1
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
2
|
Colón Pérez J, Villarino Fernández RA, Domínguez Lago A, Treviño Castellano MM, Pérez del Molino Bernal ML, Sánchez Poza S, Torres-Sangiao E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms 2024; 12:884. [PMID: 38792714 PMCID: PMC11124187 DOI: 10.3390/microorganisms12050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
It was in the 1800s when the first public publications about the infection and treatment of gonorrhoea were released. However, the first prevention programmes were only published a hundred years later. In the 1940s, the concept of vaccination was introduced into clinical prevention programmes to address early sulphonamide resistance. Since then, tons of publications on Neisseria gonorrhoeae are undisputed, around 30,000 publications today. Currently, the situation seems to be just as it was in the last century, nothing has changed or improved. So, what are we doing wrong? And more importantly, what might we do? The review presented here aims to review the current situation regarding the resistance mechanisms, prevention programmes, treatments, and vaccines, with the challenge of better understanding this special pathogen. The authors have reviewed the last five years of advancements, knowledge, and perspectives for addressing the Neisseria gonorrhoeae issue, focusing on new therapeutic alternatives.
Collapse
Affiliation(s)
- Julia Colón Pérez
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Rosa-Antía Villarino Fernández
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Adrián Domínguez Lago
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Mercedes Treviño Castellano
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - María Luisa Pérez del Molino Bernal
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Sandra Sánchez Poza
- Departamento de Microbiología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Eva Torres-Sangiao
- Servicio de Microbiología y Parasitología Clínica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (J.C.P.); (A.D.L.); (M.M.T.C.); (M.L.P.d.M.B.)
- Grupo Microbiología, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Swiatczak B. Genomic Stress Responses Drive Lymphocyte Evolvability: An Ancient and Ubiquitous Mechanism. Bioessays 2020; 42:e2000032. [PMID: 32767393 DOI: 10.1002/bies.202000032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/03/2020] [Indexed: 12/15/2022]
Abstract
Somatic diversification of antigen receptor genes depends on the activity of enzymes whose homologs participate in a mutagenic DNA repair in unicellular species. Indeed, by engaging error-prone polymerases, gap filling molecules and altered mismatch repair pathways, lymphocytes utilize conserved components of genomic stress response systems, which can already be found in bacteria and archaea. These ancient systems of mutagenesis and repair act to increase phenotypic diversity of microbial cell populations and operate to enhance their ability to produce fit variants during stress. Coopted by lymphocytes, the ancient mutagenic processing systems retained their diversification functions instilling the adaptive immune cells with enhanced evolvability and defensive capacity to resist infection and damage. As reviewed here, the ubiquity and conserved character of specialized variation-generating mechanisms from bacteria to lymphocytes highlight the importance of these mechanisms for evolution of life in general.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| |
Collapse
|
4
|
Baarda BI, Zielke RA, Le Van A, Jerse AE, Sikora AE. Neisseria gonorrhoeae MlaA influences gonococcal virulence and membrane vesicle production. PLoS Pathog 2019; 15:e1007385. [PMID: 30845186 PMCID: PMC6424457 DOI: 10.1371/journal.ppat.1007385] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/19/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
The six-component maintenance of lipid asymmetry (Mla) system is responsible for retrograde transport of phospholipids, ensuring the barrier function of the Gram-negative cell envelope. Located within the outer membrane, MlaA (VacJ) acts as a channel to shuttle phospholipids from the outer leaflet. We identified Neisseria gonorrhoeae MlaA (ngo2121) during high-throughput proteomic mining for potential therapeutic targets against this medically important human pathogen. Our follow-up phenotypic microarrays revealed that lack of MlaA results in a complex sensitivity phenome. Herein we focused on MlaA function in cell envelope biogenesis and pathogenesis. We demonstrate the existence of two MlaA classes among 21 bacterial species, characterized by the presence or lack of a lipoprotein signal peptide. Purified truncated N. gonorrhoeae MlaA elicited antibodies that cross-reacted with a panel of different Neisseria. Little is known about MlaA expression; we provide the first evidence that MlaA levels increase in stationary phase and under anaerobiosis but decrease during iron starvation. Lack of MlaA resulted in higher cell counts during conditions mimicking different host niches; however, it also significantly decreased colony size. Antimicrobial peptides such as polymyxin B exacerbated the size difference while human defensin was detrimental to mutant viability. Consistent with the proposed role of MlaA in vesicle biogenesis, the ΔmlaA mutant released 1.7-fold more membrane vesicles. Comparative proteomics of cell envelopes and native membrane vesicles derived from ΔmlaA and wild type bacteria revealed enrichment of TadA–which recodes proteins through mRNA editing–as well as increased levels of adhesins and virulence factors. MlaA-deficient gonococci significantly outcompeted (up to 16-fold) wild-type bacteria in the murine lower genital tract, suggesting the growth advantage or increased expression of virulence factors afforded by inactivation of mlaA is advantageous in vivo. Based on these results, we propose N. gonorrhoeae restricts MlaA levels to modulate cell envelope homeostasis and fine-tune virulence. The Gram-negative outer membrane is a formidable barrier, primarily because of its asymmetric composition. A layer of lipopolysaccharide is exposed to the external environment and phospholipids are on the internal face of the outer membrane. MlaA is part of a bacterial system that prevents phospholipid accumulation within the lipopolysaccharide layer. If MlaA is removed, membrane asymmetry is disrupted and bacteria become more vulnerable to certain antimicrobials. Neisseria gonorrhoeae causes millions of infections worldwide annually. A growing number are resistant to available antibiotics. Improving our understanding of gonococcal pathogenicity and basic biological processes is required to facilitate the discovery of new weapons against gonorrhea. We investigated the role of MlaA in N. gonorrhoeae and found that when MlaA was absent, bacteria were more sensitive to antibiotics and human defensins. However, the mutant bacteria produced more membrane vesicles–packages of proteins wrapped in membrane material. Mutant vesicles and cell envelopes were enriched in proteins that contribute to disease. These alterations significantly increased mutant fitness during experimental infection of the female mouse genital tract. Our results provide new insights into the processes N. gonorrhoeae uses to fine-tune its ability to stay fit in the hostile environment of the genital tract.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Adriana Le Van
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- * E-mail:
| |
Collapse
|
5
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
6
|
Holding T, Valletta JJ, Recker M. Multiscale Immune Selection and the Transmission-Diversity Feedback in Antigenically Diverse Pathogen Systems. Am Nat 2018; 192:E189-E201. [PMID: 30444661 PMCID: PMC6561780 DOI: 10.1086/699535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigenic diversity is commonly used by pathogens to enhance their
transmission success. Within-host clonal antigenic variation helps to maintain
long infectious periods, whereas high levels of allelic diversity at the
population level significantly expand the pool of susceptible individuals.
