1
|
Bi Z, Wang T, Wang X, Xu H, Wu Y, Zhao C, Wu Z, Yu J, Zhang L. FpPEX5 and FpPEX7 are involved in the growth, reproduction, DON toxin production, and pathogenicity in Fusarium pseudograminearum. Int J Biol Macromol 2024; 270:132227. [PMID: 38734339 DOI: 10.1016/j.ijbiomac.2024.132227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Fusarium crown rot, caused by Fusarium pseudograminearum, is a devastating disease affecting the yield and quality of cereal crops. Peroxisomes are single-membrane organelles that play a critical role in various biological processes in eukaryotic cells. To functionally characterise peroxisome biosynthetic receptor proteins FpPEX5 and FpPEX7 in F. pseudograminearum, we constructed deletion mutants, ΔFpPEX5 and ΔFpPEX7, and complementary strains, ΔFpPEX5-C and ΔFpPEX7-C, and analysed the functions of FpPEX5 and FpPEX7 proteins using various phenotypic observations. The deletion of FpPEX5 and FpPEX7 resulted in a significant deficiency in mycelial growth and conidiation and blocked the peroxisomal targeting signal 1 and peroxisomal targeting signal 2 pathways, which are involved in peroxisomal matrix protein transport, increasing the accumulation of lipid droplets and reactive oxygen species. The deletion of FpPEX5 and FpPEX7 may reduce the formation of toxigenic bodies and decrease the pathogenicity of F. pseudograminearum. These results indicate that FpPEX5 and FpPEX7 play vital roles in the growth, asexual reproduction, virulence, and fatty acid utilisation of F. pseudograminearum. This study provides a theoretical basis for controlling stem rot in wheat.
Collapse
Affiliation(s)
- Zhuoyu Bi
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Tian Wang
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Xiaofeng Wang
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Hao Xu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Yueming Wu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Chen Zhao
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Zhen Wu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Jinfeng Yu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China.
| | - Li Zhang
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China.
| |
Collapse
|
2
|
Krishna CK, Schmidt N, Tippler BG, Schliebs W, Jung M, Winklhofer KF, Erdmann R, Kalel VC. Molecular basis of the glycosomal targeting of PEX11 and its mislocalization to mitochondrion in trypanosomes. Front Cell Dev Biol 2023; 11:1213761. [PMID: 37664461 PMCID: PMC10469627 DOI: 10.3389/fcell.2023.1213761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PEX19 binding sites are essential parts of the targeting signals of peroxisomal membrane proteins (mPTS). In this study, we characterized PEX19 binding sites of PEX11, the most abundant peroxisomal and glycosomal membrane protein from Trypanosoma brucei and Saccharomyces cerevisiae. TbPEX11 contains two PEX19 binding sites, one close to the N-terminus (BS1) and a second in proximity to the first transmembrane domain (BS2). The N-terminal BS1 is highly conserved across different organisms and is required for maintenance of the steady-state concentration and efficient targeting to peroxisomes and glycosomes in both baker's yeast and Trypanosoma brucei. The second PEX19 binding site in TbPEX11 is essential for its glycosomal localization. Deletion or mutations of the PEX19 binding sites in TbPEX11 or ScPEX11 results in mislocalization of the proteins to mitochondria. Bioinformatic analysis indicates that the N-terminal region of TbPEX11 contains an amphiphilic helix and several putative TOM20 recognition motifs. We show that the extreme N-terminal region of TbPEX11 contains a cryptic N-terminal signal that directs PEX11 to the mitochondrion if its glycosomal transport is blocked.
