1
|
Coskun ÖK, Gomez-Saez GV, Beren M, Özcan D, Günay SD, Elkin V, Hoşgörmez H, Einsiedl F, Eisenreich W, Orsi WD. Quantifying genome-specific carbon fixation in a 750-meter deep subsurface hydrothermal microbial community. FEMS Microbiol Ecol 2024; 100:fiae062. [PMID: 38632042 DOI: 10.1093/femsec/fiae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024] Open
Abstract
Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.
Collapse
Affiliation(s)
- Ömer K Coskun
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Gonzalo V Gomez-Saez
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Murat Beren
- Department of Geological Engineering, Istanbul University - Cerrahpasa, Büyükçekmece Campus, Block G, Floor 5, Istanbul, Turkey
| | - Doğacan Özcan
- Department of Geological Engineering, Istanbul University - Cerrahpasa, Büyükçekmece Campus, Block G, Floor 5, Istanbul, Turkey
| | - Suna D Günay
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Viktor Elkin
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Hakan Hoşgörmez
- Department of Geological Engineering, Istanbul University - Cerrahpasa, Büyükçekmece Campus, Block G, Floor 5, Istanbul, Turkey
| | - Florian Einsiedl
- Chair of Hydrogeology, School of Engineering and Design, Technical University Munich, Arcisstraße 21, 80333 Munich, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Department Chemie, Technische Universität München, Lichtenbergstraße, 85748 Garching, Germany
| | - William D Orsi
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Richard-Wagner Straße 10, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| |
Collapse
|
2
|
Mandal S, Bose H, Ramesh K, Sahu RP, Saha A, Sar P, Kazy SK. Depth wide distribution and metabolic potential of chemolithoautotrophic microorganisms reactivated from deep continental granitic crust underneath the Deccan Traps at Koyna, India. Front Microbiol 2022; 13:1018940. [PMID: 36504802 PMCID: PMC9731672 DOI: 10.3389/fmicb.2022.1018940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Characterization of inorganic carbon (C) utilizing microorganisms from deep crystalline rocks is of major scientific interest owing to their crucial role in global carbon and other elemental cycles. In this study we investigate the microbial populations from the deep [up to 2,908 meters below surface (mbs)] granitic rocks within the Koyna seismogenic zone, reactivated (enriched) under anaerobic, high temperature (50°C), chemolithoautotrophic conditions. Subsurface rock samples from six different depths (1,679-2,908 mbs) are incubated (180 days) with CO2 (+H2) or HCO3 - as the sole C source. Estimation of total protein, ATP, utilization of NO3 - and SO4 2- and 16S rRNA gene qPCR suggests considerable microbial growth within the chemolithotrophic conditions. We note a better response of rock hosted community towards CO2 (+H2) over HCO3 -. 16S rRNA gene amplicon sequencing shows a depth-wide distribution of diverse chemolithotrophic (and a few fermentative) Bacteria and Archaea. Comamonas, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Klebsiella, unclassified Burkholderiaceae and Enterobacteriaceae are reactivated as dominant organisms from the enrichments of the deeper rocks (2335-2,908 mbs) with both CO2 and HCO3 -. For the rock samples from shallower depths, organisms of varied taxa are enriched under CO2 (+H2) and HCO3 -. Pseudomonas, Rhodanobacter, Methyloversatilis, and Thaumarchaeota are major CO2 (+H2) utilizers, while Nocardioides, Sphingomonas, Aeromonas, respond towards HCO3 -. H2 oxidizing Cupriavidus, Hydrogenophilus, Hydrogenophaga, CO2 fixing Cyanobacteria Rhodobacter, Clostridium, Desulfovibrio and methanogenic archaea are also enriched. Enriched chemolithoautotrophic members show good correlation with CO2, CH4 and H2 concentrations of the native rock environments, while the organisms from upper horizons correlate more to NO3 -, SO4 2- , Fe and TIC levels of the rocks. Co-occurrence networks suggest close interaction between chemolithoautotrophic and chemoorganotrophic/fermentative organisms. Carbon fixing 3-HP and DC/HB cycles, hydrogen, sulfur oxidation, CH4 and acetate metabolisms are predicted in the enriched communities. Our study elucidates the presence of live, C and H2 utilizing Bacteria and Archaea in deep subsurface granitic rocks, which are enriched successfully. Significant impact of depth and geochemical controls on relative distribution of various chemolithotrophic species enriched and their C and H2 metabolism are highlighted. These endolithic microorganisms show great potential for answering the fundamental questions of deep life and their exploitation in CO2 capture and conversion to useful products.
Collapse
Affiliation(s)
- Sunanda Mandal
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| | - Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Kheerthana Ramesh
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| | - Rajendra Prasad Sahu
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Anumeha Saha
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Sufia Khannam Kazy
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| |
Collapse
|
3
|
Wirth J, Young M. Viruses in Subsurface Environments. Annu Rev Virol 2022; 9:99-119. [PMID: 36173700 DOI: 10.1146/annurev-virology-093020-015957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past 20 years, our knowledge of virus diversity and abundance in subsurface environments has expanded dramatically through application of quantitative metagenomic approaches. In most subsurface environments, viral diversity and abundance rival viral diversity and abundance observed in surface environments. Most of these viruses are uncharacterized in terms of their hosts and replication cycles. Analysis of accessory metabolic genes encoded by subsurface viruses indicates that they evolved to replicate within the unique features of their environments. The key question remains: What role do these viruses play in the ecology and evolution of the environments in which they replicate? Undoubtedly, as more virologists examine the role of viruses in subsurface environments, new insights will emerge.