Diversity, however, is not necessarily a static property of a pathogen
population but in many cases is generated by the very act of infection and
transmission, and it is therefore expected to respond dynamically to changes in
transmission and immune selection. We hypothesized that this coupling creates a
positive feedback whereby infection and disease transmission promote the
generation of diversity, which itself facilitates immune evasion and further
infections. To investigate this link in more detail, we considered the human
malaria parasite Plasmodium falciparum, one of the most
important antigenically diverse pathogens. We developed an individual-based
model in which antigenic diversity emerges as a dynamic property from the
underlying transmission processes. Our results show that the balance between
stochastic extinction and the generation of new antigenic variants is
intrinsically linked to within-host and between-host immune selection. This in
turn determines the level of diversity that can be maintained in a given
population. Furthermore, the transmission-diversity feedback can lead to
temporal lags in the response to natural or intervention-induced perturbations
in transmission rates. Our results therefore have important implications for
monitoring and assessing the effectiveness of disease control efforts.
Collapse
|
7
|
Verhey TB, Castellanos M, Chaconas G. Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline. Mol Microbiol 2017; 107:104-115. [PMID: 29105221 DOI: 10.1111/mmi.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.
Collapse
Affiliation(s)
- Theodore B Verhey
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mildred Castellanos
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Hill SA, Masters TL, Wachter J. Gonorrhea - an evolving disease of the new millennium. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:371-389. [PMID: 28357376 PMCID: PMC5354566 DOI: 10.15698/mic2016.09.524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Neisseria gonorrhoeae (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge. More severe sequellae include salpingitis and pelvic inflammatory disease which may lead to sterility and/or ectopic pregnancy. Occasionally, the organism can disseminate as a bloodstream infection. Epidemiology, incidence and prevalence: Gonorrhea is a global disease infecting approximately 60 million people annually. In the United States there are approximately 300, 000 cases each year, with an incidence of approximately 100 cases per 100,000 population. Treatment and curability: Gonorrhea is susceptible to an array of antibiotics. Antibiotic resistance is becoming a major problem and there are fears that the gonococcus will become the next "superbug" as the antibiotic arsenal diminishes. Currently, third generation extended-spectrum cephalosporins are being prescribed. Molecular mechanisms of infection: Gonococci elaborate numerous strategies to thwart the immune system. The organism engages in extensive phase (on/off switching) and antigenic variation of several surface antigens. The organism expresses IgA protease which cleaves mucosal antibody. The organism can become serum resistant due to its ability to sialylate lipooligosaccharide in conjunction with its ability to subvert complement activation. The gonococcus can survive within neutrophils as well as in several other lymphocytic cells. The organism manipulates the immune response such that no immune memory is generated which leads to a lack of protective immunity.
Collapse
Affiliation(s)
- Stuart A. Hill
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Thao L. Masters
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Jenny Wachter
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| |
Collapse
|
9
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
10
|
A Safe and Stable Neonatal Vaccine Targeting GAPDH Confers Protection against Group B Streptococcus Infections in Adult Susceptible Mice. PLoS One 2015; 10:e0144196. [PMID: 26673420 PMCID: PMC4682941 DOI: 10.1371/journal.pone.0144196] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/13/2015] [Indexed: 11/25/2022] Open
Abstract
Group B Streptococcus (GBS), a commensal organism, can turn into a life-threatening pathogen in neonates and elderly, or in adults with severe underlying diseases such as diabetes. We developed a vaccine targeting the GBS glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme detected at the bacterial surface, which was proven to be effective in a neonatal mouse model of infection. Since this bacterium has emerged as an important pathogen in non-pregnant adults, here we investigated whether this vaccine also confers protection in an adult susceptible and in a diabetic mouse model of infection. For immunoprotection studies, sham or immunized adult mice were infected with GBS serotype Ia and V strains, the two most prevalent serotypes isolated in adults. Sham and vaccinated mice were also rendered diabetic and infected with a serotype V GBS strain. For toxicological (pre-clinical) studies, adult mice were vaccinated three times, with three concentrations of recombinant GAPDH adjuvanted with Allydrogel, and the toxicity parameters were evaluated twenty-four hours after the last immunization. For the stability tests, the vaccine formulations were maintained at 4°C for 6 and 12 months prior immunization. The results showed that all tested doses of the vaccine, including the stability study formulations, were immunogenic and that the vaccine was innocuous. The organs (brain, blood, heart, and liver) of vaccinated susceptible or diabetic adult mice were significantly less colonized compared to those of control mice. Altogether, these results demonstrate that the GAPDH-based vaccine is safe and stable and protects susceptible and diabetic adult mice against GBS infections. It is therefore a promising candidate as a global vaccine to prevent GBS-induced neonatal and adult diseases.