Collapse
Affiliation(s)
- Chethan K. Krishna
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nadine Schmidt
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Bettina G. Tippler
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Wolfgang Schliebs
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Martin Jung
- Department of Medical Biochemistry and Molecular Biology, Saarland University, Homburg, Germany
| | - Konstanze F. Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Ralf Erdmann
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Vishal C. Kalel
- Department of Systems Biochemistry, Institute for Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Zhang H, Wang Z, Li X, Gao X, Dai Z, Cui Y, Zhi Y, Liu Q, Zhai H, Gao S, Zhao N, He S. The IbBBX24-IbTOE3-IbPRX17 module enhances abiotic stress tolerance by scavenging reactive oxygen species in sweet potato. THE NEW PHYTOLOGIST 2022; 233:1133-1152. [PMID: 34773641 DOI: 10.1111/nph.17860] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 05/15/2023]
Abstract
Soil salinity and drought limit sweet potato yield. Scavenging of reactive oxygen species (ROS) by peroxidases (PRXs) is essential during plant stress responses, but how PRX expression is regulated under abiotic stress is not well understood. Here, we report that the B-box (BBX) family transcription factor IbBBX24 activates the expression of the class III peroxidase gene IbPRX17 by binding to its promoter. Overexpression of IbBBX24 and IbPRX17 significantly improved the tolerance of sweet potato to salt and drought stresses, whereas reducing IbBBX24 expression increased their susceptibility. Under abiotic stress, IbBBX24- and IbPRX17-overexpression lines showed higher peroxidase activity and lower H2 O2 accumulation compared with the wild-type. RNA sequencing analysis revealed that IbBBX24 modulates the expression of genes encoding ROS scavenging enzymes, including PRXs. Moreover, interaction between IbBBX24 and the APETALA2 (AP2) protein IbTOE3 enhances the ability of IbBBX24 to activate IbPRX17 transcription. Overexpression of IbTOE3 improved the tolerance of tobacco plants to salt and drought stresses by scavenging ROS. Together, our findings elucidate the mechanism underlying the IbBBX24-IbTOE3-IbPRX17 module in response to abiotic stress in sweet potato and identify candidate genes for developing elite crop varieties with enhanced abiotic stress tolerance.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhen Wang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xu Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xiaoru Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yufei Cui
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Yuhai Zhi
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Qingchang Liu
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaopei Gao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis & Utilization and Joint Laboratory for International Cooperation in Crop Molecular Breeding, College of Agronomy & Biotechnology, Ministry of Education, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|
5
|
Su H, Zhao Y, Zhou J, Feng H, Jiang D, Zhang KQ, Yang J. Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 2015; 92:357-368. [PMID: 26526919 DOI: 10.1111/brv.12233] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 11/29/2022]
Abstract
Nematode-trapping fungi (NTF) are potential biological control agents against plant- and animal-parasitic nematodes. These fungi produce diverse trapping devices (traps) to capture, kill, and digest nematodes as food sources. Most NTF can live as both saprophytes and parasites. Traps are not only the weapons that NTF use to capture and infect nematodes, but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Formation of traps and their numbers are closely related to the nematicidal activity of NTF, so the mechanisms governing trap formation have become a focus of research on NTF. Recently, much progress has been made in our understanding of trap formation, evolution, and the genome, proteome and transcriptome of NTF. Here we provide a comprehensive overview of recent advances in research on traps of NTF. Various inducers of trap formation, trap development, structural properties and evolution of traps are summarized and discussed. We specifically discuss the latest studies of NTF based on genomic, proteomic and transcriptomic analyses.
Collapse
Affiliation(s)
- Hao Su
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Yong Zhao
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Jing Zhou
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Huihua Feng
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Dewei Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, 650223, China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, No. 2 North Cuihu Road, Kunming, 650091, China
| |
Collapse
|
6
|
Ravin NV, Eldarov MA, Kadnikov VV, Beletsky AV, Schneider J, Mardanova ES, Smekalova EM, Zvereva MI, Dontsova OA, Mardanov AV, Skryabin KG. Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics 2013; 14:837. [PMID: 24279325 PMCID: PMC3866509 DOI: 10.1186/1471-2164-14-837] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 11/15/2013] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Hansenula polymorpha DL1 is a methylotrophic yeast, widely used in fundamental studies of methanol metabolism, peroxisome biogenesis and function, and also as a microbial cell factory for production of recombinant proteins and metabolic engineering towards the goal of high temperature ethanol production. RESULTS We have sequenced the 9 Mbp H. polymorpha DL1 genome and performed whole-genome analysis for the H. polymorpha transcriptome obtained from both methanol- and glucose-grown cells. RNA-seq analysis revealed the complex and dynamic character of the H. polymorpha transcriptome under the two studied conditions, identified abundant and highly unregulated expression of 40% of the genome in methanol grown cells, and revealed alternative splicing events. We have identified subtelomerically biased protein families in H. polymorpha, clusters of LTR elements at G + C-poor chromosomal loci in the middle of each of the seven H. polymorpha chromosomes, and established the evolutionary position of H. polymorpha DL1 within a separate yeast clade together with the methylotrophic yeast Pichia pastoris and the non-methylotrophic yeast Dekkera bruxellensis. Intergenome comparisons uncovered extensive gene order reshuffling between the three yeast genomes. Phylogenetic analyses enabled us to reveal patterns of evolution of methylotrophy in yeasts and filamentous fungi. CONCLUSIONS Our results open new opportunities for in-depth understanding of many aspects of H. polymorpha life cycle, physiology and metabolism as well as genome evolution in methylotrophic yeasts and may lead to novel improvements toward the application of H. polymorpha DL-1 as a microbial cell factory.
