR, a positive regulator of malolactic fermentation and part of the acid tolerance response in Streptococcus mutans. BMC Microbiol 2010; 10:58. [PMID: 20178568 PMCID: PMC2834670 DOI: 10.1186/1471-2180-10-58] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/23/2010] [Indexed: 11/21/2022] Open
Abstract
Background One of the key virulence determinants of Streptococcus mutans, the primary etiological agent of human dental caries, is its strong acid tolerance. The acid tolerance response (ATR) of S. mutans comprises several mechanisms that are induced at low pH and allow the cells to quickly adapt to a lethal pH environment. Malolactic fermentation (MLF) converts L-malate to L-lactate and carbon dioxide and furthermore regenerates ATP, which is used to translocate protons across the membrane. Thus, MLF may contribute to the aciduricity of S. mutans but has not been associated with the ATR so far. Results Here we show that the malolactic fermentation (mle) genes are under the control of acid inducible promoters which are induced within the first 30 minutes upon acid shock in the absence of malate. Thus, MLF is part of the early acid tolerance response of S. mutans. However, acidic conditions, the presence of the regulator MleR and L-malate were required to achieve maximal expression of all genes, including mleR itself. Deletion of mleR resulted in a decreased capacity to carry out MLF and impaired survival at lethal pH in the presence of L-malate. Gel retardation assays indicated the presence of multiple binding sites for MleR. Differences in the retardation patterns occurred in the presence of L-malate, thus demonstrating its role as co-inducer for transcriptional regulation. Conclusion This study shows that the MLF gene cluster is part of the early acid tolerance response in S. mutans and is induced by both low pH and L-malate.
Collapse
Affiliation(s)
- André Lemme
- Helmholtz-Centre for Infection Research, Division of Cell Biology, Braunschweig, Germany.
| | | | | |
Collapse
|
42
|
Role of GlnR in acid-mediated repression of genes encoding proteins involved in glutamine and glutamate metabolism in Streptococcus mutans. Appl Environ Microbiol 2010; 76:2478-86. [PMID: 20173059 DOI: 10.1128/aem.02622-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The acid tolerance response (ATR) is one of the major virulence traits of Streptococcus mutans. In this study, the role of GlnR in acid-mediated gene repression that affects the adaptive ATR in S. mutans was investigated. Using a whole-genome microarray and in silico analyses, we demonstrated that GlnR and the GlnR box (ATGTNAN(7)TNACAT) were involved in the transcriptional repression of clusters of genes encoding proteins involved in glutamine and glutamate metabolism under acidic challenge. Reverse transcription-PCR (RT-PCR) analysis revealed that the coordinated regulation of the GlnR regulon occurred 5 min after acid treatment and that prolonged acid exposure (30 min) resulted in further reduction in expression. A lower level but consistent reduction in response to acidic pH was also observed in chemostat-grown cells, confirming the negative regulation of GlnR. The repression by GlnR through the GlnR box in response to acidic pH was further confirmed in the citBZC operon, containing genes encoding the first three enzymes in the glutamine/glutamate biosynthesis pathway. The survival rate of the GlnR-deficient mutant at pH 2.8 was more than 10-fold lower than that in the wild-type strain 45 min after acid treatment, suggesting that the GlnR regulon participates in S. mutans ATR. It is hypothesized that downregulation of the synthesis of the amino acid precursors in response to acid challenge would promote citrate metabolism to pyruvate, with the consumption of H(+) and potential ATP synthesis. Such regulation will ensure an optimal acid adaption in S. mutans.
Collapse
|
43
|
Lemos JA, Burne RA. A model of efficiency: stress tolerance by Streptococcus mutans. MICROBIOLOGY-SGM 2008; 154:3247-3255. [PMID: 18957579 DOI: 10.1099/mic.0.2008/023770-0] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The complete genome sequence of Streptococcus mutans, a bacterial pathogen commonly associated with human dental caries, was published in 2002. The streamlined genome (2.03 Mb) revealed an organism that is well adapted to its obligately host-associated existence in multispecies biofilms on tooth surfaces: a dynamic environment that undergoes rapid and substantial fluctuations. However, S. mutans lacks many of the sensing systems and alternative sigma factors that bacteria often use to coordinate gene expression in response to stress and changes in their environment. Over the past 7 years, functional genomics and proteomics have enhanced our understanding of how S. mutans has integrated the stress regulon and global transcriptional regulators to coordinate responses to environmental fluctuations with modulation of virulence in a way that ensures persistence in the oral cavity and capitalizes on conditions that are favourable for the development of dental caries. Here, we highlight advances in dissection of the stress regulon of S. mutans and its intimate interrelationship with pathogenesis.
Collapse
Affiliation(s)
- José A Lemos
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|