Collapse
|
11
|
Masters TL, Wachter S, Wachter J, Hill SA. H-NS suppresses pilE intragenic transcription and antigenic variation in Neisseria gonorrhoeae. MICROBIOLOGY-SGM 2015; 162:177-190. [PMID: 26475082 DOI: 10.1099/mic.0.000199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Initially, pilE transcription in Neisseria gonorrhoeae appeared to be complicated, yet it was eventually simplified into a model where integration host factor activates a single -35/ -10 promoter. However, with the advent of high-throughput RNA sequencing, numerous small pil-specific RNAs (sense as well as antisense) have been identified at the pilE locus as well as at various pilS loci. Using a combination of in vitro transcription, site-directed mutagenesis, Northern analysis and quantitative reverse transcriptase PCR (qRT-PCR) analysis, we have identified three additional non-canonical promoter elements within the pilE gene; two are located within the midgene region (one sense and one antisense), with the third, an antisense promoter, located immediately downstream of the pilE ORF. Using strand-specific qRT-PCR analysis, an inverse correlation exists between the level of antisense expression and the amount of sense message. By their nature, promoter sequences tend to be AT-rich. In Escherichia coli, the small DNA-binding protein H-NS binds to AT-rich sequences and inhibits intragenic transcription. In N. gonorrhoeae hns mutants, pilE antisense transcription was increased twofold, with a concomitant decrease in sense transcript levels. However, most noticeably in these mutants, the absence of H-NS protein caused pilE/pilS recombination to increase dramatically when compared with WT values. Consequently, H-NS protein suppresses pilE intragenic transcription as well as antigenic variation through the pilE/pilS recombination system.
Collapse
Affiliation(s)
- Thao L Masters
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Shaun Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Stuart A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
12
|
Hussa EA, Casanova-Torres ÁM, Goodrich-Blair H. The Global Transcription Factor Lrp Controls Virulence Modulation in Xenorhabdus nematophila. J Bacteriol 2015; 197:3015-25. [PMID: 26170407 PMCID: PMC4542165 DOI: 10.1128/jb.00272-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The bacterium Xenorhabdus nematophila engages in phenotypic variation with respect to pathogenicity against insect larvae, yielding both virulent and attenuated subpopulations of cells from an isogenic culture. The global regulatory protein Lrp is necessary for X. nematophila virulence and immunosuppression in insects, as well as colonization of the mutualistic host nematode Steinernema carpocapsae, and mediates expression of numerous genes implicated in each of these phenotypes. Given the central role of Lrp in X. nematophila host associations, as well as its involvement in regulating phenotypic variation pathways in other bacteria, we assessed its function in virulence modulation. We discovered that expression of lrp varies within an isogenic population, in a manner that correlates with modulation of virulence. Unexpectedly, although Lrp is necessary for optimal virulence and immunosuppression, cells expressing high levels of lrp were attenuated in these processes relative to those with low to intermediate lrp expression. Furthermore, fixed expression of lrp at high and low levels resulted in attenuated and normal virulence and immunosuppression, respectively, and eliminated population variability of these phenotypes. These data suggest that fluctuating lrp expression levels are sufficient to drive phenotypic variation in X. nematophila. IMPORTANCE Many bacteria use cell-to-cell phenotypic variation, characterized by distinct phenotypic subpopulations within an isogenic population, to cope with environmental change. Pathogenic bacteria utilize this strategy to vary antigen or virulence factor expression. Our work establishes that the global transcription factor Lrp regulates phenotypic variation in the insect pathogen Xenorhabdus nematophila, leading to attenuation of virulence and immunosuppression in insect hosts. Unexpectedly, we found an inverse correlation between Lrp expression levels and virulence: high levels of expression of Lrp-dependent putative virulence genes are detrimental for virulence but may have an adaptive advantage in other aspects of the life cycle. Investigation of X. nematophila phenotypic variation facilitates dissection of this phenomenon in the context of a naturally occurring symbiosis.
Collapse
Affiliation(s)
- Elizabeth A Hussa
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Foley J. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens. Comput Struct Biotechnol J 2015; 13:407-16. [PMID: 26288700 PMCID: PMC4534519 DOI: 10.1016/j.csbj.2015.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 07/18/2015] [Accepted: 07/19/2015] [Indexed: 12/29/2022] Open
Abstract
Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts.