Collapse
Affiliation(s)
- Nikolai V Ravin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Michael A Eldarov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Vitaly V Kadnikov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Alexey V Beletsky
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Jessica Schneider
- Institute for Bioinformatics, Center for Biotechnology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Eugenia S Mardanova
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Elena M Smekalova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119999 Moscow, Russia and Belozersky Institute, Moscow State University, Leninskie Gory 1, Bldg. 40, 119991 Moscow, Russia
| | - Andrey V Mardanov
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| | - Konstantin G Skryabin
- Centre “Bioengineering” of RAS, Prosp. 60-let Oktyabrya, bld. 7-1, Moscow 117312, Russia
| |
Collapse
|
7
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
8
|
Peroxisomes and peroxisomal disorders: The main facts. ACTA ACUST UNITED AC 2010; 62:615-25. [DOI: 10.1016/j.etp.2009.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 08/12/2009] [Accepted: 08/16/2009] [Indexed: 11/23/2022]
|
9
|
Yernaux C, Fransen M, Brees C, Lorenzen S, Michels PAM. Trypanosoma bruceiglycosomal ABC transporters: identification and membrane targeting. Mol Membr Biol 2009; 23:157-72. [PMID: 16754359 DOI: 10.1080/09687860500460124] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Trypanosomes contain unique peroxisome-like organelles designated glycosomes which sequester enzymes involved in a variety of metabolic processes including glycolysis. We identified three ABC transporters associated with the glycosomal membrane of Trypanosoma brucei. They were designated GAT1-3 for Glycosomal ABC Transporters. These polypeptides are so-called half-ABC transporters containing only one transmembrane domain and a single nucleotide-binding domain, like their homologues of mammalian and yeast peroxisomes. The glycosomal localization was shown by immunofluorescence microscopy of trypanosomes expressing fusion constructs of the transporters with Green Fluorescent Protein. By expression of fluorescent deletion constructs, the glycosome-targeting determinant of two transporters was mapped to different fragments of their respective primary structures. Interestingly, these fragments share a short sequence motif and contain adjacent to it one--but not the same--of the predicted six transmembrane segments of the transmembrane domain. We also identified the T. brucei homologue of peroxin PEX19, which is considered to act as a chaperonin and/or receptor for cytosolically synthesized proteins destined for insertion into the peroxisomal membrane. By using a bacterial two-hybrid system, it was shown that glycosomal ABC transporter fragments containing an organelle-targeting determinant can interact with both the trypanosomatid and human PEX19, despite their low overall sequence identity. Mutated forms of human PEX19 that lost interaction with human peroxisomal membrane proteins also did not bind anymore to the T. brucei glycosomal transporter. Moreover, fragments of the glycosomal transporter were targeted to the peroxisomal membrane when expressed in mammalian cells. Together these results indicate evolutionary conservation of the glycosomal/peroxisomal membrane protein import mechanism.
Collapse
Affiliation(s)
- Cédric Yernaux
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
10
|
Nagotu S, Krikken AM, Otzen M, Kiel JAKW, Veenhuis M, van der Klei IJ. Peroxisome Fission inHansenula polymorphaRequires Mdv1 and Fis1, Two Proteins Also Involved in Mitochondrial Fission. Traffic 2008; 9:1471-84. [DOI: 10.1111/j.1600-0854.2008.00772.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Colasante C, Alibu VP, Kirchberger S, Tjaden J, Clayton C, Voncken F. Characterization and developmentally regulated localization of the mitochondrial carrier protein homologue MCP6 from Trypanosoma brucei. EUKARYOTIC CELL 2007; 5:1194-205. [PMID: 16896205 PMCID: PMC1539146 DOI: 10.1128/ec.00096-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins of the mitochondrial carrier family (MCF) are located mainly in the inner mitochondrial membrane and mediate the transport of a large range of metabolic intermediates. The genome of Trypanosoma brucei harbors 29 genes encoding different MCF proteins. We describe here the characterization of MCP6, a novel T. brucei MCF protein. Sequence comparison and phylogenetic reconstruction revealed that MCP6 is closely related to different mitochondrial ADP/ATP and calcium-dependent solute carriers, including the ATP-Mg/Pi carrier of Homo sapiens. However, MCP6 lacks essential amino acids and sequence motifs conserved in these metabolite transporters, and functional reconstitution and transport assays with E. coli suggested that this protein indeed does not function as an ADP/ATP or ATP-Mg/Pi carrier. The subcellular localization of MCP6 is developmentally regulated: in bloodstream-form trypanosomes, the protein is predominantly glycosomal, whereas in the procyclic form, it is found mainly in the mitochondria. Depletion of MCP6 in procyclic trypanosomes resulted in growth inhibition, an increased cell size, aberrant numbers of nuclei and kinetoplasts, and abnormal kinetoplast morphology, suggesting that depletion of MCP6 inhibits division of the kinetoplast.