Collapse
Affiliation(s)
- Jennifer Wirth
- Department of Plant Science and Plant Pathology and Thermal Biology Institute, Montana State University, Bozeman, Montana, USA;
| | - Mark Young
- Department of Plant Science and Plant Pathology and Thermal Biology Institute, Montana State University, Bozeman, Montana, USA;
| |
Collapse
|
4
|
Hydroecology of Argyroneta aquatica’s Habitat in Hantangang River Geopark, South Korea. SUSTAINABILITY 2022. [DOI: 10.3390/su14094988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The water spider (Argyroneta aquatic) is the only known spider to live a fully aquatic life. Therefore, it has been the subject of a series of studies on various aspects of its unique biology such as its reproductive behavior, sexual dimorphism, physiology, genetics, and silk. However, there have been relatively few studies on the hydroecology of where water spiders live. The water spider habitat in Eundae-ri, Yeoncheon is the only habitat for A. aquatica, a globally rare species, in South Korea. In this region, the water level of the wetland is automatically adjusted to groundwater owing to continued drying. Here, the surface water, wetland, and groundwater near the A. aquatica habitat were studied using hydrochemical, microbiological, and correlation analyses. The hydrochemical properties—water temperature, pH, electrical conductivity, dissolved oxygen (DO), oxidation reduction potential, and turbidity—of the surface water and wetland were similar. The Piper diagrams revealed that the wetlands, surface water, and most of the groundwater portrayed Ca-HCO3-type properties, whereas only areas where the water level of the wetland was controlled displayed Na-HCO3-type properties. Furthermore, the NO3 content was too low to be detected in the wetland, indicating clean and non-polluted water conditions; additionally, heavier oxygen-hydrogen isotopes were observed because these regions were climatically affected by the wetland. The dominant bacteria were Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia, and Nitrospirae. The correlation analysis revealed that the major environmental control factors of the A. aquatica habitat were DO, temperature, and pH, and the related bacteria were Cyanobacteria, Actinobacteria, and Verrucomicrobia.
Collapse
|
5
|
Korbel KL, Rutlidge H, Hose GC, Eberhard SM, Andersen MS. Dynamics of microbiotic patterns reveal surface water groundwater interactions in intermittent and perennial streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152380. [PMID: 34914978 DOI: 10.1016/j.scitotenv.2021.152380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Exchange between groundwater (GW), hyporheic zone waters (HZ) and surface waters (SW) is critical for water quality, quantity, and the ecological health and functioning of all three ecosystems. Hydrological exchange is particularly important in intermittent creeks, such as in the Murray Darling Basin, Australia, where stream reaches shift from losing to gaining depending on the volume of surface flows. In this study we used hydrochemistry to identify SW-GW exchange and combined this with eDNA data to analyse the response of eukaryote and prokaryote communities to differing flow conditions within intermittent and perennial stream reaches. Our study suggested that SW and GW microbial communities were only around 30% similar. Differences in microbiota between SW, HZ and GW habitats were driven by changes in relative abundances of surface water dominant organisms (such as those capable of photosynthesis) as well as anaerobic taxa typical of GW environments (e.g., methanogens), with GW and HZ microbial communities becoming increasingly different to those in SW as flow ceased in intermittent creeks. Fine-scale hydrologic changes were identified through microbial communities in the perennial Maules Creek, indicating the importance of GW-SW exchange to biotic communities. This study highlights the importance of flow in shaping microbial communities and biogeochemical cycling within intermittent creeks and their connected alluvial aquifers. Our results suggest that microbiota may prove a useful indicator of SW-GW exchange, and in some circumstances, may be more sensitive in demonstrating fine-scale changes in SW-GW interactions than water chemistry. This knowledge furthers our understanding of GW-SW exchange and its impacts on ecological health.
Collapse
Affiliation(s)
- K L Korbel
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | - H Rutlidge
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - G C Hose
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - S M Eberhard
- Subterranean Ecology Pty Ltd, Coningham, TAS 7054, Australia; Adjunct Affiliate University of New South Wales, Australia; Honorary Associate Western Australian Museum, Australia
| | - M S Andersen
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Sulfidic Habitats in the Gypsum Karst System of Monte Conca (Italy) Host a Chemoautotrophically Supported Invertebrate Community. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052671. [PMID: 35270363 PMCID: PMC8910289 DOI: 10.3390/ijerph19052671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
The great diversity of the invertebrate community thriving in the deepest sections of the gypsum karst system of the Monte Conca sinkhole (Sicily, Italy) suggests the existence of a complex food web associated with a sulfidic pool and chemoautotrophic microbial activity. To shed light on the peculiarity of this biological assemblage, we investigated the species composition of the invertebrate community and surveyed trophic interactions by stable isotope analysis. The faunal investigation conducted by visual censuses and hand sampling methods led to the discovery of a structured biological assemblage composed of both subterranean specialized and non-specialized species, encompassing all trophic levels. The community was remarkably diverse in the sulfidic habitat and differed from other non-sulfidic habitats within the cave in terms of stable isotope ratios. This pattern suggests the presence of a significant chemoautotrophic support by the microbial communities to the local food web, especially during the dry season when the organic input from the surface is minimal. However, when large volumes of water enter the cave due to local agricultural activities (i.e., irrigation) or extreme precipitation events, the sulfidic habitat of the cave is flooded, inhibiting the local autotrophic production and threatening the conservation of the entire ecosystem.
Collapse
|
7
|
Bornemann TLV, Adam PS, Turzynski V, Schreiber U, Figueroa-Gonzalez PA, Rahlff J, Köster D, Schmidt TC, Schunk R, Krauthausen B, Probst AJ. Genetic diversity in terrestrial subsurface ecosystems impacted by geological degassing. Nat Commun 2022; 13:284. [PMID: 35022403 PMCID: PMC8755723 DOI: 10.1038/s41467-021-27783-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Earth’s mantle releases 38.7 ± 2.9 Tg/yr CO2 along with other reduced and oxidized gases to the atmosphere shaping microbial metabolism at volcanic sites across the globe, yet little is known about its impact on microbial life under non-thermal conditions. Here, we perform comparative metagenomics coupled to geochemical measurements of deep subsurface fluids from a cold-water geyser driven by mantle degassing. Key organisms belonging to uncultivated Candidatus Altiarchaeum show a global biogeographic pattern and site-specific adaptations shaped by gene loss and inter-kingdom horizontal gene transfer. Comparison of the geyser community to 16 other publicly available deep subsurface sites demonstrate a conservation of chemolithoautotrophic metabolism across sites. In silico replication measures suggest a linear relationship of bacterial replication with ecosystems depth with the exception of impacted sites, which show near surface characteristics. Our results suggest that subsurface ecosystems affected by geological degassing are hotspots for microbial life in the deep biosphere. Geological degassing can impact subsurface metabolism. Here, the authors describe microbial communities from a cold-water geyser are described and compared with other deep subsurface sites, finding a key role for an uncultivated archaeon.
