1
|
Shikov AE, Savina IA, Nizhnikov AA, Antonets KS. Recombination in Bacterial Genomes: Evolutionary Trends. Toxins (Basel) 2023; 15:568. [PMID: 37755994 PMCID: PMC10534446 DOI: 10.3390/toxins15090568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Bacterial organisms have undergone homologous recombination (HR) and horizontal gene transfer (HGT) multiple times during their history. These processes could increase fitness to new environments, cause specialization, the emergence of new species, and changes in virulence. Therefore, comprehensive knowledge of the impact and intensity of genetic exchanges and the location of recombination hotspots on the genome is necessary for understanding the dynamics of adaptation to various conditions. To this end, we aimed to characterize the functional impact and genomic context of computationally detected recombination events by analyzing genomic studies of any bacterial species, for which events have been detected in the last 30 years. Genomic loci where the transfer of DNA was detected pertained to mobile genetic elements (MGEs) housing genes that code for proteins engaged in distinct cellular processes, such as secretion systems, toxins, infection effectors, biosynthesis enzymes, etc. We found that all inferences fall into three main lifestyle categories, namely, ecological diversification, pathogenesis, and symbiosis. The latter primarily exhibits ancestral events, thus, possibly indicating that adaptation appears to be governed by similar recombination-dependent mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.E.S.); (I.A.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Oluwadare M, Lee MD, Grim CJ, Lipp EK, Cheng Y, Maurer JJ. The Role of the Salmonella spvB IncF Plasmid and Its Resident Entry Exclusion Gene traS on Plasmid Exclusion. Front Microbiol 2020; 11:949. [PMID: 32499773 PMCID: PMC7242723 DOI: 10.3389/fmicb.2020.00949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/21/2020] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica cause significant illnesses worldwide. There has been a marked increase in resistance to fluoroquinolones and β-lactams/cephalosporins, antibiotics commonly used to treat salmonellosis. However, S. enterica serovars vary in their resistance to these and other antibiotics. The systemic virulence of some Salmonella serovars is due to a low copy number, IncF plasmid (65-100 kb) that contains the ADP-ribosylating toxin, SpvB. This virulence plasmid is present in only nine Salmonella serovars. It is possible that the spvB-virulence plasmid excludes other plasmids and may explain why antibiotic resistance is slow to develop in certain Salmonella serovars such as S. Enteritidis. The distribution of plasmid entry exclusion genes traS/traT and traY/excA are variable in Salmonella IncF and IncI plasmids, respectively and may account for differences in emergent antimicrobial resistance for some Salmonella serovars. The goal of this study is to determine the contribution of the Salmonella spvB-virulence plasmid in F-plasmid exclusion. From conjugation experiments, S. Typhimurium exhibited lower conjugation frequency with incFI and incFII plasmids when the spvB-virulence plasmid is present. Furthermore, introduction of cloned incFI traS into a "plasmidless" S. Typhimurium LT2 strain and Escherichia coli DH5α excluded incFI plasmid. However, deletion of the virulence plasmid traS did not affect plasmid exclusion significantly compared to a spvB control deletion. In addition, differences in F plasmid conjugation in natural Salmonella isolates did not correlate with IncF or SpvB-virulence plasmid genotype. There appear to be other plasmid or chromosomal genes at play in plasmid exclusion that may be responsible for the slow development of antibiotic resistance in certain serovars.
