1
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
2
|
Possible Involvement of Hydrosulfide in B 12-Dependent Methyl Group Transfer. Molecules 2017; 22:molecules22040582. [PMID: 28379205 PMCID: PMC6154648 DOI: 10.3390/molecules22040582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 11/29/2022] Open
Abstract
Evidence from several fields of investigation lead to the hypothesis that the sulfur atom is involved in vitamin B12-dependent methyl group transfer. To compile the evidence, it is necessary to briefly review the following fields: methylation, the new field of sulfane sulfur/hydrogen sulfide (S°/H2S), hydrosulfide derivatives of cobalamins, autoxidation of hydrosulfide radical, radical S-adenosylmethionine methyl transfer (RSMT), and methionine synthase (MS). Then, new reaction mechanisms for B12-dependent methyl group transfer are proposed; the mechanisms are facile and overcome difficulties that existed in previously-accepted mechanisms. Finally, the theory is applied to the effect of S°/H2S in nerve tissue involving the “hypomethylation theory” that was proposed 50 years ago to explain the neuropathology resulting from deficiency of vitamin B12 or folic acid. The conclusions are consistent with emerging evidence that sulfane sulfur/hydrogen sulfide may be beneficial in treating Alzheimer’s disease.
Collapse
|
3
|
Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D. Microbial responses to environmental arsenic. Biometals 2009; 22:117-30. [DOI: 10.1007/s10534-008-9195-y] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
|
4
|
Heider J, Fuchs G. Microbial anaerobic aromatic metabolism. Anaerobe 2007; 3:1-22. [PMID: 16887557 DOI: 10.1006/anae.1997.0073] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Accepted: 02/11/1997] [Indexed: 11/22/2022]
Affiliation(s)
- J Heider
- Mikrobiologie, Institut für Biologie II, Universität Freiburg, Freiburg, Germany.
| | | |
Collapse
|
5
|
Abstract
Arsenic and selenium are readily metabolized by prokaryotes, participating in a full range of metabolic functions including assimilation, methylation, detoxification, and anaerobic respiration. Arsenic speciation and mobility is affected by microbes through oxidation/reduction reactions as part of resistance and respiratory processes. A robust arsenic cycle has been demonstrated in diverse environments. Respiratory arsenate reductases, arsenic methyltransferases, and new components in arsenic resistance have been recently described. The requirement for selenium stems primarily from its incorporation into selenocysteine and its function in selenoenzymes. Selenium oxyanions can serve as an electron acceptor in anaerobic respiration, forming distinct nanoparticles of elemental selenium that may be enriched in (76)Se. The biogenesis of selenoproteins has been elucidated, and selenium methyltransferases and a respiratory selenate reductase have also been described. This review highlights recent advances in ecology, biochemistry, and molecular biology and provides a prelude to the impact of genomics studies.
Collapse
Affiliation(s)
- John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | |
Collapse
|
6
|
Young RF, Cheng SM, Fedorak PM. Aerobic biodegradation of 2,2'-dithiodibenzoic acid produced from dibenzothiophene metabolites. Appl Environ Microbiol 2006; 72:491-6. [PMID: 16391083 PMCID: PMC1352247 DOI: 10.1128/aem.72.1.491-496.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dibenzothiophene is a sulfur heterocycle found in crude oils and coal. The biodegradation of dibenzothiophene through the Kodama pathway by Pseudomonas sp. strain BT1d leads to the formation of three disulfides: 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, 2-oxo-2-(2-thiophenyl)ethanoic acid-2-benzoic acid disulfide, and 2,2'-dithiodibenzoic acid. When provided as the carbon and sulfur source in liquid medium, 2,2'-dithiodibenzoic acid was degraded by soil enrichment cultures. Two bacterial isolates, designated strains RM1 and RM6, degraded 2,2'-dithiodibenzoic acid when combined in the medium. Isolate RM6 was found to have an absolute requirement for vitamin B12, and it degraded 2,2'-dithiodibenzoic acid in pure culture when the medium was supplemented with this vitamin. Isolate RM6 also degraded 2,2'-dithiodibenzoic acid in medium containing sterilized supernatants from cultures of isolate RM1 grown on glucose or benzoate. Isolate RM6 was identified as a member of the genus Variovorax using the Biolog system and 16S rRNA gene analysis. Although the mechanism of disulfide metabolism could not be determined, benzoic acid was detected as a transient metabolite of 2,2'-dithiodibenzoic acid biodegradation by Variovorax sp. strain RM6. In pure culture, this isolate mineralized 2,2'-dithiodibenzoic acid, releasing 59% of the carbon as carbon dioxide and 88% of the sulfur as sulfate.
