1
|
Zhang L, Lin TY, Liu WT, Ling F. Toward Characterizing Environmental Sources of Non-tuberculous Mycobacteria (NTM) at the Species Level: A Tutorial Review of NTM Phylogeny and Phylogenetic Classification. ACS ENVIRONMENTAL AU 2024; 4:127-141. [PMID: 38765059 PMCID: PMC11100324 DOI: 10.1021/acsenvironau.3c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 05/21/2024]
Abstract
Nontuberculous mycobacteria (NTM) are any mycobacteria that do not cause tuberculosis or leprosy. While the majority of NTM are harmless and some of them are considered probiotic, a growing number of people are being diagnosed with NTM infections. Therefore, their detection in the environment is of interest to clinicians, environmental microbiologists, and water quality researchers alike. This review provides a tutorial on the foundational approaches for taxonomic classifications, with a focus on the phylogenetic relationships among NTM revealed by the 16S rRNA gene, rpoB gene, and hsp65 gene, and by genome-based approaches. Recent updates on the Mycobacterium genus taxonomy are also provided. A synthesis on the habitats of 189 mycobacterial species in a genome-based taxonomy framework was performed, with attention paid to environmental sources (e.g., drinking water, aquatic environments, and soil). The 16S rRNA gene-based classification accuracy for various regions was evaluated (V3, V3-V4, V3-V5, V4, V4-V5, and V1-V9), revealing overall excellent genus-level classification (up to 100% accuracy) yet only modest performance (up to 63.5% accuracy) at the species level. Future research quantifying NTM species in water systems, determining the effects of water treatment and plumbing conditions on their variations, developing high throughput species-level characterization tools for use in the environment, and incorporating the characterization of functions in a phylogenetic framework will likely fill critical knowledge gaps. We believe this tutorial will be useful for researchers new to the field of molecular or genome-based taxonomic profiling of environmental microbiomes. Experts may also find this review useful in terms of the selected key findings of the past 30 years, recent updates on phylogenomic analyses, as well as a synthesis of the ecology of NTM in a phylogenetic framework.
Collapse
Affiliation(s)
- Lin Zhang
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tzu-Yu Lin
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wen-Tso Liu
- Department
of Civil and Environmental Engineering, University of Illinois, Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
2
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
3
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
4
|
Imagining Kant's theory of scientific knowledge: philosophy and education in microbiology. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022:10.1007/s10123-022-00315-z. [PMID: 36562899 PMCID: PMC10397139 DOI: 10.1007/s10123-022-00315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
In the field of observational and experimental natural sciences (as is the case for microbiology), recent decades have been overinfluenced by overwhelming technological advances, and the space of abstraction has been frequently disdained. However, the predictable future of biological sciences should necessarily recover the synthetic dimension of "natural philosophy." We should understand the nature of Microbiology as Science, and we should educate microbiology scientists in the process of thinking. The critical process of thinking "knowing what we can know" is entirely based on Kant's Critique of Pure Reason. However, this book is extremely difficult to read (even for Kant himself) and almost inaccessible to modern experimental natural scientists. Professional philosophers might have been able to explain Kant to scientists; unfortunately, however, they do not get involved this type of education for science. The intention of this review is to introduce natural scientists, particularly microbiologists and evolutionary biologists, to the main rigorous processes (aesthetics, analytics, dialectics) that Kant identified to gain access to knowledge, always a partial knowledge, given that the correspondence between truth and reality is necessarily incomplete. This goal is attempted by producing a number of "images" (figures) to help the non-expert reader grasp the essential of Kant's message and by making final observations paralleling the theory of scientific knowledge with biological evolutionary processes and the role of evolutionary epistemology in science education. Finally, the influence of Kant's postulates in key-fields of microbiology, from taxonomy to systems biology is discussed.
Collapse
|
5
|
Acuff H, G. Aldrich C. A Review of Application Strategies and Efficacy of Probiotics in Pet Food. Vet Med Sci 2022. [DOI: 10.5772/intechopen.105829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In companion animal nutrition, probiotics (direct-fed microbials) are marketed as functional ingredients that add value to pet foods due to the impact they have on gastrointestinal and immune health of dogs and cats. The nature of the beneficial effect each probiotic strain exerts depends on its metabolic properties and perhaps most importantly, the arrival of a sufficient number of viable cells to the large bowel of the host. Pet food manufacturing processes are designed to improve food safety and prolong shelf-life, which is counterproductive to the survival of direct-fed microbials. Therefore, a prerequisite for the effective formulation of pet foods with probiotics is an understanding of the conditions each beneficial bacterial strain needs to survive. The aims of this chapter are: (1) To summarize the inherent characteristics of probiotic strains used in commercial pet foods, and (2) To review recently published literature on the applications of probiotics to pet foods and their associated challenges to viability.