Collapse
Affiliation(s)
- Claudia Colasante
- Zentrum für Molekulare Biologie (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Colasante C, Ellis M, Ruppert T, Voncken F. Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei. Proteomics 2006; 6:3275-93. [PMID: 16622829 DOI: 10.1002/pmic.200500668] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peroxisomes are present in nearly every eukaryotic cell and compartmentalize a wide range of important metabolic processes. Glycosomes of Kinetoplastid parasites are peroxisome-like organelles, characterized by the presence of the glycolytic pathway. The two replicating stages of Trypanosoma brucei brucei, the mammalian bloodstream form (BSF) and the insect (procyclic) form (PCF), undergo considerable adaptations in metabolism when switching between the two different hosts. These adaptations involve also substantial changes in the proteome of the glycosome. Comparative (non-quantitative) analysis of BSF and PCF glycosomes by nano LC-ESI-Q-TOF-MS resulted in the validation of known functional aspects of glycosomes and the identification of novel glycosomal constituents.
Collapse
|
13
|
Navarro B, Russo M, Pantaleo V, Rubino L. Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication. J Gen Virol 2006; 87:705-714. [PMID: 16476994 DOI: 10.1099/vir.0.81325-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replicase proteins p33 and p92 of Cymbidium ringspot virus (CymRSV) were found to support the replication of defective interfering (DI) RNA in Saccharomyces cerevisiae cells. Two yeast strains were used, differing in the biogenesis of peroxisomes, the organelles supplying the membranous vesicular environment in which CymRSV RNA replication takes place in infected plant cells. Double-labelled immunofluorescence showed that both p33 and p92 replicase proteins localized to peroxisomes, independently of one another and of the presence of the replication template. It is suggested that these proteins are sorted initially from the cytosol to the endoplasmic reticulum and then to peroxisomes. However, only the expression of p33, but not p92, increased the number of peroxisomes and induced membrane proliferation. DI RNA replication occurred in yeast cells, as demonstrated by the presence of monomers and dimers of positive and negative polarities. Labelling with BrUTP showed that peroxisomes were the sites of nascent viral synthesis, whereas in situ hybridization indicated that DI RNA progeny were diffused throughout the cytoplasm. DI RNA replication also took place in yeast cells devoid of peroxisomes. It is suggested that replication in these cells was targeted to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| | - Marcello Russo
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| | - Vitantonio Pantaleo
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| | - Luisa Rubino
- Istituto di Virologia Vegetale del CNR, Sezione di Bari, c/o Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi, Bari, Italy
| |
Collapse
|
14
|
Karnik SK, Trelease RN. Arabidopsis peroxin 16 coexists at steady state in peroxisomes and endoplasmic reticulum. PLANT PHYSIOLOGY 2005; 138:1967-81. [PMID: 16040658 PMCID: PMC1183388 DOI: 10.1104/pp.105.061291] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Homologs of peroxin 16 genes (PEX16) have been identified only in Yarrowia lipolytica, humans (Homo sapiens), and Arabidopsis (Arabidopsis thaliana). The Arabidopsis gene (AtPEX16), previously reported as the SSE1 gene, codes for a predicted 42-kD membrane peroxin protein (AtPex16p). Lin et al. (Y. Lin, J.E. Cluette-Brown, H.M. Goodman [2004] Plant Physiol 135: 814-827) reported that SSE1/AtPEX16 was essential for endoplasmic reticulum (ER)-dependent oil and protein body biogenesis in peroxisome-deficient maturing seeds and likely also was involved in peroxisomal biogenesis based on localization of stably expressed green fluorescent protein::AtPex16p in peroxisomes of Arabidopsis plants. In this study with Arabidopsis suspension-cultured cells, combined in vivo and in vitro experiments revealed a novel dual organelle localization and corresponding membrane association/topology of endogenous AtPex16p. Immunofluorescence microscopy with antigen affinity-purified IgGs showed an unambiguous, steady-state coexistence of AtPex16p in suspension cell peroxisomes and ER. AtPex16p also was observed in peroxisomes and ER of root and leaf cells. Cell fractionation experiments surprisingly revealed two immunorelated polypeptides, 42 kD (expected) and 52 kD (unexpected), in homogenates and microsome membrane pellets derived from roots, inflorescence, and suspension cells. Suc-gradient purifications confirmed the presence of both 42-kD and 52-kD polypeptides in isolated peroxisomes (isopycnic separation) and in rough ER vesicles (Mg2+ shifted). They were found peripherally associated with peroxisome and ER membranes but not as covalently bound subunits of AtPex16p. Both were mostly on the matrix side of peroxisomal membranes and unexpectedly mostly on the cytosolic side of ER membranes. In summary, AtPex16p is the only authentic plant peroxin homolog known to coexist at steady state within peroxisomes and ER; these data provide new insights in support of its ER-related, multifunctional roles in organelle biogenesis.