Collapse
Affiliation(s)
- Till L V Bornemann
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Panagiotis S Adam
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Victoria Turzynski
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Ulrich Schreiber
- Department of Geology, University Duisburg-Essen, Essen, Germany
| | | | - Janina Rahlff
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.,Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linneaus University, Kalmar, Sweden
| | - Daniel Köster
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.,Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany
| | | | - Bernhard Krauthausen
- Institute of Applied Geosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander J Probst
- Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany. .,Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 5, Essen, Germany.
| |
Collapse
|
8
|
Schulze-Makuch D, Fairén AG. Evaluating the Microbial Habitability of Rogue Planets and Proposing Speculative Scenarios on How They Might Act as Vectors for Panspermia. Life (Basel) 2021; 11:life11080833. [PMID: 34440576 PMCID: PMC8397938 DOI: 10.3390/life11080833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
There are two types of rogue planets, sub-brown dwarfs and “rocky” rogue planets. Sub-brown dwarfs are unlikely to be habitable or even host life, but rocky rogue planets may have a liquid ocean under a thick atmosphere or an ice layer. If they are overlain by an insulating ice layer, they are also referred to as Steppenwolf planets. However, given the poor detectability of rocky rogue planets, there is still no direct evidence of the presence of water or ice on them. Here we discuss the possibility that these types of rogue planets could harbor unicellular organisms, conceivably based on a variety of different energy sources, including chemical, osmotic, thermal, and luminous energy. Further, given the theoretically predicted high number of rogue planets in the galaxy, we speculate that rogue planets could serve as a source for galactic panspermia, transferring life to other planetary systems.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Astrobiology Group, Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany
- GFZ German Research Center for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
- Correspondence: ; Tel.: +49-30-314-23736
| | - Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), 28850 Madrid, Spain;
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Pashang R, Gilbride KA. From individual response to population ecology: Environmental factors restricting survival of vegetative bacteria at solid-air interfaces. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:144982. [PMID: 33592458 DOI: 10.1016/j.scitotenv.2021.144982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/06/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Combating microbial survival on dry surfaces contributes to improving public health in indoor environments (clinical and industrial settings) and extends to the natural environment. For vegetative bacteria at solid-air interfaces, lack of water impacts cellular response, and acclimation depends on community support in response to ecological processes. Gaining insights about important ecological processes leading to inhibition of microbial survival under extreme conditions, such as vicinity of highly radioactive nuclear waste, is key for improving engineering designs. Canada plans to store used nuclear fuel and radioactive waste in a deep geological repository (DGR) with a multiple-barrier system constructed at an approximate depth of 500 m. Microorganisms in highly compacted bentonite surrounding used fuel containers will be challenged by high pressure, temperature, and radiation, as well as limited water and nutrients. Thus, it is difficult to estimate microbial activities, given that the prime concern for a microbial community is survival, and energy expenditure is regulated. To enable preventive measures and for risk evaluation, a deeper understanding of community-based survival strategies of bacterial cells exposed to air (gaseous phase) during prolonged periods of desiccation is required. An in-depth review of collective studies that assess microbial survival and persistence during desiccation is presented here to augment and direct our prior knowledge about tactics used by bacteria for survival at interfaces in hostile natural environments including and similar to a DGR.
Collapse
Affiliation(s)
- Rosha Pashang
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada; Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Kimberley A Gilbride
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada; Ryerson Urban Water Group, Ryerson University, Toronto, Canada.
| |
Collapse
|
10
|
Kucera J, Lochman J, Bouchal P, Pakostova E, Mikulasek K, Hedrich S, Janiczek O, Mandl M, Johnson DB. A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans. Front Microbiol 2020; 11:610836. [PMID: 33329503 PMCID: PMC7735108 DOI: 10.3389/fmicb.2020.610836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa 3 oxidase via cytochrome bc 1 complex and cytochrome c 4 or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc 1 complex and a cascade of electron transporters (cytochrome c 4, cytochrome c 552, rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.
Collapse
Affiliation(s)
- Jiri Kucera
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Eva Pakostova
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Kamil Mikulasek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Brno, Czechia
| | - Sabrina Hedrich
- Institute of Biosciences, Technische Universität (TU) Bergakademie Freiberg, Freiberg, Germany
| | - Oldrich Janiczek
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin Mandl
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - D Barrie Johnson
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
11
|
Steele BA, Goldman N, Kuo IFW, Kroonblawd MP. Mechanochemical synthesis of glycine oligomers in a virtual rotational diamond anvil cell. Chem Sci 2020; 11:7760-7771. [PMID: 34123069 PMCID: PMC8163322 DOI: 10.1039/d0sc00755b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023] Open
Abstract
Mechanochemistry of glycine under compression and shear at room temperature is predicted using quantum-based molecular dynamics (QMD) and a simulation design based on rotational diamond anvil cell (RDAC) experiments. Ensembles of high throughput semiempirical density functional tight binding (DFTB) simulations are used to identify chemical trends and bounds for glycine chemistry during rapid shear under compressive loads of up to 15.6 GPa. Significant chemistry is found to occur during compressive shear above 10 GPa. Recovered products consist of small molecules such as water, structural analogs to glycine, heterocyclic molecules, large oligomers, and polypeptides including the simplest polypeptide glycylglycine at up to 4% mass fraction. The population and size of oligomers generally increases with pressure. A number of oligomeric polypeptide precursors and intermediates are also identified that consist of two or three glycine monomers linked together through C-C, C-N, and/or C-O bridges. Even larger oligomers also form that contain peptide C-N bonds and exhibit branched structures. Many of the product molecules exhibit one or more chiral centers. Our simulations demonstrate that athermal mechanical compressive shearing of glycine is a plausible prebiotic route to forming polypeptides.