Collapse
|
6
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
7
|
Dolan JR. Re-visiting The Ridiculed Rival of Leeuwenhoek: Louis Joblot (1645 - 1723). Protist 2022; 173:125882. [DOI: 10.1016/j.protis.2022.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]
|
8
|
Averill C, Werbin ZR, Atherton KF, Bhatnagar JM, Dietze MC. Soil microbiome predictability increases with spatial and taxonomic scale. Nat Ecol Evol 2021; 5:747-756. [PMID: 33888877 DOI: 10.1038/s41559-021-01445-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023]
Abstract
Soil microorganisms shape ecosystem function, yet it remains an open question whether we can predict the composition of the soil microbiome in places before observing it. Furthermore, it is unclear whether the predictability of microbial life exhibits taxonomic- and spatial-scale dependence, as it does for macrobiological communities. Here, we leverage multiple large-scale soil microbiome surveys to develop predictive models of bacterial and fungal community composition in soil, then test these models against independent soil microbial community surveys from across the continental United States. We find remarkable scale dependence in community predictability. The predictability of bacterial and fungal communities increases with the spatial scale of observation, and fungal predictability increases with taxonomic scale. These patterns suggest that there is an increasing importance of deterministic versus stochastic processes with scale, consistent with findings in plant and animal communities, suggesting a general scaling relationship across biology. Biogeochemical functional groups and high-level taxonomic groups of microorganisms were equally predictable, indicating that traits and taxonomy are both powerful lenses for understanding soil communities. By focusing on out-of-sample prediction, these findings suggest an emerging generality in our understanding of the soil microbiome, and that this understanding is fundamentally scale dependent.
Collapse
Affiliation(s)
- Colin Averill
- Department of Biology, Boston University, Boston, MA, USA. .,Department of Earth & Environment, Boston University, Boston, MA, USA. .,Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Zoey R Werbin
- Department of Biology, Boston University, Boston, MA, USA.,Department of Earth & Environment, Boston University, Boston, MA, USA
| | - Kathryn F Atherton
- Department of Biology, Boston University, Boston, MA, USA.,Graduate Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Michael C Dietze
- Department of Earth & Environment, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Weiner DM, James WD. Acne and antibiotics: a look back. Int J Dermatol 2021; 60:1019-1027. [PMID: 33847369 DOI: 10.1111/ijd.15550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Affiliation(s)
- David M Weiner
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William D James
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Fry M. Ontologically simple theories do not indicate the true nature of complex biological systems: three test cases. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2020; 42:17. [PMID: 32346811 DOI: 10.1007/s40656-020-00310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
A longstanding philosophical premise perceives simplicity as a desirable attribute of scientific theories. One of several raised justifications for this notion is that simple theories are more likely to indicate the true makeup of natural systems. Qualitatively parsimonious hypotheses and theories keep to a minimum the number of different postulated entities within a system. Formulation of such ontologically simple working hypotheses proved to be useful in the experimental probing of narrowly defined bio systems. It is less certain, however, whether qualitatively parsimonious theories are effective indicators of the true nature of complex biological systems. This paper assesses the success of ontologically simple theories in envisaging the makeup of three complex systems in bacteriology, immunology, and molecular biology. Evidence shows that parsimonious theories completely misconstrued the actual ontologically complex constitutions of the three examined systems. Since evolution and selective pressures typically produce ontologically intricate rather than simple bio systems, qualitatively parsimonious theories are mostly inapt indicators of the true nature of complex biological systems.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649, 31096, Bat Galim, Haifa, Israel.
| |
Collapse
|
11
|
Abstract
There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology.