Collapse
Affiliation(s)
- Janet Foley
- 1320 Tupper Hall, Veterinary Medicine and Epidemiology, UC Davis, Davis, CA 95616, United States
| |
Collapse
|
14
|
Wachter J, Masters TL, Wachter S, Mason J, Hill SA. pilS loci in Neisseria gonorrhoeae are transcriptionally active. MICROBIOLOGY (READING, ENGLAND) 2015; 161:1124-1135. [PMID: 25701734 PMCID: PMC4635466 DOI: 10.1099/mic.0.000061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/14/2015] [Indexed: 11/18/2022]
Abstract
Piliation is an important virulence determinant for Neisseria gonorrhoeae. PilE polypeptide is the major protein subunit in the pilus organelle and engages in extensive antigenic variation due to recombination between pilE and a pilS locus. pilS were so-named as they are believed to be transcriptionally silent, in contrast to the pilE locus. In this study, we demonstrate the presence of a small, pil-specific RNA species. Through using a series of pilE deletion mutants, we show by Northern blotting and quantitative reverse transcriptase PCR analysis (qRT-PCR), that these smaller RNA species are not derived from the primary pilE transcript following some processing events, but rather, arose through transcription of the pilS loci. Small transcriptome analysis, in conjunction with analysis of pilS recombinants, identified both sense and anti-sense RNAs originating from most, but not all, of the pilS gene copies. Focusing on the MS11 pilS6 locus, we identified by site-directed mutagenesis a sense promoter located immediately upstream of pilS6 copy 2, as well as an anti-sense promoter immediately downstream of pilS6 copy 1. Whole transcriptome analysis also revealed the presence of pil-specific sRNA in both gonococci and meningococci. Overall, this study reveals an added layer of complexity to the pilE/pilS recombination scheme by demonstrating pil-specific transcription within genes that were previously thought to be transcriptionally silent.
Collapse
Affiliation(s)
- Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Thao L. Masters
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Shaun Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Joanna Mason
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Stuart A. Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
15
|
Wachter J, Hill SA. Small transcriptome analysis indicates that the enzyme RppH influences both the quality and quantity of sRNAs in Neisseria gonorrhoeae. FEMS Microbiol Lett 2014; 362:fnu059. [PMID: 25688066 DOI: 10.1093/femsle/fnu059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prokaryotic mRNA turnover can be initiated by the removal of pyrophosphate from the 5' end of a transcript using the RNA pyrophosphohydrolase enzyme RppH. Following the initial dephosphorylation step, RNaseE then degrades the message into small oligonucleotide segments. This study assessed the small RNA transcriptome of Neisseria gonorrhoeae strain MS11 in two genetic backgrounds; using wild type cells as well as cells carrying a rppH insertional mutation. It was found that the presence of the RppH enzyme affected both the quantity and length of small RNAs (sRNAs) in various chromosomal locations and involved sense transcripts (seRNAs), transcripts originating from the opposite strand (asRNAs) as well as inter-genic-derived RNAs (IGRs). In comparing the two transcriptomes, we found that not all small RNAs were expressed in both genetic backgrounds, suggesting that RppH apparently targets only a subset of transcripts. Overall, this study shows that small RNAs can be detected from the majority of genes within the chromosome, as well as from inter-genic regions, and that more sRNA transcripts are detected in the absence of the RppH enzyme.
Collapse
Affiliation(s)
- Jenny Wachter
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115-2828, USA
| | - Stuart A Hill
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115-2828, USA
| |
Collapse
|
16
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
17
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
18
|
SUN X, ZHOU H, XU L, YANG H, GAO Y, ZHU B, SHAO Z. Prevalence and genetic diversity of two adhesion-related genes, pilE and nadA, in Neisseria meningitidis in China. Epidemiol Infect 2013; 141:2163-72. [PMID: 23290624 PMCID: PMC9152637 DOI: 10.1017/s0950268812002944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/23/2012] [Accepted: 11/28/2012] [Indexed: 12/16/2022] Open
Abstract
The main Neisseria meningitidis adhesion molecules, type IV pili (Tfp) and Neisseria adhesion A (NadA), play important roles in the pathogenesis of invasive meningococcal disease. PilE is the major Tfp subunit. In this study, the prevalence and genetic diversity of pilE and nadA were investigated in the prevalent serogroups and clonal complexes (CC) of N. meningitidis isolated in China. All serogroup A strains belonging to CC1 and CC5 and all CC11 serogroup W135 strains were clustered into class II PilE clades. All serogroup C and most of serogroup B isolates except CC8 and ST5642 were class I PilE clades. Class II pilE sequences were highly conserved. All isolates belonging to class I PilE isolates were nadA negative. However, nadA-positive strains were exclusively found in CC5 and CC11 isolates (class II PilE). This study showed that PilE and NadA may be related to epidemic or endemic meningococcal disease.