Collapse
Affiliation(s)
- Brad A Steele
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - I-Feng W Kuo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| |
Collapse
|
12
|
Leandro T, Rodriguez N, Rojas P, Sanz JL, da Costa MS, Amils R. Study of methanogenic enrichment cultures of rock cores from the deep subsurface of the Iberian Pyritic Belt. Heliyon 2018; 4:e00605. [PMID: 29862366 PMCID: PMC5968172 DOI: 10.1016/j.heliyon.2018.e00605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/15/2018] [Accepted: 04/10/2018] [Indexed: 11/26/2022] Open
Abstract
Two deep boreholes were drilled at 320 and 620 meters below surface in the Iberian Pyritic Belt (IPB) at Peña de Hierro (Huelva, Southwestern Spain). Cores were sampled and used for the establishment of enrichment cultures with methanogenic activity. The cultivable diversity of these enrichments was accessed using different cultivation techniques and several isolates were recovered in pure culture from various depths in both boreholes. Although no archaeal isolates were obtained in pure culture, strict anaerobes and facultative anaerobic bacteria belonging to the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were isolated and identified using the 16S rRNA gene sequence. Analysis of three selected enrichment cultures by amplification of both bacterial and archaeal 16S rRNA gene followed by pyrosequencing revealed further information on the populations enriched. The archaeal sequences obtained from the methanogenic enrichment cultures belonged to the orders Methanosarcinales and Methanocellales. To best of our knowledge this is the first report of enrichment in members of the Methanocellales in a deep terrestrial subsurface ecosystem. Several bacterial populations, predominantly consisting of Firmicutes and Proteobacteria, were also enriched. The prevalent microbial populations enriched as detected by pyrosequencing analysis, as well as the bacterial isolates cultivated were affiliated with known fermentative, sulfate reducing and acetogenic bacteria or methanogenic archaea. Our results show a great diversity in the microbial communities of the IPB deep subsurface.
Collapse
Affiliation(s)
- Tânia Leandro
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Nuria Rodriguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Patricia Rojas
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | - Jose L. Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Spain
| | - Milton S. da Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CBMSO, CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
13
|
|
14
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
15
|
Abstract
The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12–14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa.
Collapse
|
16
|
Schmidt SI, Cuthbert MO, Schwientek M. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:215-227. [PMID: 28319709 DOI: 10.1016/j.scitotenv.2017.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Micro scale processes are expected to have a fundamental role in shaping groundwater ecosystems and yet they remain poorly understood and under-researched. In part, this is due to the fact that sampling is rarely carried out at the scale at which microorganisms, and their grazers and predators, function and thus we lack essential information. While set within a larger scale framework in terms of geochemical features, supply with energy and nutrients, and exchange intensity and dynamics, the micro scale adds variability, by providing heterogeneous zones at the micro scale which enable a wider range of redox reactions. Here we outline how understanding micro scale processes better may lead to improved appreciation of the range of ecosystems functions taking place at all scales. Such processes are relied upon in bioremediation and we demonstrate that ecosystem modelling as well as engineering measures have to take into account, and use, understanding at the micro scale. We discuss the importance of integrating faunal processes and computational appraisals in research, in order to continue to secure sustainable water resources from groundwater.
Collapse
Affiliation(s)
- Susanne I Schmidt
- Centre for Systems Biology, University of Birmingham, Birmingham, UK.
| | - Mark O Cuthbert
- Connected Waters Initiative Research Centre, UNSW Australia, 110 King Street, Manly Vale 2093, Australia; Department of Geography, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marc Schwientek
- Center of Applied Geoscience, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
17
|
Momper L, Jungbluth SP, Lee MD, Amend JP. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME JOURNAL 2017. [PMID: 28644444 DOI: 10.1038/ismej.2017.94] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The terrestrial deep subsurface is a huge repository of microbial biomass, but in relation to its size and physical heterogeneity, few sites have been investigated in detail. Here, we applied a culture-independent metagenomic approach to characterize the microbial community composition in deep (1500 meters below surface) terrestrial fluids. Samples were collected from a former gold mine in Lead, South Dakota, USA, now Sanford Underground Research Facility (SURF). We reconstructed 74 genomes from metagenomes (MAGs), enabling the identification of common metabolic pathways. Sulfate and nitrate/nitrite reduction were the most common putative energy metabolisms. Complete pathways for autotrophic carbon fixation were found in more than half of the MAGs, with the reductive acetyl-CoA pathway by far the most common. Nearly 40% (29 of 74) of the recovered MAGs belong to bacterial phyla without any cultivated members-microbial dark matter. Three of our MAGs constitute two novel phyla previously only identified in 16 S rRNA gene surveys. The uniqueness of this data set-its physical depth in the terrestrial subsurface, the relative abundance and completeness of microbial dark matter genomes and the overall diversity of this physically deep, dark, community-make it an invaluable addition to our knowledge of deep subsurface microbial ecology.
Collapse
Affiliation(s)
- Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, The Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean P Jungbluth
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA.,Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Michael D Lee
- Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Jan P Amend
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA.,Department of Biological Sciences, Marine Environmental Biology Section, University of Southern California, Los Angeles, CA, USA.,Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Archaeal Diversity and CO 2 Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017; 2017:2136287. [PMID: 28694737 PMCID: PMC5485487 DOI: 10.1155/2017/2136287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
Abstract
Groundwater environments provide habitats for diverse microbial communities, and although Archaea usually represent a minor fraction of communities, they are involved in key biogeochemical cycles. We analysed the archaeal diversity within a mixed carbonate-rock/siliciclastic-rock aquifer system, vertically from surface soils to subsurface groundwater including aquifer and aquitard rocks. Archaeal diversity was also characterized along a monitoring well transect that spanned surface land uses from forest/woodland to grassland and cropland. Sequencing of 16S rRNA genes showed that only a few surface soil-inhabiting Archaea were present in the groundwater suggesting a restricted input from the surface. Dominant groups in the groundwater belonged to the marine group I (MG-I) Thaumarchaeota and the Woesearchaeota. Most of the groups detected in the aquitard and aquifer rock samples belonged to either cultured or predicted lithoautotrophs (e.g., Thaumarchaeota or Hadesarchaea). Furthermore, to target autotrophs, a series of 13CO2 stable isotope-probing experiments were conducted using filter pieces obtained after filtration of 10,000 L of groundwater to concentrate cells. These incubations identified the SAGMCG Thaumarchaeota and Bathyarchaeota as groundwater autotrophs. Overall, the results suggest that the majority of Archaea on rocks are fixing CO2, while archaeal autotrophy seems to be limited in the groundwater.