Collapse
Affiliation(s)
- Maureen A O'Malley
- UMR5164, University of Bordeaux, 146 Rue Leo Saignat, Bordeaux 33076, France
| |
Collapse
|
12
|
Ang MLT, Pethe K. Contribution of high-content imaging technologies to the development of anti-infective drugs. Cytometry A 2016; 89:755-60. [PMID: 27272127 PMCID: PMC5089693 DOI: 10.1002/cyto.a.22885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 12/18/2022]
Abstract
Originally developed to study fundamental aspects of cellular biology, high‐content imaging (HCI) was rapidly adapted to study host–pathogen interactions at the cellular level and adopted as a technology of choice to unravel disease biology. HCI platforms allow for the visualization and quantification of discrete phenotypes that cannot be captured using classical screening approaches. A key advantage of high‐content screening technologies lies in the possibility to develop and interrogate physiologically significant, predictive ex vivo disease models that reproduce complex conditions relevant for infection. Here we review and discuss recent advances in HCI technologies and chemical biology approaches that are contributing to an increased understanding of the intricate host–pathogen interrelationship on the cellular level, and which will foster the development of novel therapeutic approaches for the treatment of human bacterial and protozoan infections. © 2016 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC
Collapse
Affiliation(s)
- Michelle Lay Teng Ang
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
The fur gene as a new phylogenetic marker for Vibrionaceae species identification. Appl Environ Microbiol 2015; 81:2745-52. [PMID: 25662978 DOI: 10.1128/aem.00058-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial taxonomy is essential in all areas of microbial science. The 16S rRNA gene sequence is one of the main phylogenetic species markers; however, it does not provide discrimination in the family Vibrionaceae, where other molecular techniques allow better interspecies resolution. Although multilocus sequence analysis (MLSA) has been used successfully in the identification of Vibrio species, the technique has several limitations. They include the fact that several locus amplifications and sequencing have to be performed, which still sometimes lead to doubtful identifications. Using an in silico approach based on genomes from 103 Vibrionaceae strains, we demonstrate here the high resolution of the fur gene in the identification of Vibrionaceae species and its usefulness as a phylogenetic marker. The fur gene showed within-species similarity higher than 95%, and the relationships inferred from its use were in agreement with those observed for 16S rRNA analysis and MLSA. Furthermore, we developed a fur PCR sequencing-based method that allowed identification of Vibrio species. The discovery of the phylogenetic power of the fur gene and the development of a PCR method that can be used in amplification and sequencing of the gene are of general interest whether for use alone or together with the previously suggested loci in an MLSA.
Collapse
|
14
|
Urbanczyk H, Ogura Y, Hayashi T. Contrasting inter- and intraspecies recombination patterns in the "Harveyi clade" vibrio collected over large spatial and temporal scales. Genome Biol Evol 2014; 7:71-80. [PMID: 25527835 PMCID: PMC4316622 DOI: 10.1093/gbe/evu269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombination plays an important role in the divergence of bacteria, but the frequency of interspecies and intraspecies recombination events remains poorly understood. We investigated recombination events that occurred within core genomes of 35 Vibrio strains (family Vibrionaceae, Gammaproteobacteria), from six closely related species in the so-called “Harveyi clade.” The strains were selected from a collection of strains isolated in the last 90 years, from various environments worldwide. We found a close relationship between the number of interspecies recombination events within core genomes of the 35 strains and the overall genomic identity, as inferred from calculations of the average nucleotide identity. The relationship between the overall nucleotide identity and the number of detected interspecies recombination events was comparable when analyzing strains isolated over 80 years apart, from different hemispheres, or from different ecologies, as well as in strains isolated from the same geographic location within a short time frame. We further applied the same method of detecting recombination events to analyze 11 strains of Vibrio campbellii, and identified disproportionally high number of intraspecies recombination events within the core genomes of some, but not all, strains. The high number of recombination events was detected between V. campbellii strains that have significant temporal (over 18 years) and geographical (over 10,000 km) differences in their origins of isolation. Results of this study reveal a remarkable stability of Harveyi clade species, and give clues about the origins and persistence of species in the clade.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
15
|
Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME, Thompson FL, Thompson CC. Genotype to phenotype: identification of diagnostic vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 2014; 64:357-365. [PMID: 24505074 DOI: 10.1099/ijs.0.057927-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vibrios are ubiquitous in the aquatic environment and can be found in association with animal or plant hosts. The range of ecological relationships includes pathogenic and mutualistic associations. To gain a better understanding of the ecology of these microbes, it is important to determine their phenotypic features. However, the traditional phenotypic characterization of vibrios has been expensive, time-consuming and restricted in scope to a limited number of features. In addition, most of the commercial systems applied for phenotypic characterization cannot characterize the broad spectrum of environmental strains. A reliable and possible alternative is to obtain phenotypic information directly from whole genome sequences. The aim of the present study was to evaluate the usefulness of whole genome sequences as a source of phenotypic information. We performed a comparison of the vibrio phenotypes obtained from the literature with the phenotypes obtained from whole genome sequences. We observed a significant correlation between the previously published phenotypic data and the phenotypic data retrieved from whole genome sequences of vibrios. Analysis of 26 vibrio genomes revealed that all genes coding for the specific proteins involved in the metabolic pathways responsible for positive phenotypes of the 14 diagnostic features (Voges-Proskauer reaction, indole production, arginine dihydrolase, ornithine decarboxylase, utilization of myo-inositol, sucrose and L-leucine, and fermentation of D-mannitol, D-sorbitol, L-arabinose, trehalose, cellobiose, D-mannose and D-galactose) were found in the majority of the vibrios genomes. Vibrio species that were negative for a given phenotype revealed the absence of all or several genes involved in the respective biochemical pathways, indicating the utility of this approach to characterize the phenotypes of vibrios. The absence of the global regulation and regulatory proteins in the Vibrio parahaemolyticus genome indicated a non-vibrio phenotype. Whole genome sequences represent an important source for the phenotypic identification of vibrios.