Collapse
Affiliation(s)
- Mopelola Oluwadare
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Margie D. Lee
- Department of Population Health, University of Georgia, Athens, GA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, United States
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Ying Cheng
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - John J. Maurer
- Department of Population Health, University of Georgia, Athens, GA, United States
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Chen CL, Su LH, Janapatla RP, Lin CY, Chiu CH. Genetic analysis of virulence and antimicrobial-resistant plasmid pOU7519 in Salmonella enterica serovar Choleraesuis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 53:49-59. [PMID: 29273286 DOI: 10.1016/j.jmii.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/01/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Zoonotic Salmonella enterica serovar Choleraesuis (S. Choleraesuis), causing paratyphoid in pigs and bacteremia in humans, commonly carry a virulence plasmid and sometimes a separate antimicrobial-resistant plasmid or merging together. This study aimed to analyze the likely mechanism of how to form a virulence-resistance chimera of plasmid in S. Choleraesuis. METHODS Whole plasmid sequence of pOU7519 in S. Choleraesuis strain OU7519 was determined using shotgun cloning and sequencing. Sequence annotation and comparison were performed to determine the sequence responsible for the formation of a chimeric virulence-resistance pOU7519. Other chimeric plasmids among the collected strains of S. Choleraesuis were also confirmed. RESULTS The sequence of pOU719, 127,212 bp long, was identified to be a chimera of the virulence plasmid pSCV50 and a multidrug-resistant plasmid pSC138 that have been found in S. Choleraesuis strain SC-B67. The pOU7519 is a conjugative plasmid carrying various mobile DNAs, including prophages, insertion sequences, integrons and transposons, especially a Tn6088-like transposon. By dissecting the junction site of the pSCV50-pSC138 chimera in pOU7519, defective sequences at integrase gene scv50 (int) and its attachment site (att) were found, and that likely resulted in a stable chimera plasmid due to the failure of excision from the pSCV50-pSC138 chimera. Similar structure of chimera was also found in other large plasmids. CONCLUSION The deletion of both the int and att sties could likely block chimera excision, and result in an irreversible, stable pSCV50-pSC138 chimera. The emergence of conjugative virulence and antimicrobial-resistant plasmids in S. Choleraesuis could pose a threat to health public.
Collapse
Affiliation(s)
- Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lin-Hui Su
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Laboratory Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | - Chun-Yen Lin
- Division of Hepatology, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Mambu J, Virlogeux-Payant I, Holbert S, Grépinet O, Velge P, Wiedemann A. An Updated View on the Rck Invasin of Salmonella: Still Much to Discover. Front Cell Infect Microbiol 2017; 7:500. [PMID: 29276700 PMCID: PMC5727353 DOI: 10.3389/fcimb.2017.00500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Salmonella is a facultative intracellular Gram-negative bacterium, responsible for a wide range of food- and water-borne diseases ranging from gastroenteritis to typhoid fever depending on hosts and serotypes. Salmonella thus represents a major threat to public health. A key step in Salmonella pathogenesis is the invasion of phagocytic and non-phagocytic host cells. To trigger its own internalization into non-phagocytic cells, Salmonella has developed different mechanisms, involving several invasion factors. For decades, it was accepted that Salmonella could only enter cells through a type three secretion system, called T3SS-1. Recent research has shown that this bacterium expresses outer membrane proteins, such as the Rck protein, which is able to induce Salmonella entry mechanism. Rck mimics natural host cell ligands and triggers engulfment of the bacterium by interacting with the epidermal growth factor receptor. Salmonella is thus able to use multiple entry pathways during the Salmonella infection process. However, it is unclear how and when Salmonella exploits the T3SS-1 and Rck entry mechanisms. As a series of reviews have focused on the T3SS-1, this review aims to describe the current knowledge and the limitations of our understanding of the Rck outer membrane protein. The regulatory cascade which controls Rck expression and the molecular mechanisms underlying Rck-mediated invasion into cells are summarized. The potential role of Rck-mediated invasion in Salmonella pathogenesis and the intracellular behavior of the bacteria following a Salmonella Rck-dependent entry are discussed.