Collapse
Affiliation(s)
- X. SUN
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - H. ZHOU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - L. XU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - H. YANG
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Y. GAO
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - B. ZHU
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Z. SHAO
- National Institute for Communicable Disease Control and Prevention, and State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
19
|
Arenas J, Schipper K, van Ulsen P, van der Ende A, Tommassen J. Domain exchange at the 3' end of the gene encoding the fratricide meningococcal two-partner secretion protein A. BMC Genomics 2013; 14:622. [PMID: 24034852 PMCID: PMC3848433 DOI: 10.1186/1471-2164-14-622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/13/2013] [Indexed: 02/01/2023] Open
Abstract
Background Two-partner secretion systems in Gram-negative bacteria consist of an outer membrane protein TpsB that mediates the secretion of a cognate TpsA protein into the extracellular milieu. TpsA proteins have diverse, often virulence-related functions, and some of them inhibit the growth of related bacteria. In Neisseria meningitidis, several functions have been attributed to the TpsA proteins. Downstream of the tpsB and tpsA genes, several shorter tpsA-related gene cassettes, called tpsC, are located interspersed with intervening open-reading frames (IORFs). It has been suggested that the tpsC cassettes may recombine with the tpsA gene as a mechanism of antigenic variation. Here, we investigated (i) whether TpsA of N. meningitidis also has growth-inhibitory properties, (ii) whether tpsC cassettes recombine with the tpsA gene, and (iii) what the consequences of such recombination events might be. Results We demonstrate that meningococcal TpsA has growth-inhibitory properties and that the IORF located immediately downstream of tpsA confers immunity to the producing strain. Although bioinformatics analysis suggests that recombination between tpsC cassettes and tpsA occurs, detailed analysis of the tpsA gene in a large collection of disease isolates of three clonal complexes revealed that the frequency is very low and cannot be a mechanism of antigenic variation. However, recombination affected growth inhibition. In vitro experiments revealed that recombination can be mediated through acquirement of tpsC cassettes from the environment and it identified the regions involved in the recombination. Conclusions Meningococcal TpsA has growth-inhibitory properties. Recombination between tpsA and tpsC cassettes occurs in vivo but is rare and has consequences for growth inhibition. A recombination model is proposed and we propose that the main goal of recombination is the collection of new IORFs for protection against a variety of TpsA proteins.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| | | | | | | | | |
Collapse
|
20
|
Suggested role for G4 DNA in recombinational switching at the antigenic variation locus of the Lyme disease spirochete. PLoS One 2013; 8:e57792. [PMID: 23469068 PMCID: PMC3585125 DOI: 10.1371/journal.pone.0057792] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Antigenic variation through targeted DNA rearrangements provides a powerful diversity generating mechanism that allows a variety of pathogens to stay one step ahead of acquired immunity in their hosts. The Lyme disease spirochete encodes such a system that is required for persistent infection. The vls locus, carried on a 29 kb linear plasmid (lp28-1) in the type strain B31, carries 15 silent cassettes from which information is unidirectionally transferred into the expression locus, vlsE. Recent studies have surprisingly shown that, with the exception of the RuvAB branch migrase, no other known recombination/repair proteins appear to play a role in the recombinational switching process. In the work presented here we show that G4 DNA can be formed by sequences within the B31 vlsE locus, prompting us to investigate the presence of potential G4-forming DNA throughout the vls locus of several Lyme spirochete strains and species. We found that runs of G, three nucleotides and longer occur at a very high density, with a greater than 100-fold strand-specific distribution in the vls locus of three B. burgdorferi strains as well as in B. afzelii and B. garinii, in spite of the bias for the use of A-T rich codons in Borrelia species. Our findings suggest the possibility that G4 DNA may be a mediator of recombinational switching at the vlsE locus in the Lyme spirochetes.
Collapse
|
21
|
Johnson PJT, Levin BR. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet 2013; 9:e1003123. [PMID: 23300474 PMCID: PMC3536638 DOI: 10.1371/journal.pgen.1003123] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/12/2012] [Indexed: 01/31/2023] Open
Abstract
When growing populations of bacteria are confronted with bactericidal antibiotics, the vast majority of cells are killed, but subpopulations of genetically susceptible but phenotypically resistant bacteria survive. In accord with the prevailing view, these “persisters” are non- or slowly dividing cells randomly generated from the dominant population. Antibiotics enrich populations for pre-existing persisters but play no role in their generation. The results of recent studies with Escherichia coli suggest that at least one antibiotic, ciprofloxacin, can contribute to the generation of persisters. To more generally elucidate the role of antibiotics in the generation of and selection for persisters and the nature of persistence in general, we use mathematical models and experiments with Staphylococcus aureus (Newman) and the antibiotics ciprofloxacin, gentamicin, vancomycin, and oxacillin. Our results indicate that the level of persistence varies among these drugs and their concentrations, and there is considerable variation in this level among independent cultures and mixtures of independent cultures. A model that assumes that the rate of production of persisters is low and persisters grow slowly in the presence of antibiotics can account for these observations. As predicted by this model, pre-treatment with sub-MIC concentrations of antibiotics substantially increases the level of persistence to drugs other than those with which the population is pre-treated. Collectively, the results of this jointly theoretical and experimental study along with other observations support the hypothesis that persistence is the product of many different kinds of errors in cell replication that result in transient periods of non-replication and/or slowed metabolism by individual cells in growing populations. This Persistence as Stuff Happens (PaSH) hypothesis can account for the ubiquity of this phenomenon. Like mutation, persistence is inevitable rather than an evolved character. What evolved and have been identified are genes and processes that affect the frequency of persisters. Because of its importance to therapy, a great deal of effort has been devoted to understanding the mechanisms responsible for and the genetic basis of persistence in inherently susceptible but phenotypically antibiotic-resistant subpopulations of bacteria. Much of this research is based on the premise that persisters are produced at random from the susceptible population and the antibiotics used to detect them play no role in their generation. The results of this jointly theoretical and experimental study are inconsistent with this hypothesis. These results, along with observations reported by other investigators, including the failure to find bacteria that do not produce persisters but an abundance of genes modifying their frequency, support the hypothesis that there are many mechanisms responsible for persistence. Based on these collective theoretical and experimental results, along with evolutionary considerations, we postulate that persistence is analogous to mutation. It is an inevitable product of errors and glitches in cell replication and metabolism rather than an evolved character.
Collapse
Affiliation(s)
- Paul J. T. Johnson
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Bruce R. Levin
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Cer RZ, Donohue DE, Mudunuri US, Temiz NA, Loss MA, Starner NJ, Halusa GN, Volfovsky N, Yi M, Luke BT, Bacolla A, Collins JR, Stephens RM. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res 2012; 41:D94-D100. [PMID: 23125372 PMCID: PMC3531222 DOI: 10.1093/nar/gks955] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.