Collapse
|
19
|
Jones AA, Bennett PC. Mineral Ecology: Surface Specific Colonization and Geochemical Drivers of Biofilm Accumulation, Composition, and Phylogeny. Front Microbiol 2017; 8:491. [PMID: 28400754 PMCID: PMC5368280 DOI: 10.3389/fmicb.2017.00491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/09/2017] [Indexed: 01/30/2023] Open
Abstract
This study tests the hypothesis that surface composition influences microbial community structure and growth of biofilms. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the phylogenetic and taxonomic variability in microbial communities as a function of surface type (carbonate, silicate, aluminosilicate), media pH, and carbon and phosphate availability. Using high-throughput pyrosequencing, we found that surface type significantly controlled ~70–90% of the variance in phylogenetic diversity regardless of environmental pressures. Consistent patterns also emerged in the taxonomy of specific guilds (sulfur-oxidizers/reducers, Gram-positives, acidophiles) due to variations in media chemistry. Media phosphate availability was a key property associated with variation in phylogeny and taxonomy of whole reactors and was negatively correlated with biofilm accumulation and α-diversity (species richness and evenness). However, mineral-bound phosphate limitations were correlated with less biofilm. Carbon added to the media was correlated with a significant increase in biofilm accumulation and overall α-diversity. Additionally, planktonic communities were phylogenetically distant from those in biofilms. All treatments harbored structurally (taxonomically and phylogenetically) distinct microbial communities. Selective advantages within each treatment encouraged growth and revealed the presence of hundreds of additional operational taxonomix units (OTU), representing distinct consortiums of microorganisms. Ultimately, these results provide evidence that mineral/rock composition significantly influences microbial community structure, diversity, membership, phylogenetic variability, and biofilm growth in subsurface communities.
Collapse
Affiliation(s)
- Aaron A Jones
- Department of Geological Sciences, University of Texas at Austin Austin, TX, USA
| | - Philip C Bennett
- Department of Geological Sciences, University of Texas at Austin Austin, TX, USA
| |
Collapse
|
20
|
Prokaryotic community structure in deep bedrock aquifers of the Austrian Central Alps. Antonie van Leeuwenhoek 2014; 107:687-701. [DOI: 10.1007/s10482-014-0363-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
21
|
Pan D, Watson R, Wang D, Tan ZH, Snow DD, Weber KA. Correlation between viral production and carbon mineralization under nitrate-reducing conditions in aquifer sediment. THE ISME JOURNAL 2014; 8:1691-703. [PMID: 24671088 PMCID: PMC4817613 DOI: 10.1038/ismej.2014.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 12/18/2022]
Abstract
A variety of microbially mediated metabolic pathways impact biogeochemical cycling in terrestrial subsurface environments. However, the role that viruses have in influencing microbial mortality and microbial community structure is poorly understood. Here we investigated the production of viruses and change in microbial community structure within shallow alluvial aquifer sediment slurries amended with (13)C-labeled acetate and nitrate. Biostimulation resulted in production of viruses concurrent with acetate oxidation, (13)CO2 production and nitrate reduction. Interestingly, change in viral abundance was positively correlated to acetate consumption (r(2)=0.6252, P<0.05) and (13)CO2 production (r(2)=0.6572, P<0.05); whereas change in cell abundance was not correlated to acetate consumption or (13)CO2 production. Viral-mediated cell lysis has implications for microbial community structure. Betaproteobacteria predominated microbial community composition (62% of paired-end reads) upon inoculation but decreased in relative abundance and was negatively correlated to changes in viral abundance (r(2)=0.5036, P<0.05). As members of the Betaproteobacteria decreased, Gammaproteobacteria, specifically Pseudomonas spp., increased in relative abundance (82% of paired-end reads) and was positively correlated with the change in viral abundance (r(2)=0.5368, P<0.05). A nitrate-reducing bacterium, Pseudomonas sp. strain Alda10, was isolated from these sediments and produced viral-like particles with a filamentous morphology that did not result in cell lysis. Together, these results indicate that viruses are linked to carbon biogeochemistry and community structure in terrestrial subsurface sediments. The subsequent cell lysis has the potential to alter available carbon pools in subsurface environments, additionally controlling microbial community structure from the bottom-up.
Collapse
Affiliation(s)
- Donald Pan
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Rachel Watson
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Dake Wang
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Zheng Huan Tan
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Daniel D Snow
- Water Sciences Laboratory, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Karrie A Weber
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, NE, USA
- Department of Earth and Atmospheric Sciences, University of Nebraska—Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Ginige MP, Kaksonen AH, Morris C, Shackelton M, Patterson BM. Bacterial community and groundwater quality changes in an anaerobic aquifer during groundwater recharge with aerobic recycled water. FEMS Microbiol Ecol 2013; 85:553-67. [DOI: 10.1111/1574-6941.12137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/12/2013] [Accepted: 04/24/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
| | | | | | | | - Bradley M. Patterson
- CSIRO Land and Water; Wembley WA Australia
- School of Chemistry and Biochemistry; University of Western Australia; Crawley WA Australia
| |
Collapse
|
23
|
Banerjee S, Joshi SR. Insights into Cave Architecture and the Role of Bacterial Biofilm. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-012-0149-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 142:95-121. [PMID: 24311044 DOI: 10.1007/10_2013_257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is, CCS, underground storage of gases from renewable energy production, and the production of geothermal energy, and summarize the current stat of knowledge about related geomicrobiological and geobiotechnological aspects in this chapter. Finally, recommendations are made for future research.
Collapse
|
25
|
|
26
|
Kellermann C, Selesi D, Lee N, Hügler M, Esperschütz J, Hartmann A, Griebler C. Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiol Ecol 2012; 81:172-87. [DOI: 10.1111/j.1574-6941.2012.01359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023] Open
Affiliation(s)
- Claudia Kellermann
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Draženka Selesi
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Natuschka Lee
- Lehrstuhl für Mikrobiologie; Technische Universität München; Munich; Germany
| | - Michael Hügler
- DVGW - Technologiezentrum Wasser (TZW); Karlsruhe; Germany
| | - Jürgen Esperschütz
- Research Unit Environmental Genomics; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Christian Griebler
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| |
Collapse
|
27
|
Popa R, Smith AR, Popa R, Boone J, Fisk M. Olivine-respiring bacteria isolated from the rock-ice interface in a lava-tube cave, a Mars analog environment. ASTROBIOLOGY 2012; 12:9-18. [PMID: 22165996 PMCID: PMC3264960 DOI: 10.1089/ast.2011.0639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The boundary between ice and basalt on Earth is an analogue for some near-surface environments of Mars. We investigated neutrophilic iron-oxidizing microorganisms from the basalt-ice interface in a lava tube from the Oregon Cascades with perennial ice. One of the isolates (Pseudomonas sp. HerB) can use ferrous iron Fe(II) from the igneous mineral olivine as an electron donor and O(2) as an electron acceptor. The optimum growth temperature is ∼12-14°C, but growth also occurs at 5°C. Bicarbonate is a facultative source of carbon. Growth of Pseudomonas sp. HerB as a chemolithotrophic iron oxidizer with olivine as the source of energy is favored in low O(2) conditions (e.g., 1.6% O(2)). Most likely, microbial oxidation of olivine near pH 7 requires low O(2) to offset the abiotic oxidation of iron. The metabolic capabilities of this bacterium would allow it to live in near-surface, icy, volcanic environments of Mars in the present or recent geological past and make this type of physiology a prime candidate in the search for life on Mars.