Collapse
Affiliation(s)
- Julien Mambu
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Isabelle Virlogeux-Payant
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Sébastien Holbert
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Olivier Grépinet
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Philippe Velge
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| | - Agnès Wiedemann
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, Nouzilly, France.,Université François Rabelais, UMR1282 Infectiologie et Santé Publique, Tours, France
| |
Collapse
|
5
|
Persson S, Jacobsen T, Olsen JE, Olsen KEP, Hansen F. A new real-time PCR method for the identification of Salmonella Dublin. J Appl Microbiol 2012; 113:615-21. [PMID: 22747740 DOI: 10.1111/j.1365-2672.2012.05378.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 06/13/2012] [Accepted: 06/20/2012] [Indexed: 11/28/2022]
Abstract
AIMS Development of a real-time PCR method for the specific detection of Salmonella Dublin. METHODS AND RESULTS The method was directed towards a Salm. Dublin-specific sequence of the vagC gene on the Salmonella virulence plasmid (pSDV) and towards Salmonella genus-specific sequence of the invA gene, serving as an internal amplification control. The method showed 100% inclusivity and exclusivity when tested on a strain collection containing 50 serotyped S . Dublin strains, 20 strains of other Salmonella serotypes and 10 non- Salmonella strains. The method also showed 100% inclusivity and 99% exclusivity in a collaborative study comprising eight laboratories, where each laboratory received ten different S . Dublin strains and 10 other Salmonella serotypes. CONCLUSIONS The method showed excellent performance both when validated in the laboratory and in the collaborative study. SIGNIFICANCE AND IMPACT OF THE STUDY Application of the present method in food control, for example at slaughterhouses, can improve the contamination control of this veterinary and clinically important Salmonella serotype.
Collapse
Affiliation(s)
- S Persson
- Department of Microbiological Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
6
|
Sequencing of plasmids from a multi-antimicrobial resistant Salmonella enterica serovar Dublin strain. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Abstract
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
Collapse
|
8
|
Acquisition of antimicrobial resistance determinants by virulence plasmids specific for nontyphoid serovars of Salmonella enterica. ACTA ACUST UNITED AC 2011. [DOI: 10.1097/mrm.0b013e328346d87d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Bergamini F, Iori A, Massi P, Pongolini S. Multilocus variable-number of tandem-repeats analysis of Salmonella enterica serotype Gallinarum and comparison with pulsed-field gel electrophoresis genotyping. Vet Microbiol 2010; 149:430-6. [PMID: 21208755 DOI: 10.1016/j.vetmic.2010.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/28/2010] [Accepted: 12/02/2010] [Indexed: 11/16/2022]
Abstract
Salmonella enterica serovar Gallinarum is the causative agent of fowl typhoid, a severe disease of poultry, responsible for heavy economic losses. Epidemiologic investigation of fowl typhoid significantly benefits from molecular typing tools, RAPD and PFGE have been proposed for this purpose. PFGE, a well established technique, is still the gold standard among typing methods for most bacteria, including salmonella. Nevertheless, it has some limitations regarding execution and reproducibility, in particular it is labour intensive and requires good technical expertise. Furthermore, it needs accurate standardization and results can be ambiguous to interpret. Such limitations can hamper reproducibility and transfer of results. As a possible alternative to PFGE, multilocus variable-number of tandem-repeats analysis (MLVA) has recently emerged as an effective genotyping method for many bacterial pathogens showing high discriminatory power associated to robustness. We developed a six-loci MLVA protocol for Salmonella Gallinarum and compared it to PFGE performed with SpeI, XbaI and NotI on fifty isolates. The proposed MLVA has a high discriminatory power, equivalent to that of the three-enzyme PFGE (Simpson's index 0.94 for MLVA, 0.93 for three-enzyme PFGE) but it is simpler to perform and straightforward in genotype identification, allowing unambiguous exchange of results. Stability of selected VNTR loci, assessed in vitro and in vivo, is good but not absolute, reflecting the sensitivity of MLVA to detect evolutionary changes of bacteria. Clustering of the isolates as determined by MLVA typing is substantially confirmed by PFGE.