Collapse
Affiliation(s)
- Regina Z Cer
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc., Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Madureira P, Andrade EB, Gama B, Oliveira L, Moreira S, Ribeiro A, Correia-Neves M, Trieu-Cuot P, Vilanova M, Ferreira P. Inhibition of IL-10 production by maternal antibodies against Group B Streptococcus GAPDH confers immunity to offspring by favoring neutrophil recruitment. PLoS Pathog 2011; 7:e1002363. [PMID: 22114550 PMCID: PMC3219712 DOI: 10.1371/journal.ppat.1002363] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')2 fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10−/−) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen. Streptococcus agalactiae (Group B streptococcus, GBS) is the leading infectious cause of morbidity and mortality among neonates. However, there is still no satisfactory explanation of why neonates are so susceptible to GBS infections. Intrapartum antibiotic prophylaxis (IAP) was implemented in many countries but led to the emergence of antibiotic-resistant GBS strains. Therefore, maternal vaccination represents an attractive alternative to IAP. Here, we show that the high susceptibility of newborn mice to GBS infections is associated with their propensity to produce elevated amounts of immunosuppressive cytokine IL-10. We also demonstrate that IL-10 impairs neutrophil recruitment into infected organs thus preventing bacterial clearance. We identified extracellular GAPDH as the GBS factor that induces the high IL-10 production detected early upon neonatal infection. We show that maternal vaccination with recombinant GAPDH confers robust protective immunity against lethal infection with a GBS hyper-virulent strain in mice offspring. This protection can also be obtained either by antibody neutralization of GBS GAPDH or by blocking IL-10 binding to its receptor. As GBS GAPDH is an essential protein for bacterial growth, it is present in all GBS strains and thus constitutes an appropriate target antigen for a global effective vaccine against this pathogen.
Collapse
Affiliation(s)
- Pedro Madureira
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Elva Bonifácio Andrade
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Bernardo Gama
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Susana Moreira
- IBB, Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Adília Ribeiro
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS URA 2172, Paris, France
| | - Manuel Vilanova
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Paula Ferreira
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- IBMC – Instituto de Biologia Molecular e Celular, Porto, Portugal
- * E-mail:
| |
Collapse
|
24
|
Deletion of one nucleotide within the homonucleotide tract present in the hsdS gene alters the DNA sequence specificity of type I restriction-modification system NgoAV. J Bacteriol 2011; 193:6750-9. [PMID: 21984785 DOI: 10.1128/jb.05672-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a result of a frameshift mutation, the hsdS locus of the NgoAV type IC restriction and modification (RM) system comprises two genes, hsdS(NgoAV1) and hsdS(NgoAV2). The specificity subunit, HsdS(NgoAV), the product of the hsdS(NgoAV1) gene, is a naturally truncated form of an archetypal specificity subunit (208 N-terminal amino acids instead of 410). The presence of a homonucleotide tract of seven guanines (poly[G]) at the 3' end of the hsdS(NgoAV1) gene makes the NgoAV system a strong candidate for phase variation, i.e., stochastic addition or reduction in the guanine number. We have constructed mutants with 6 guanines instead of 7 and demonstrated that the deletion of a single nucleotide within the 3' end of the hsdS(NgoAV1) gene restored the fusion between the hsdS(NgoAV1) and hsdS(NgoAV2) genes. We have demonstrated that such a contraction of the homonucleotide tract may occur in vivo: in a Neisseria gonorrhoeae population, a minor subpopulation of cells appeared to have only 6 guanines at the 3' end of the hsdS(NgoAV1) gene. Escherichia coli cells carrying the fused gene and expressing the NgoAVΔ RM system were able to restrict λ phage at a level comparable to that for the wild-type NgoAV system. NgoAV recognizes the quasipalindromic interrupted sequence 5'-GCA(N(8))TGC-3' and methylates both strands. NgoAVΔ recognizes DNA sequences 5'-GCA(N(7))GTCA-3' and 5'-GCA(N(7))CTCA-3', although the latter sequence is methylated only on the complementary strand within the 5'-CTCA-3' region of the second recognition target sequence.
Collapse
|
25
|
Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provide genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J Bacteriol 2011; 193:4736-48. [PMID: 21764928 DOI: 10.1128/jb.01533-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We described previously the presence in Acinetobacter baumannii of a novel outer membrane (OM) protein, CarO, which functions as an L-ornithine OM channel and whose loss was concomitant with increased carbapenem resistance among clonally related nosocomial isolates of this opportunistic pathogen. Here, we describe the existence of extensive genetic diversity at the carO gene within the A. baumannii clinical population. The systematic analysis of carO sequences from A. baumannii isolates obtained from public hospitals in Argentina revealed the existence of four highly polymorphic carO variants among them. Sequence polymorphism between the different A. baumannii CarO variants was concentrated in three well-defined protein regions that superimposed mostly to predicted surface-exposed loops. Polymorphism among A. baumannii CarO variants was manifested in differential electrophoretic mobilities, antigenic properties, abilities to form stable oligomeric structures, and l-ornithine influx abilities through the A. baumannii OM under in vivo conditions. Incongruence between the phylogenies of the clinical A. baumannii isolates analyzed and those of the carO variants they harbor suggests the existence of assortative (entire-gene) carO recombinational exchange within the A. baumannii population. Exchange of carO variants possessing differential characteristics mediated by horizontal gene transfer may constitute an A. baumannii population strategy to survive radically changing environmental conditions, such as the leap from inanimate sources to human hosts and vice versa, persistence in a compromised host, and/or survival in health care facilities.