Collapse
Affiliation(s)
- Sheetal K Karnik
- Arizona State University School of Life Sciences, Tempe, Arizona 85287-4501, USA
| | | |
Collapse
|
15
|
Halbach A, Lorenzen S, Landgraf C, Volkmer-Engert R, Erdmann R, Rottensteiner H. Function of the PEX19-binding site of human adrenoleukodystrophy protein as targeting motif in man and yeast. PMP targeting is evolutionarily conserved. J Biol Chem 2005; 280:21176-82. [PMID: 15781447 DOI: 10.1074/jbc.m501750200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We predicted in human peroxisomal membrane proteins (PMPs) the binding sites for PEX19, a key player in the topogenesis of PMPs, by virtue of an algorithm developed for yeast PMPs. The best scoring PEX19-binding site was found in the adrenoleukodystrophy protein (ALDP). The identified site was indeed bound by human PEX19 and was also recognized by the orthologous yeast PEX19 protein. Likewise, both human and yeast PEX19 bound with comparable affinities to the PEX19-binding site of the yeast PMP Pex13p. Interestingly, the identified PEX19-binding site of ALDP coincided with its previously determined targeting motif. We corroborated the requirement of the ALDP PEX19-binding site for peroxisomal targeting in human fibroblasts and showed that the minimal ALDP fragment targets correctly also in yeast, again in a PEX19-binding site-dependent manner. Furthermore, the human PEX19-binding site of ALDP proved interchangeable with that of yeast Pex13p in an in vivo targeting assay. Finally, we showed in vitro that most of the predicted binding sequences of human PMPs represent true binding sites for human PEX19, indicating that human PMPs harbor common PEX19-binding sites that do resemble those of yeast. Our data clearly revealed a role for PEX19-binding sites as PMP-targeting motifs across species, thereby demonstrating the evolutionary conservation of PMP signal sequences from yeast to man.
Collapse
Affiliation(s)
- André Halbach
- Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Kurbatova EM, Dutova TA, Trotsenko YA. Structural, functional and genetic aspects of peroxisome biogenesis. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Rottensteiner H, Kramer A, Lorenzen S, Stein K, Landgraf C, Volkmer-Engert R, Erdmann R. Peroxisomal membrane proteins contain common Pex19p-binding sites that are an integral part of their targeting signals. Mol Biol Cell 2004; 15:3406-17. [PMID: 15133130 PMCID: PMC452593 DOI: 10.1091/mbc.e04-03-0188] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Targeting of peroxisomal membrane proteins (PMPs) is a multistep process that requires not only recognition of PMPs in the cytosol but also their insertion into the peroxisomal membrane. As a consequence, targeting signals of PMPs (mPTS) are rather complex. A candidate protein for the PMP recognition event is Pex19p, which interacts with most PMPs. However, the respective Pex19p-binding sites are ill-defined and it is currently disputed whether these sites are contained within mPTS. By using synthetic peptide scans and yeast two-hybrid analyses, we determined and characterized Pex19p-binding sites in Pex11p and Pex13p, two PMPs from Saccharomyces cerevisiae. The sites turned out to be composed of a short helical motif with a minimal length of 11 amino acids. With the acquired data, it proved possible to predict and experimentally verify Pex19p-binding sites in several other PMPs by applying a pattern search and a prediction matrix. A peroxisomally targeted Pex13p fragment became mislocalized to the endoplasmic reticulum in the absence of its Pex19p-binding site. By adding the heterologous binding site of Pex11p, peroxisomal targeting of the Pex13p fragment was restored. We conclude that Pex19p-binding sites are well-defined entities that represent an essential part of the mPTS.