Collapse
Affiliation(s)
- Radu Popa
- Department of Biology, Portland State University, Portland, Oregon, USA.
| | | | | | | | | |
Collapse
|
28
|
Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I. Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Ecol 2011; 77:295-309. [DOI: 10.1111/j.1574-6941.2011.01111.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 2011; 98:253-79. [DOI: 10.1007/s00114-011-0775-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/27/2023]
|
30
|
Stoker CR, Cannon HN, Dunagan SE, Lemke LG, Glass BJ, Miller D, Gomez-Elvira J, Davis K, Zavaleta J, Winterholler A, Roman M, Rodriguez-Manfredi JA, Bonaccorsi R, Bell MS, Brown A, Battler M, Chen B, Cooper G, Davidson M, Fernández-Remolar D, Gonzales-Pastor E, Heldmann JL, Martínez-Frías J, Parro V, Prieto-Ballesteros O, Sutter B, Schuerger AC, Schutt J, Rull F. The 2005 MARTE Robotic Drilling Experiment in Río Tinto, Spain: objectives, approach, and results of a simulated mission to search for life in the Martian subsurface. ASTROBIOLOGY 2008; 8:921-945. [PMID: 19032053 DOI: 10.1089/ast.2007.0217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Mars Astrobiology Research and Technology Experiment (MARTE) simulated a robotic drilling mission to search for subsurface life on Mars. The drill site was on Peña de Hierro near the headwaters of the Río Tinto river (southwest Spain), on a deposit that includes massive sulfides and their gossanized remains that resemble some iron and sulfur minerals found on Mars. The mission used a fluidless, 10-axis, autonomous coring drill mounted on a simulated lander. Cores were faced; then instruments collected color wide-angle context images, color microscopic images, visible-near infrared point spectra, and (lower resolution) visible-near infrared hyperspectral images. Cores were then stored for further processing or ejected. A borehole inspection system collected panoramic imaging and Raman spectra of borehole walls. Life detection was performed on full cores with an adenosine triphosphate luciferin-luciferase bioluminescence assay and on crushed core sections with SOLID2, an antibody array-based instrument. Two remotely located science teams analyzed the remote sensing data and chose subsample locations. In 30 days of operation, the drill penetrated to 6 m and collected 21 cores. Biosignatures were detected in 12 of 15 samples analyzed by SOLID2. Science teams correctly interpreted the nature of the deposits drilled as compared to the ground truth. This experiment shows that drilling to search for subsurface life on Mars is technically feasible and scientifically rewarding.
Collapse
Affiliation(s)
- Carol R Stoker
- NASA Ames Research Center, Moffett Field, California 94035, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Fredrickson JK, Zachara JM. Electron transfer at the microbe-mineral interface: a grand challenge in biogeochemistry. GEOBIOLOGY 2008; 6:245-253. [PMID: 18498527 DOI: 10.1111/j.1472-4669.2008.00146.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interplay between microorganisms and minerals is a complex and dynamic process that has sculpted the geosphere for nearly the entire history of the Earth. The work of Dr Terry Beveridge and colleagues provided some of the first insights into metal-microbe and mineral-microbe interactions and established a foundation for subsequent detailed investigations of interactions between microorganisms and minerals. Beveridge also envisioned that interdisciplinary approaches and teams would be required to explain how individual microbial cells interact with their immediate environment at nano- or microscopic scales and that through such approaches and using emerging technologies that the details of such interactions would be revealed at the molecular level. With this vision as incentive and inspiration, a multidisciplinary, collaborative team-based investigation was initiated to probe the process of electron transfer (ET) at the microbe-mineral interface. The grand challenge to this team was to address the hypothesis that multiheme c-type cytochromes of dissimilatory metal-reducing bacteria localized to the cell exterior function as the terminal reductases in ET to Fe(III) and Mn(IV) oxides. This question has been the subject of extensive investigation for years, yet the answer has remained elusive. The team involves an integrated group of experimental and computational capabilities at US Department of Energy's Environmental Molecular Sciences Laboratory, a national scientific user facility, as the collaborative focal point. The approach involves a combination of in vitro and in vivo biologic and biogeochemical experiments and computational analyses that, when integrated, provide a conceptual model of the ET process. The resulting conceptual model will be evaluated by integrating and comparing various experimental, i.e. in vitro and in vivo ET kinetics, and theoretical results. Collectively, the grand challenge will provide a detailed view of how organisms engage with mineral surfaces to exchange energy and electron density as required for life function.
Collapse
Affiliation(s)
- J K Fredrickson
- Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA.
| | | |
Collapse
|
33
|
Hofmann BA, Farmer JD, von Blanckenburg F, Fallick AE. Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. ASTROBIOLOGY 2008; 8:87-117. [PMID: 18241094 DOI: 10.1089/ast.2007.0130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The fossil record of the subsurface biosphere is sparse. Results obtained on subsurface filamentous fabrics (SFF) from >225 paleosubsurface sites in volcanics, oxidized ores, and paleokarst of subrecent to Proterozoic age are presented. SFF are mineral encrustations on filamentous or fibrous substrates that formed in subsurface environments. SFF occur in association with low-temperature aqueous mineral assemblages and consist of tubular, micron-thick (median 1.6 micron) filaments in high spatial density, which occur as irregular masses, matted fabrics, and vertically draped features that resemble stalactites. Micron-sized filamentous centers rule out a stalactitic origin. Morphometric analysis of SFF filamentous forms demonstrates that their shape more closely resembles microbial filaments than fibrous minerals. Abiogenic filament-like forms are considered unlikely precursors of most SFF, because abiogenic forms differ in the distribution of widths and have a lower degree of curvature and a lower number of direction changes. Elemental analyses of SFF show depletion in immobile elements (e.g., Al, Th) and a systematic enrichment in As and Sb, which demonstrates a relation to environments with high flows of water. Sulfur isotopic analyses are consistent with a biological origin of a SFF sample from a Mississippi Valley-Type deposit, which is consistent with data in the literature. Fe isotopes in SFF and active analogue systems, however, allow no discrimination between biogenic and abiogenic origins. The origin of most SFF is explained as permineralized remains of microbial filaments that possibly record rapid growth during phases of high water flow that released chemical energy. It is possible that some SFF formed due to encrustation of mineral fibers. SFF share similarities with Microcodium from soil environments. SFF are a logical target in the search for past life on Mars. The macroscopic nature of many SFF allows for their relatively easy in situ recognition and targeting for more detailed microstructural and geochemical analysis.