Collapse
Affiliation(s)
- Federica Bergamini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna - Sezione di Modena, Via E. Diena 16, 41100 Modena, Italy
| | | | | | | |
Collapse
|
10
|
Melendez S, Hanning I, Han J, Nayak R, Clement A, Wooming A, Hererra P, Jones F, Foley S, Ricke S. Salmonella enterica isolates from pasture-raised poultry exhibit antimicrobial resistance and class I integrons. J Appl Microbiol 2010; 109:1957-66. [DOI: 10.1111/j.1365-2672.2010.04825.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Pullinger GD, Dziva F, Charleston B, Wallis TS, Stevens MP. Identification of Salmonella enterica serovar Dublin-specific sequences by subtractive hybridization and analysis of their role in intestinal colonization and systemic translocation in cattle. Infect Immun 2008; 76:5310-21. [PMID: 18794283 PMCID: PMC2573319 DOI: 10.1128/iai.00960-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 08/16/2008] [Accepted: 09/04/2008] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Dublin is a host-restricted serovar associated with typhoidal disease in cattle. In contrast, the fowl-associated serovar S. enterica serovar Gallinarum is avirulent in calves, yet it invades ileal mucosa and induces enteritis at levels comparable to those induced by S. enterica serovar Dublin. Suppression subtractive hybridization was employed to identify S. enterica serovar Dublin strain SD3246 genes absent from S. enterica serovar Gallinarum strain SG9. Forty-one S. enterica serovar Dublin fragments were cloned and sequenced. Among these, 24 mobile-element-associated genes were identified, and 12 clones exhibited similarity with sequences of known or predicted function in other serovars. Three S. enterica serovar Dublin-specific regions were homologous to regions from the genome of Enterobacter sp. strain 638. Sequencing of fragments adjacent to these three sequences revealed the presence of a 21-kb genomic island, designated S. enterica serovar Dublin island 1 (SDI-1). PCR analysis and Southern blotting showed that SDI-1 is highly conserved within S. enterica serovar Dublin isolates but rarely found in other serovars. To probe the role of genes identified by subtractive hybridization in vivo, 24 signature-tagged S. enterica serovar Dublin SD3246 mutants lacking loci not present in Salmonella serovar Gallinarum SG9 were created and screened by oral challenge of cattle. Though attenuation of tagged SG9 and SD3246 Salmonella pathogenicity island-1 (SPI-1) and SPI-2 mutant strains was detected, no obvious defects of these 24 mutants were detected. Subsequently, a DeltaSDI-1 mutant was found to exhibit weak but significant attenuation compared with the parent strain in coinfection of calves. SDI-1 mutation did not impair invasion, intramacrophage survival, or virulence in mice, implying that SDI-1 does not influence fitness per se and may act in a host-specific manner.
Collapse
Affiliation(s)
- Gillian D Pullinger
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Evolution of genes on the Salmonella Virulence plasmid phylogeny revealed from sequencing of the virulence plasmids of S. enterica serotype Dublin and comparative analysis. Genomics 2008; 92:339-43. [PMID: 18718522 DOI: 10.1016/j.ygeno.2008.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 07/10/2008] [Accepted: 07/24/2008] [Indexed: 10/21/2022]
Abstract
Salmonella enterica serotype Dublin harbors an approximately 80-kb virulence plasmid (pSDV), which mediates systemic infection in cattle. There are two types of pSDV: one is pSDVu (pOU1113) in strain OU7025 and the other pSDVr (pOU1115) in OU7409 (SD Lane) and many clinical isolates. Sequence analysis showed that pSDVr was a recombinant plasmid (co-integrate) of pSDVu and a plasmid similar to a 35-kb indigenous plasmid (pOU1114) of S. Dublin. Most of the F-transfer region in pSDVu was replaced by a DNA segment from the pOU1114-like plasmid containing an extra replicon and a pilX operon encoding for a type IV secretion system to form pSDVr. We reconstructed the particular evolutionary history of the seven virulence plasmids of Salmonella by comparative sequence analysis. The whole evolutionary process might begin with two different F-like plasmids (IncFI and IncFII), which then incorporated the spv operon and fimbriae operon from the chromosome to form the primitive virulence plasmids. Subsequently, these plasmids descended by deletion from a relatively large plasmid to smaller ones, with some recombination events occurring over time. Our results suggest that the phylogeny of virulence plasmids as a result of frequent recombination provides the opportunity for rapid evolution of Salmonella in response to the environmental cues.
Collapse
|