Collapse
|
18
|
Hunt JE, Trelease RN. Sorting pathway and molecular targeting signals for the Arabidopsis peroxin 3. Biochem Biophys Res Commun 2004; 314:586-96. [PMID: 14733948 DOI: 10.1016/j.bbrc.2003.12.123] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peroxin 3 (Pex3p) has been identified and characterized as a peroxisomal membrane protein in yeasts and mammals. We identified two putative homologs in Arabidopsis (AtPex3p, forms 1 and 2), both with an identical cluster of positively charged amino acid residues (RKHRRK) immediately preceding one of the two predicted transmembrane domains (TMD1). In transiently transformed Arabidopsis and tobacco BY-2 suspension-cultured cells, epitope-tagged AtPex3p (form 2) sorted post-translationally from the cytosol directly to peroxisomes, the first sorting pathway described for any peroxin in plants. TMD1 and RKHRRK were necessary for targeting form 2 to peroxisomes and sufficient for directing chloramphenicol acetyltransferase to peroxisomes in both cell types. The N and C termini of AtPex3p (form 2) extend into the peroxisomal matrix, different from mammal and yeast Pex3 proteins. Thus, two authentic peroxisomal membrane-bound Pex3p homologs possessing a membrane peroxisomal targeting signal, the first one defined for a plant peroxin and for any Pex3p homolog, exist in plant cells.
Collapse
Affiliation(s)
- Joanne E Hunt
- School of Life Sciences, Cellular and Molecular Biosciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | |
Collapse
|
19
|
Boisnard S, Zickler D, Picard M, Berteaux-Lecellier V. Overexpression of a human and a fungal ABC transporter similarly suppresses the differentiation defects of a fungal peroxisomal mutant but introduces pleiotropic cellular effects. Mol Microbiol 2003; 49:1287-96. [PMID: 12940987 DOI: 10.1046/j.1365-2958.2003.03630.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among the peroxisome membrane proteins, some are required for peroxisome biogenesis (e.g. PEX2) while others are not, e.g. ABC (ATP-binding cassette) transporters. Unexpectedly, overproduction of the peroxisomal ABC transporter PMP70 was found to be able to restore peroxisome biogenesis in mammalian pex2 mutant cell lines. In the filamentous fungus Podospora anserina, pex2 mutations not only impair peroxisome biogenesis but also cause a precise cell differentiation defect. Here, we show that both defects are partially suppressed by expression of the human cDNA encoding PMP70. In addition, PMP70 expression causes new developmental defects, different from those induced by pex2 mutations. We also show that overexpression of the P. anserina pABC1 gene, which encodes a peroxisomal ABC transporter, leads to similar effects. Taken together, our results demonstrate that: (i) the genetic relationship between PEX2 and PMP70, initially observed in mammals, has been conserved through evolution; (ii) the cell differentiation defect observed in the P. anserina pex2 mutants is indeed linked to impairment in peroxisome biogenesis; and (iii) unexpected detrimental cellular defects result from overproduction of peroxisomal ABC transporters.
Collapse
Affiliation(s)
- Stéphanie Boisnard
- Institut de Génétique et Microbiologie, UMR 8621, Bat. 400, Université Paris-Sud, 91405 Orsay cedex, France
| | | | | | | |
Collapse
|
20
|
Lisenbee CS, Karnik SK, Trelease RN. Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 2003; 4:491-501. [PMID: 12795694 DOI: 10.1034/j.1600-0854.2003.00107.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peroxisomal ascorbate peroxidase (APX) sorts indirectly via a subdomain of the ER (peroxisomal ER) to the boundary membrane of peroxisomes in tobacco Bright Yellow 2 cells. This novel subdomain characteristically appears as fluorescent reticular/circular compartments distributed variously in the cytoplasm. Further characterizations are presented herein. A peptide possessing the membrane targeting information for peroxisomal APX was fused to GFP (GFP-APX). Transiently expressed GFP-APX sorted to peroxisomes and to reticular/circular compartments; in both cases, the GFP moiety faced the cytosol. Of particular interest, both homotypic and heterotypic aggregates of peroxisomes, mitochondria, and/or plastids were formed. The latter two organelles comprised the circular portion of the reticular/circular compartments, apparently as a consequence of oligomerization (zippering) of the GFP moieties after insertion into the outer membranes of the affected organelles. These results, coupled with the accumulation of endogenous peroxisomal APX in cytoplasmic, noncircular compartment(s) following treatment with brefeldin A, indicate that authentic peroxisomal ER is composed only of a reticular compartment(s). Equally important, the data show that overexpressed, membrane-targeted GFP fusion proteins have a propensity to form organelle aggregates that may lead to misinterpretations of sorting pathways of trafficked proteins.