Collapse
|
34
|
Baskar S, Baskar R, Lee N, Kaushik A, Theophilus PK. Precipitation of iron in microbial mats of the spring waters of Borra Caves, Vishakapatnam, India: some geomicrobiological aspects. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s00254-007-1159-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Barton HA, Taylor NM, Lubbers BR, Pemberton AC. DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. J Microbiol Methods 2005; 66:21-31. [PMID: 16305811 DOI: 10.1016/j.mimet.2005.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/29/2005] [Accepted: 10/13/2005] [Indexed: 10/25/2022]
Abstract
Caves represent a unique environment in which to study subsurface geomicrobial interactions and processes. One of the primary techniques used to study such geologic samples is molecular phylogenetic analysis, but this technique is hampered by low microbial biomass and calcium in the host rock, often leading to poor and irreproducible DNA extraction. We describe an improved protocol to recover extremely low amounts of DNA from calcium-rich geologic samples. This protocol relies on the use of the synthetic DNA molecule poly-dIdC, to act both as blocking agent and carrier molecule to increase the yield of DNA, and dialysis to remove calcium inhibitors of PCR amplification. Further, we demonstrate that many traditionally used laboratory substrates contain microbial DNA that can be amplified through the polymerase chain reaction (PCR) and contaminate molecular phylogenetic profiles. While the number of potential contaminants can be minimized, it cannot be eliminated from extraction techniques. We have therefore established the low-biomass contaminant (LBC) database, which contains the 16S rRNA gene sequences of species that have been identified as common laboratory contaminants. These identified contaminants provide a reference database to allow investigators to critically evaluate certain species identified within their phylogenetic profile when examining such low-biomass environments.
Collapse
Affiliation(s)
- H A Barton
- Department of Biological Sciences, Northern Kentucky University, SC 204D, Nunn Drive, Highland Heights, KY 41099, USA.
| | | | | | | |
Collapse
|
36
|
Engel AS, Porter ML, Stern LA, Quinlan S, Bennett PC. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic âEpsilonproteobacteriaâ. FEMS Microbiol Ecol 2004; 51:31-53. [PMID: 16329854 DOI: 10.1016/j.femsec.2004.07.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 06/09/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022] Open
Abstract
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes had organic carbon isotope values (mean delta13C=-34.7 per thousand, 1sigma=3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta13C=-7.4 per thousand for two springs, n=8). Bacterial diversity was low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the "Epsilonproteobacteria" (68%), with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted from the spring orifices downstream, corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the "Epsilonproteobacteria" maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystems through chemolithoautotrophy and expand the evolutionary and ecological views of "Epsilonproteobacteria" in terrestrial habitats.
Collapse
Affiliation(s)
- Annette Summers Engel
- Department of Geological Sciences, Research Group for Microbial Geochemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
37
|
Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol Rev 2001; 25:175-243. [PMID: 11250035 DOI: 10.1111/j.1574-6976.2001.tb00576.x] [Citation(s) in RCA: 352] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Thermophilic and hyperthermophilic Archaea and Bacteria have been isolated from marine hydrothermal systems, heated sediments, continental solfataras, hot springs, water heaters, and industrial waste. They catalyze a tremendous array of widely varying metabolic processes. As determined in the laboratory, electron donors in thermophilic and hyperthermophilic microbial redox reactions include H2, Fe(2+), H2S, S, S2O3(2-), S4O6(2-), sulfide minerals, CH4, various mono-, di-, and hydroxy-carboxylic acids, alcohols, amino acids, and complex organic substrates; electron acceptors include O2, Fe(3+), CO2, CO, NO3(-), NO2(-), NO, N2O, SO4(2-), SO3(2-), S2O3(2-), and S. Although many assimilatory and dissimilatory metabolic reactions have been identified for these groups of microorganisms, little attention has been paid to the energetics of these reactions. In this review, standard molal Gibbs free energies (DeltaGr(0)) as a function of temperature to 200 degrees C are tabulated for 370 organic and inorganic redox, disproportionation, dissociation, hydrolysis, and solubility reactions directly or indirectly involved in microbial metabolism. To calculate values of DeltaGr(0) for these and countless other reactions, the apparent standard molal Gibbs free energies of formation (DeltaG(0)) at temperatures to 200 degrees C are given for 307 solids, liquids, gases, and aqueous solutes. It is shown that values of DeltaGr(0) for many microbially mediated reactions are highly temperature dependent, and that adopting values determined at 25 degrees C for systems at elevated temperatures introduces significant and unnecessary errors. The metabolic processes considered here involve compounds that belong to the following chemical systems: H-O, H-O-N, H-O-S, H-O-N-S, H-O-C(inorganic), H-O-C, H-O-N-C, H-O-S-C, H-O-N-S-C(amino acids), H-O-S-C-metals/minerals, and H-O-P. For four metabolic reactions of particular interest in thermophily and hyperthermophily (knallgas reaction, anaerobic sulfur and nitrate reduction, and autotrophic methanogenesis), values of the overall Gibbs free energy (DeltaGr) as a function of temperature are calculated for a wide range of chemical compositions likely to be present in near-surface and deep hydrothermal and geothermal systems.