Collapse
Affiliation(s)
| | - Graciela M Dias
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Luciane Chimetto
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Mariana E Campeão
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | |
Collapse
|
16
|
Duncan MJ, Bourrat P, DeBerardinis J, O’Malley MA. Small Things, Big Consequences: Microbiological Perspectives on Biology. THE PHILOSOPHY OF BIOLOGY 2013. [DOI: 10.1007/978-94-007-6537-5_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Back to the kitchen: Food-grade agar is a low-cost alternative to bacteriological agar. Anal Biochem 2012; 429:140-1. [DOI: 10.1016/j.ab.2012.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022]
|
18
|
O'Malley MA. What did Darwin say about microbes, and how did microbiology respond? Trends Microbiol 2009; 17:341-7. [PMID: 19679480 DOI: 10.1016/j.tim.2009.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/10/2009] [Accepted: 05/15/2009] [Indexed: 11/15/2022]
Abstract
Although it is commonly assumed that Darwin had nothing to say about microbes, he did in fact say quite a lot. He included microbes in his Beagle studies of the geographical distribution of organisms and used microscopic organisms as explicit exemplars of how adaptation did not imply increasing complexity. Darwin often discussed microorganismal classification, origins and experimentation in his correspondence. But despite his interests in microbial phenomena, Darwin's impact on microbiological thinking of the late nineteenth century was negligible. This limited response may be connected to today's assumptions about Darwin's neglect of microbes.
Collapse
Affiliation(s)
- Maureen A O'Malley
- Egenis (ESRC Centre for Genomics in Society), University of Exeter, Byrne House, St Germans Road, Exeter, EX4 4PJ, UK. M.A.O'
| |
Collapse
|
19
|
O'Malley MA. 'Everything is everywhere: but the environment selects': ubiquitous distribution and ecological determinism in microbial biogeography. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2008; 39:314-25. [PMID: 18761283 DOI: 10.1016/j.shpsc.2008.06.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 01/17/2008] [Indexed: 05/20/2023]
Abstract
Recent discoveries of geographical patterns in microbial distribution are undermining microbiology's exclusively ecological explanations of biogeography and their fundamental assumption that 'everything is everywhere: but the environment selects'. This statement was generally promulgated by Dutch microbiologist Martinus Wilhelm Beijerinck early in the twentieth century and specifically articulated in 1934 by his compatriot, Lourens G. M. Baas Becking. The persistence of this precept throughout twentieth-century microbiology raises a number of issues in relation to its formulation and widespread acceptance. This paper will trace the conceptual history of Beijerinck's claim that 'everything is everywhere' in relation to a more general account of its theoretical, experimental and institutional context. His principle also needs to be situated in relationship to plant and animal biogeography, which, this paper will argue, forms a continuum of thought with microbial biogeography. Finally, a brief overview of the contemporary microbiological research challenging 'everything is everywhere' reveals that philosophical issues from Beijerinck's era of microbiology still provoke intense discussion in twenty-first century investigations of microbial biogeography.
Collapse
Affiliation(s)
- Maureen A O'Malley
- Egenis, University of Exeter, Byrne House, St Germans Road, Exeter EX4 4PJ, UK. m.a.o'
| |
Collapse
|
20
|
Affiliation(s)
- David L Kirk
- Department of Biology, Campus Box 1229, Washington University, St. Louis, MO 63130, USA.
| | | |
Collapse
|
21
|
Abstract
Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years.
Collapse
Affiliation(s)
- Fabiano L Thompson
- Laboratory of Microbiology, Ghent University, K.L. Ledeganckstraat 35, Ghent 9000, Belgium.
| | | | | |
Collapse
|