Collapse
Affiliation(s)
- Cayle S Lisenbee
- Department of Plant Biology and Graduate Program in Molecular and Cellular Biology, Arizona State University, Tempe, AZ 85287-1601, USA
| | | | | |
Collapse
|
21
|
Abstract
In the last two decades, much progress has been made in understanding the process of induction and biogenesis of peroxisomes, essential organelles in all eukaryotes. Only relatively recently, the first molecular studies on the selective degradation of this important organelle-a process known as pexophagy, which occurs when the organelles have become redundant-have been performed, especially using methylotrophic yeasts. The finding that pexophagy and other transport pathways to the vacuole (vacuolar protein sorting, autophagy, cytoplasm-to-vacuole-targeting and endocytosis) utilize common but also unique genes has placed pexophagy in the heart of the machinery that recycles cellular material. The quest is now on to understand how peroxisome degradation has become such a highly selective process and what the signals are that trigger it. In addition, because the prime determinant of pexophagy is located on the peroxisome itself, it has become essential to study the role of peroxisomal membrane proteins in the degradation process in detail. This review highlights the main achievements of the last years.
Collapse
Affiliation(s)
- Anna Rita Bellu
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
22
|
Ruprich-Robert G, Berteaux-Lecellier V, Zickler D, Panvier-Adoutte A, Picard M. Identification of six loci in which mutations partially restore peroxisome biogenesis and/or alleviate the metabolic defect of pex2 mutants in podospora. Genetics 2002; 161:1089-99. [PMID: 12136013 PMCID: PMC1462184 DOI: 10.1093/genetics/161.3.1089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2(+) background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to beta-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation.
Collapse
Affiliation(s)
- Gwenaël Ruprich-Robert
- Institut de Génétique et Microbiologie, UMR 8621, Centre National de la Recherche Scientifique-Université Paris-Sud, F-91405 Orsay, France
| | | | | | | | | |
Collapse
|
23
|
Guerra-Giraldez C, Quijada L, Clayton CE. Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei. J Cell Sci 2002; 115:2651-8. [PMID: 12077356 DOI: 10.1242/jcs.115.13.2651] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All kinetoplastids contain membrane-bound microbodies known as glycosomes,in which several metabolic pathways including part of glycolysis are compartmentalized. Peroxin 2 is essential for the import of many proteins into the microbodies of yeasts and mammals. The PEX2 gene of Trypanosoma brucei was identified and its expression was silenced by means of tetracycline-inducible RNA interference. Bloodstream-form trypanosomes, which rely exclusively on glycolysis for ATP generation, died rapidly upon PEX2 depletion. Insect-form (procyclic) trypanosomes do not rely solely on glycolysis for ATP synthesis. PEX2 depletion in procyclic forms resulted in relocation of most tested matrix proteins to the cytosol, and these mutants also died. Compartmentation of microbody enzymes is therefore essential for survival of bloodstream and procyclic T. brucei. In contrast, yeasts and cultured mammalian cells grow normally in the absence of peroxisomal membranes unless placed on selective media.