Collapse
|
26
|
Ramsey ME, Woodhams KL, Dillard JP. The Gonococcal Genetic Island and Type IV Secretion in the Pathogenic Neisseria. Front Microbiol 2011; 2:61. [PMID: 21833316 PMCID: PMC3153036 DOI: 10.3389/fmicb.2011.00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/21/2011] [Indexed: 01/10/2023] Open
Abstract
Eighty percent of Neisseria gonorrhoeae strains and some Neisseria meningitidis strains encode a 57-kb gonococcal genetic island (GGI). The GGI was horizontally acquired and is inserted in the chromosome at the replication terminus. The GGI is flanked by direct repeats, and site-specific recombination at these sites results in excision of the GGI and may be responsible for its original acquisition. Although the role of the GGI in N. meningitidis is unclear, the GGI in N. gonorrhoeae encodes a type IV secretion system (T4SS). T4SS are versatile multi-protein complexes and include both conjugation systems as well as effector systems that translocate either proteins or DNA-protein complexes. In N. gonorrhoeae, the T4SS secretes single-stranded chromosomal DNA into the extracellular milieu in a contact-independent manner. Importantly, the DNA secreted through the T4SS is effective in natural transformation and therefore contributes to the spread of genetic information through Neisseria populations. Mutagenesis experiments have identified genes for DNA secretion including those encoding putative structural components of the apparatus, peptidoglycanases which may act in assembly, and relaxosome components for processing the DNA and delivering it to the apparatus. The T4SS may also play a role in infection by N. gonorrhoeae. During intracellular infection, N. gonorrhoeae requires the Ton complex for iron acquisition and survival. However, N. gonorrhoeae strains that do not express the Ton complex can survive intracellularly if they express structural components of the T4SS. These data provide evidence that the T4SS is expressed during intracellular infection and suggest that the T4SS may provide an advantage for intracellular survival. Here we review our current understanding of how the GGI and type IV secretion affect natural transformation and pathogenesis in N. gonorrhoeae and N. meningitidis.
Collapse
Affiliation(s)
- Meghan E. Ramsey
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| | - Katelynn L. Woodhams
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
27
|
Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 2011; 14:205-11. [DOI: 10.1016/j.mib.2011.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/26/2022]
|
28
|
Liu Y, Feinen B, Russell MW. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front Microbiol 2011; 2:52. [PMID: 21833308 PMCID: PMC3153028 DOI: 10.3389/fmicb.2011.00052] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/08/2011] [Indexed: 12/31/2022] Open
Abstract
It is well-known that gonorrhea can be acquired repeatedly with no apparent development of protective immunity arising from previous episodes of infection. Symptomatic infection is characterized by a purulent exudate, but the host response mechanisms are poorly understood. While the remarkable antigenic variability displayed by Neisseria gonorrhoeae and its capacity to inhibit complement activation allow it to evade destruction by the host's immune defenses, we propose that it also has the capacity to avoid inducing specific immune responses. In a mouse model of vaginal gonococcal infection, N. gonorrhoeae elicits Th17-driven inflammatory–immune responses, which recruit innate defense mechanisms including an influx of neutrophils. Concomitantly, N. gonorrhoeae suppresses Th1- and Th2-dependent adaptive immunity, including specific antibody responses, through a mechanism involving TGF-β and regulatory T cells. Blockade of TGF-β alleviates the suppression of specific anti-gonococcal responses and allows Th1 and Th2 responses to emerge with the generation of immune memory and protective immunity. Genital tract tissues are naturally rich in TGF-β, which fosters an immunosuppressive environment that is important in reproduction. In exploiting this niche, N. gonorrhoeae exemplifies a well-adapted pathogen that proactively elicits from its host innate responses that it can survive and concomitantly suppresses adaptive immunity. Comprehension of these mechanisms of gonococcal pathogenesis should allow the development of novel approaches to therapy and facilitate the development of an effective vaccine.
Collapse
Affiliation(s)
- Yingru Liu
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo Buffalo, NY, USA
| | | | | |
Collapse
|
29
|
Cer RZ, Bruce KH, Mudunuri US, Yi M, Volfovsky N, Luke BT, Bacolla A, Collins JR, Stephens RM. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes. Nucleic Acids Res 2010; 39:D383-91. [PMID: 21097885 PMCID: PMC3013731 DOI: 10.1093/nar/gkq1170] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.
Collapse
Affiliation(s)
- Regina Z Cer
- Advanced Biomedical Computing Center, Information Systems Program, SAIC-Frederick, Inc, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Genome sequencing reveals widespread virulence gene exchange among human Neisseria species. PLoS One 2010; 5:e11835. [PMID: 20676376 PMCID: PMC2911385 DOI: 10.1371/journal.pone.0011835] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 11/19/2022] Open
Abstract
Commensal bacteria comprise a large part of the microbial world, playing important roles in human development, health and disease. However, little is known about the genomic content of commensals or how related they are to their pathogenic counterparts. The genus Neisseria, containing both commensal and pathogenic species, provides an excellent opportunity to study these issues. We undertook a comprehensive sequencing and analysis of human commensal and pathogenic Neisseria genomes. Commensals have an extensive repertoire of virulence alleles, a large fraction of which has been exchanged among Neisseria species. Commensals also have the genetic capacity to donate DNA to, and take up DNA from, other Neisseria. Our findings strongly suggest that commensal Neisseria serve as reservoirs of virulence alleles, and that they engage extensively in genetic exchange.