Collapse
Affiliation(s)
- J P Amend
- Department of Earth and Planetary Sciences, Washington University, CB 1169 St. Louis, MO 63130, USA.
| | | |
Collapse
|
38
|
Anderson RT, Chapelle FH, Lovley DR. Comment on "Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2001; 35:1556-1559. [PMID: 11348102 DOI: 10.1021/es990583g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
39
|
Gevertz D, Telang AJ, Voordouw G, Jenneman GE. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 2000; 66:2491-501. [PMID: 10831429 PMCID: PMC110567 DOI: 10.1128/aem.66.6.2491-2501.2000] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial strains CVO and FWKO B were isolated from produced brine at the Coleville oil field in Saskatchewan, Canada. Both strains are obligate chemolithotrophs, with hydrogen, formate, and sulfide serving as the only known energy sources for FWKO B, whereas sulfide and elemental sulfur are the only known electron donors for CVO. Neither strain uses thiosulfate as an energy source. Both strains are microaerophiles (1% O(2)). In addition, CVO grows by denitrification of nitrate or nitrite whereas FWKO B reduces nitrate only to nitrite. Elemental sulfur is the sole product of sulfide oxidation by FWKO B, while CVO produces either elemental sulfur or sulfate, depending on the initial concentration of sulfide. Both strains are capable of growth under strictly autotrophic conditions, but CVO uses acetate as well as CO(2) as its sole carbon source. Neither strain reduces sulfate; however, FWKO B reduces sulfur and displays chemolithoautotrophic growth in the presence of elemental sulfur, hydrogen, and CO(2). Both strains grow at temperatures between 5 and 40 degrees C. CVO is capable of growth at NaCl concentrations as high as 7%. The present 16s rRNA analysis suggests that both strains are members of the epsilon subdivision of the division Proteobacteria, with CVO most closely related to Thiomicrospira denitrifcans and FWKO B most closely related to members of the genus Arcobacter. The isolation of these two novel chemolithotrophic sulfur bacteria from oil field brine suggests the presence of a subterranean sulfur cycle driven entirely by hydrogen, carbon dioxide, and nitrate.
Collapse
Affiliation(s)
- D Gevertz
- The Agouron Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
40
|
Anderson RT, Chapelle FH, Lovley DR. Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 1998; 281:976-7. [PMID: 9703509 DOI: 10.1126/science.281.5379.976] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It has been proposed that hydrogen produced from basalt-ground-water interactions may serve as an energy source that supports the existence of microorganisms in the deep subsurface on Earth and possibly on other planets. However, experiments demonstrated that hydrogen is not produced from basalt at an environmentally relevant, alkaline pH. Small amounts of hydrogen were produced at a lower pH in laboratory incubations, but even this hydrogen production was transitory. Furthermore, geochemical considerations suggest that previously reported rates of hydrogen production cannot be sustained over geologically significant time frames. These findings indicate that hydrogen production from basalt-ground-water interactions may not support microbial metabolism in the subsurface.
Collapse
Affiliation(s)
- RT Anderson
- R. T. Anderson, Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA 01003, USA. F. H. Chapelle, U.S. Geological Survey, Columbia, SC 29210-7651, USA. D. R. Lovley, Department of Microbiology, University of Mass
| | | | | |
Collapse
|
41
|
Abstract
The number of prokaryotes and the total amount of their cellular carbon on earth are estimated to be 4-6 x 10(30) cells and 350-550 Pg of C (1 Pg = 10(15) g), respectively. Thus, the total amount of prokaryotic carbon is 60-100% of the estimated total carbon in plants, and inclusion of prokaryotic carbon in global models will almost double estimates of the amount of carbon stored in living organisms. In addition, the earth's prokaryotes contain 85-130 Pg of N and 9-14 Pg of P, or about 10-fold more of these nutrients than do plants, and represent the largest pool of these nutrients in living organisms. Most of the earth's prokaryotes occur in the open ocean, in soil, and in oceanic and terrestrial subsurfaces, where the numbers of cells are 1.2 x 10(29), 2.6 x 10(29), 3.5 x 10(30), and 0. 25-2.5 x 10(30), respectively. The numbers of heterotrophic prokaryotes in the upper 200 m of the open ocean, the ocean below 200 m, and soil are consistent with average turnover times of 6-25 days, 0.8 yr, and 2.5 yr, respectively. Although subject to a great deal of uncertainty, the estimate for the average turnover time of prokaryotes in the subsurface is on the order of 1-2 x 10(3) yr. The cellular production rate for all prokaryotes on earth is estimated at 1.7 x 10(30) cells/yr and is highest in the open ocean. The large population size and rapid growth of prokaryotes provides an enormous capacity for genetic diversity.
Collapse
Affiliation(s)
- W B Whitman
- Department of Microbiology, University of Georgia, Athens GA 30602, USA.
| | | | | |
Collapse
|
42
|
|
43
|
McKinley IG, Hagenlocher I, Alexander WR, Schwyn B. Microbiology in nuclear waste disposal: interfaces and reaction fronts. FEMS Microbiol Rev 1997; 20:545-56. [PMID: 9340002 DOI: 10.1111/j.1574-6976.1997.tb00337.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It is now generally acknowledged that microbial populations will be present within nuclear waste repositories and that the consequences of such activity on repository performance must be assessed. Various modelling approaches--based either on mass balance/thermodynamics or on kinetics--have been developed to provide scoping estimates of the possible development of these populations. Past work has focused on particular areas of the repository which can be considered relatively homogeneous and hence can be represented by some kind of 'box' or 'mixing tank'. In reality, however, waste repositories include a range of engineering materials (steel, concrete, etc.) which are emplaced at depth in a rock formation. Strong chemical gradients--of the type which may be exploited by lithoautotrophic microbial populations--are likely to be found at the contacts between different materials and at the interface between the engineered structures and the host rock. Over the long timescales considered, solute transport processes will cause the locations of strong chemical gradients to move, forming reaction fronts. The high-pH plume resulting from the leaching of cement/concrete in some repository types is a particularly important example of such a reaction front. Redox fronts, which may occur in different areas of all kinds of repositories, also play an important role and would be locations where microbial activity is likely to be significant. In this paper, the key microbial processes expected at (or around) interfaces and fronts will be discussed, with particular emphasis on the development of quantitative models. The applicability of the models used wil be tested by considering similar fronts which can be found in natural systems.
Collapse
Affiliation(s)
- I G McKinley
- Nagra (National Cooperative for the Disposal of Radioactive Waste), Wettingen, Switzerland.
| | | | | | | |
Collapse
|