Collapse
Affiliation(s)
- Rozlyn F Young
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Alberta, Canada
| | | | | |
Collapse
|
7
|
Toohey JI. Vitamin B12 and methionine synthesis: a critical review. Is nature's most beautiful cofactor misunderstood? Biofactors 2006; 26:45-57. [PMID: 16614482 DOI: 10.1002/biof.5520260105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanism by which Vitamin B12 prevents demyelination of nerve tissue is still not known. The evidence indicates that the critical site of B12 function in nerve tissue is in the enzyme, methionine synthase, in a system which requires S-adenosylmethionine. In recent years it has been recognized that S-adenosylmethionine gives rise to the deoxyadenosyl radical which catalyzes many reactions including the rearrangement of lysine to beta-lysine. Evidence is reviewed which suggests that there is an analogy between the two systems and that S-adenosyl methionine may catalyze a rearrangement of homocysteine on methionine synthase giving rise to iso- or beta-methionine. The rearranged product is readily degraded to CH3-SH, providing a mechanism for removing toxic homocysteine.
Collapse
Affiliation(s)
- John I Toohey
- Cytoregulation Research, Elgin, Ontario, Canada KOG 1EO.
| |
Collapse
|
8
|
Bentley R, Chasteen TG. Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 2002; 66:250-71. [PMID: 12040126 PMCID: PMC120786 DOI: 10.1128/mmbr.66.2.250-271.2002] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important.
Collapse
Affiliation(s)
- Ronald Bentley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
9
|
Andrews EJ, Novak PJ. Influence of ferrous iron and ph on carbon tetrachloride degradation by Methanosarcina thermophila. WATER RESEARCH 2001; 35:2307-2313. [PMID: 11358312 DOI: 10.1016/s0043-1354(00)00508-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The influence of environmental conditions on the biological transformation of a contaminant must be well understood to optimize remediation processes. One factor that impacts the biological transformation of carbon tetrachloride (CT) is elemental iron (Fe0). Previous research has shown that Fe0 increases the methanogenic CT degradation rate by providing H2 for cell growth and dechlorination. As Fe0 oxidizes it also increases the pH and Fe2+ levels, which may also impact the biological transformation of CT. Experiments were performed with Methanosarcina thermophila to investigate the influence of these factors on CT degradation. The transformation of CT and CF was greatly influenced by pH, with the rate of CT and CF degradation increasing with increasing pH. After 6 h, > 90% of the CT had been degraded in the treatments containing cells at a pH of 8.5, whereas only about 51% of the CT had been degraded in similar treatments at a pH of 5.5. Fe2+ did not significantly influence the degradation of CT; however, 60% less CF was formed in systems containing cells+Fe2+ than in systems containing cells only. In addition. Fe2+ promoted rapid transformation of CF when added to treatments containing cells. The product distribution after 9 days in all systems containing cells was very similar, with 98.04 +/- 5.46% (two-sided 95% confidence interval) of the originally fed CT present as soluble products. These results show that pH and Fe2+ influence the degradation of CT and CF, although transiently. Because the residence time of contaminants in Fe0 barriers varies with the thickness of the barrier, it is likely that this influence will be important for some flow-through systems. This implies that a combined Fe0/organism remediation system may have previously unrealized advantages (due to pH and Fe2+ changes).
Collapse
Affiliation(s)
- E J Andrews
- The Department of Civil Engineering, University of Minnesota, Minneapolis 55455-0220, USA
| | | |
Collapse
|
10
|
Affiliation(s)
- E N Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
11
|
Harwood CS, Gibson J. Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J Bacteriol 1997; 179:301-9. [PMID: 8990279 PMCID: PMC178697 DOI: 10.1128/jb.179.2.301-309.1997] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- C S Harwood
- Department of Microbiology, The University of Iowa, Iowa City 52242, USA.