Collapse
Affiliation(s)
- Cristina Guerra-Giraldez
- Zentrum für Molekulare Biologie der Universität Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Malecki M, Hsu A, Truong L, Sanchez S. Molecular immunolabeling with recombinant single-chain variable fragment (scFv) antibodies designed with metal-binding domains. Proc Natl Acad Sci U S A 2002; 99:213-8. [PMID: 11756693 PMCID: PMC117541 DOI: 10.1073/pnas.261567298] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Indexed: 11/18/2022] Open
Abstract
To study the molecular structure and function of gene products in situ, we developed a molecular immunolabeling technology. Starting with cDNA from hybridomas producing monoclonal antibodies against biotin, catalase, and superoxide dismutase, we bioengineered recombinant single-chain variable fragment antibodies (scFv) and their derivatives containing metal-binding domains (scFv:MBD). As tested with surface plasmon resonance and enzyme-linked immunosorbent assay, affinity binding constants of the scFv (5.21 x 10(6) M(-1)) and scFv:MBD (4.17 x 10(6) M(-1)) were close to those of Fab proteolytic fragments (9.78 x 10(6) M(-1)) derived from the parental IgG antibodies. After saturation of MBD with nickel or cobalt, scFv:MBD was imaged with electron spectroscopic imaging at each element's specific energy loss, thus generating the element's map. Immunolabeling with scFv:MBD resulted in a significant improvement of the labeling fidelity over that obtained with Fab or IgG derivatives, as it produced a much heavier specific labeling and label-free background. As determined with radioimmunoassay, labeling effectiveness with scFv:MBD was nearly the same as with scFv, but much higher than with scFv conjugated to colloidal gold, Nanogold, or horseradish peroxidase. This technology opens possibilities for simultaneous imaging of multiple molecules labeled with scFv:MBD at the molecular resolution within the same sample with electron spectroscopic imaging. Moreover, the same scFv:MBD can also be imaged with fluorescence resonance energy transfer and lifetime imaging as well as positron emission tomography and magnetic resonance imaging. Therefore, this technology may serve as an integrative factor in life science endeavors.
Collapse
Affiliation(s)
- Marek Malecki
- Molecular Imaging Laboratories, University of California at San Diego, La Jolla, CA 92093, USA.
| | | | | | | |
Collapse
|
25
|
Mullen RT, Flynn CR, Trelease RN. How are peroxisomes formed? The role of the endoplasmic reticulum and peroxins. TRENDS IN PLANT SCIENCE 2001; 6:256-261. [PMID: 11378467 DOI: 10.1016/s1360-1385(01)01951-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent data from studies of peroxisome assembly and the subcellular sorting of peroxisomal matrix and membrane proteins have led to an expansion of the 'growth and division' and 'endoplasmic reticulum-vesiculation' models of peroxisome biogenesis into a more flexible, unified model. Within this context, we discuss the proposed role for the endoplasmic reticulum in the formation of preperoxisomes and the potential for 15 Arabidopsis peroxin homologs to function in the biogenesis of peroxisomes in plant cells.
Collapse
Affiliation(s)
- R T Mullen
- Dept Botany, University of Guelph, N1G 2W1., Guelph, Ontario, Canada.
| | | | | |
Collapse
|
26
|
Nakai K. Review: prediction of in vivo fates of proteins in the era of genomics and proteomics. J Struct Biol 2001; 134:103-16. [PMID: 11551173 DOI: 10.1006/jsbi.2001.4378] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Even after a nascent protein emerges from the ribosome, its fate is still controlled by its own amino acid sequence information. Namely, it may be co-/posttranslationally modified (e.g., phosphorylated, N-/O-glycosylated, and lipidated); it may be inserted into the membrane, translocated to an organelle, or secreted to the outside milieu; it may be processed for maturation or selective degradation; finally, its fragment may be presented on the cell surface as an antigen. Here, prediction methods of such protein fates from their amino acid sequences are reviewed. In many cases, artificial neural network techniques have been effectively used. The prediction of in vivo fates of proteins will be useful for characterizing newly identified candidate genes in a genome or for interpreting multiple spots in proteome analyses.
Collapse
Affiliation(s)
- K Nakai
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
27
|
|
28
|
Abstract
In yeast, peroxisomes are the site of specific catabolic pathways that characteristically include hydrogen peroxide producing oxidases and catalase. During the last 10 years, much progress has been made in unravelling the molecular mechanisms involved in the biogenesis of this organelle. At present, 23 different genes (PEX genes) have been identified that are involved in different aspects of peroxisome biogenesis (e.g., proliferation, formation of the peroxisomal membrane, import of matrix proteins). The principles of peroxisome degradation are still much less understood. Recently, the first yeast mutants affected in this process have become available and used to clone corresponding genes by functional complementation. In this paper, an overview is presented of the research on yeast peroxisomes, focusing on recent achievements in the molecular aspects of peroxisome development, function, and turnover.
Collapse
Affiliation(s)
- M Veenhuis
- Eukaryotic Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | |
Collapse
|