Collapse
|
31
|
Identification of Anaplasma centrale major surface protein-2 pseudogenes. Vet Microbiol 2010; 143:277-83. [DOI: 10.1016/j.vetmic.2009.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 11/24/2022]
|
32
|
Briggs GS, Yu J, Mahdi AA, Lloyd RG. The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA. Nucleic Acids Res 2010; 38:6433-46. [PMID: 20525790 PMCID: PMC2965237 DOI: 10.1093/nar/gkq509] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The DNA-binding protein RdgC has been identified as an inhibitor of RecA-mediated homologous recombination in Escherichia coli. In Neisseria species, RdgC also has a role in virulence-associated antigenic variation. We have previously solved the crystal structure of the E. coli RdgC protein and shown it to form a toroidal dimer. In this study, we have conducted a mutational analysis of residues proposed to mediate interactions at the dimer interfaces. We demonstrate that destabilizing either interface has a serious effect on in vivo function, even though a stable complex with circular DNA was still observed. We conclude that tight binding is required for inhibition of RecA activity. We also investigated the role of the RdgC finger domain, and demonstrate that it plays a crucial role in the binding of circular DNA. Together, these data allow us to propose a model for how RdgC loads onto DNA. We discuss how RdgC might inhibit RecA-mediated strand exchange, and how RdgC might be displaced by other DNA metabolism enzymes such as polymerases and helicases.
Collapse
Affiliation(s)
- Geoffrey S Briggs
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
33
|
Sequence conservation of pilus subunits in Neisseria meningitidis. Vaccine 2010; 28:4817-26. [PMID: 20457291 DOI: 10.1016/j.vaccine.2010.04.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/26/2010] [Accepted: 04/21/2010] [Indexed: 12/11/2022]
Abstract
The rapid onset and dramatic consequences of Neisseria meningitidis infections make the design of a broadly protective vaccine a priority for public health. There is an ongoing quest for meningococcal components that are surface exposed, widely conserved and can induce protective antibodies. Type IV pili (Tfp) are filamentous structures with a key role in pathogenesis that extend beyond the surface of the bacteria and have demonstrated vaccine potential. However, extensive antigenic variation of PilE, the major subunit of Tfp, means that they are currently considered to be unsuitable vaccine components. Recently it has been shown that Tfp also contain low abundance pilins ComP, PilV and PilX in addition to PilE. This prompted us to examine the prevalence and sequence diversity of these proteins in a panel of N. meningitidis disease isolates. We found that all minor pilins are highly conserved and the major pilin genes are also highly conserved within the ST-8 and ST-11 clonal complexes. These data have important implications for the re-consideration of pilus subunits as vaccine antigens.
Collapse
|
34
|
Mismatch correction modulates mutation frequency and pilus phase and antigenic variation in Neisseria gonorrhoeae. J Bacteriol 2010; 192:316-25. [PMID: 19854909 DOI: 10.1128/jb.01228-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mismatch correction (MMC) system repairs DNA mismatches and single nucleotide insertions or deletions postreplication. To test the functions of MMC in the obligate human pathogen Neisseria gonorrhoeae, homologues of the core MMC genes mutS and mutL were inactivated in strain FA1090. No mutH homologue was found in the FA1090 genome, suggesting that gonococcal MMC is not methyl directed. MMC mutants were compared to a mutant in uvrD, the helicase that functions with MMC in Escherichia coli. Inactivation of MMC or uvrD increased spontaneous resistance to rifampin and nalidixic acid, and MMC/uvrD double mutants exhibited higher mutation frequencies than any single mutant. Loss of MMC marginally enhanced the transformation efficiency of DNA carrying a single nucleotide mismatch but not that of DNA with a 1-kb insertion. Unlike the exquisite UV sensitivity of the uvrD mutant, inactivating MMC did not affect survival after UV irradiation. MMC and uvrD mutants exhibited increased PilC-dependent pilus phase variation. mutS-deficient gonococci underwent an increased frequency of pilin antigenic variation, whereas uvrD had no effect. Recombination tracts in the mutS pilin variants were longer than in parental gonococci but utilized the same donor pilS loci. These results show that gonococcal MMC repairs mismatches and small insertion/deletions in DNA and also affects the recombination events underlying pilin antigenic variation. The differential effects of MMC and uvrD in gonococci unexpectedly reveal that MMC can function independently of uvrD in this human-specific pathogen.
Collapse
|
35
|
Morrison LJ, Marcello L, McCulloch R. Antigenic variation in the African trypanosome: molecular mechanisms and phenotypic complexity. Cell Microbiol 2009; 11:1724-34. [PMID: 19751359 DOI: 10.1111/j.1462-5822.2009.01383.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Antigenic variation is an immune evasion strategy that has evolved in viral, bacterial and protistan pathogens. In the African trypanosome this involves stochastic switches in the composition of a variant surface glycoprotein (VSG) coat, using a massive archive of silent VSG genes to change the identity of the single VSG expressed at a time. VSG switching is driven primarily by recombination reactions that move silent VSGs into specialized expression sites, though transcription-based switching can also occur. Here we discuss what is being revealed about the machinery that underlies these switching mechanisms, including what parallels can be drawn with other pathogens. In addition, we discuss how such switching reactions act in a hierarchy and contribute to pathogen survival in the face of immune attack, including the establishment and maintenance of chronic infections, leading to host-host transmission.
Collapse
Affiliation(s)
- Liam J Morrison
- University of Glasgow, Wellcome Centre for Molecular Parasitology and Division of Infection and Immunity, Glasgow Biomedical Research Centre, 120 University Place, Glasgow, G12 8TA, UK
| | | | | |
Collapse
|