| | | |
Collapse
|
12
|
Rondon MR, Trzebiatowski JR, Escalante-Semerena JC. Biochemistry and molecular genetics of cobalamin biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:347-84. [PMID: 9187059 DOI: 10.1016/s0079-6603(08)61010-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- M R Rondon
- Department of Bacteriology, University of Wisconsin-Madison 53706-1567, USA
| | | | | |
Collapse
|
13
|
Abstract
This review examines deoxyadenosylcobalamin (Ado-B12) biosynthesis, transport, use, and uneven distribution among living forms. We describe how genetic analysis of enteric bacteria has contributed to these issues. Two pathways for corrin ring formation have been found-an aerobic pathway (in P. denitrificans) and an anaerobic pathway (in P. shermanii and S. typhimurium)-that differ in the point of cobalt insertion. Analysis of B12 transport in E. coli reveals two systems: one (with two proteins) for the outer membrane, and one (with three proteins) for the inner membrane. To account for the uneven distribution of B12 in living forms, we suggest that the B12 synthetic pathway may have evolved to allow anaerobic fermentation of small molecules in the absence of an external electron acceptor. Later, evolution of the pathway produced siroheme, (allowing use of inorganic electron acceptors), chlorophyll (O2 production), and heme (aerobic respiration). As oxygen became a larger part of the atmosphere, many organisms lost fermentative functions and retained dependence on newer, B12 functions that did not involve fermentation. Paradoxically, Salmonella spp. synthesize B12 only anaerobically but can use B12 (for degradation of ethanolamine and propanediol) only with oxygen. Genetic analysis of the operons for these degradative functions indicate that anaerobic degradation is important. Recent results suggest that B12 can be synthesized and used during anaerobic respiration using tetrathionate (but not nitrate or fumarate) as an electron acceptor. The branch of enteric taxa from which Salmonella spp. and E. coli evolved appears to have lost the ability to synthesize B12 and the ability to use it in propanediol and glycerol degradation. Salmonella spp., but not E. coli, have acquired by horizontal transfer the ability to synthesize B12 and degrade propanediol. The acquired ability to degrade propanediol provides the selective force that maintains B12 synthesis in this group.
Collapse
Affiliation(s)
- J R Roth
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
14
|
Daas PJ, Wassenaar RW, Willemsen P, Theunissen RJ, Keltjens JT, van der Drift C, Vogels GD. Purification and properties of an enzyme involved in the ATP-dependent activation of the methanol:2-mercaptoethanesulfonic acid methyltransferase reaction in Methanosarcina barkeri. J Biol Chem 1996; 271:22339-45. [PMID: 8798394 DOI: 10.1074/jbc.271.37.22339] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In Methanosarcina barkeri the transfer of the methyl group from methanol to 2-mercaptoethanesulfonic acid is catalyzed by the concerted action of two methyltransferases. The first one is the corrinoid-containing methanol:5-hydroxybenzimidazolylcobamide methyltransferase (MT1), which binds the methyl group of methanol to its corrinoid prosthetic group. MT1 is only catalytically active when the cobalt atom of the corrinoid is present in the highly reduced Co(I) state. In the course of its purification and even during catalysis, MT1 becomes oxidatively inactivated. The enzyme, however, may be reductively reactivated by a suitable reducing system (hydrogen and hydrogenase), ATP, and an enzyme called methyltransferase activation protein (MAP). In order to elucidate its role in the reactivation process, MAP was purified to apparent homogeneity. The protein had an Mr = 60,000. Preincubation of the enzymic components involved with 8-azido-ATP or with ATP demonstrated MAP to be the primary site of action of ATP. In agreement herewith, the protein was autophosphorylated by [gamma-32P]ATP in a 1:1 stoichiometry. Phosphorylated MAP substituted for ATP in the activation of MT1, and the addition of increasing amounts of MAP phosphate resulted in a corresponding increase of active MT1. However, in the presence of limiting amounts of MAP, maximal activation of MT1 could be achieved during a lag phase provided ATP was present, indicating that MAP acts as a catalyst. This paper is the first to report on the presence, isolation, and function of a phosphorylated protein in a methanogenic archaeon.
Collapse
Affiliation(s)
- P J Daas
- Department of Microbiology, Faculty of Science, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
15
|
Neumann A, Wohlfarth G, Diekert G. Properties of tetrachloroethene and trichloroethene dehalogenase of Dehalospirillum multivorans. Arch Microbiol 1995. [DOI: 10.1007/bf00393380] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Noll KM. Thiol coenzymes of methanogens. Methods Enzymol 1995; 251:470-82. [PMID: 7651230 DOI: 10.1016/0076-6879(95)51151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K M Noll
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| |
Collapse
|