1
|
Alexakis K, Baliou S, Ioannou P. Predatory Bacteria in the Treatment of Infectious Diseases and Beyond. Infect Dis Rep 2024; 16:684-698. [PMID: 39195003 DOI: 10.3390/idr16040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is an increasing problem worldwide, with significant associated morbidity and mortality. Given the slow production of new antimicrobials, non-antimicrobial methods for treating infections with significant AMR are required. This review examines the potential of predatory bacteria to combat infectious diseases, particularly those caused by pathogens with AMR. Predatory bacteria already have well-known applications beyond medicine, such as in the food industry, biocontrol, and wastewater treatment. Regarding their potential for use in treating infections, several in vitro studies have shown their potential in eliminating various pathogens, including those resistant to multiple antibiotics, and they also suggest minimal immune stimulation and cytotoxicity by predatory bacteria. In vivo animal studies have demonstrated safety and efficacy in reducing bacterial burden in various infection models. However, results can be inconsistent, suggesting dependence on factors like the animal model and the infecting bacteria. Until now, no clinical study in humans exists, but as experience with predatory bacteria grows, future studies including clinical studies in humans could be designed to evaluate their efficacy and safety in humans, thus leading to the potential for approval of a novel method for treating infectious diseases by bacteria.
Collapse
Affiliation(s)
| | - Stella Baliou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
2
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Han J, Dong Z, Ji W, Lv W, Luo M, Fu B. From predator to protector: Myxococcus fulvus WCH05 emerges as a potent biocontrol agent for fire blight. Front Microbiol 2024; 15:1378288. [PMID: 38650871 PMCID: PMC11033317 DOI: 10.3389/fmicb.2024.1378288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Fire blight, caused by the Gram-negative bacterium Erwinia amylovora, poses a substantial threat to pome fruit production worldwide. Despite existing control strategies, a pressing need remains for sustainable and environmentally friendly fire blight management. Myxobacteria, renowned for their predatory behavior and potent enzymes, emerge as a groundbreaking biocontrol approach with significant potential. Here, we report the biocontrol potential of a novel Myxococcus fulvus WCH05, against E. amylovora. Using various in vitro and planta assays, we demonstrated the multifaceted biocontrol abilities of strain WCH05. In plate predation assays, strain WCH05 exhibited not only strong predation against E. amylovora but also broad-spectrum activities against other plant pathogenic bacteria. Pre-treatment with strain WCH05 significantly decreased pear blossom blight incidence in detached inflorescence assays, achieving a controlled efficacy of 76.02% that rivaled the antibiotic streptomycin (79.79%). In greenhouse trials, strain WCH05 effectively reduced the wilting rate and disease index in young pear seedlings, exhibiting both protective (73.68%) and curative (68.66%) control. Further investigation revealed that the biocontrol activity of strain WCH05 relies on both direct contact and extracellular enzyme secretion. While cell extracts lacked inhibitory activity, ammonium sulfate-precipitated secreted proteins displayed potent lytic activity against E. amylovora. Substrate spectrum analysis identified peptidases, lipases, and glycosidases among the secreted enzymes, suggesting their potential roles in pathogen degradation and biocontrol efficacy. This study presents the first evidence of Myxococcus fulvus WCH05 as a biocontrol agent against fire blight. Its potent predatory abilities and enzymatic arsenal highlight its potential for sustainable disease management in pome fruit production. Future research will focus on identifying and characterizing specific lytic enzymes and optimizing strain WCH05 application strategies for field efficacy.
Collapse
Affiliation(s)
- Jian Han
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Zhiming Dong
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wenbo Ji
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Wen Lv
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Ming Luo
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Benzhong Fu
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University/Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of Xinjiang Uygur Autonomous Region, Urumqi, China
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture and Forestry of the North-western Desert Oasis (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Urumqi, China
| |
Collapse
|
4
|
Zhang L, Bao L, Li S, Liu Y, Liu H. Corrigendum: Active substances of myxobacteria against plant diseases and their action mechanisms. Front Microbiol 2024; 15:1392109. [PMID: 38544866 PMCID: PMC10971235 DOI: 10.3389/fmicb.2024.1392109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
[This corrects the article DOI: 10.3389/fmicb.2023.1294854.].
Collapse
Affiliation(s)
- Lele Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Liangliang Bao
- College of Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Songyuan Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yang Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
5
|
Xie Q, Xu H, Wen R, Wang L, Yang Y, Zhang H, Su B. Integrated management of fruit trees and Bletilla striata: implications for soil nutrient profiles and microbial community structures. Front Microbiol 2024; 15:1307677. [PMID: 38511009 PMCID: PMC10951077 DOI: 10.3389/fmicb.2024.1307677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/14/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Forest medicinal compound systems in agroforestry ecosystems represent a multi-layered cultivation approach that utilizes forest resources efficiently. However, research on how these systems affect soil nutrients and microbial communities is limited. Methods This study compared the soil chemical properties and microbial communities of Bletilla striata (C) grown alone versus in agroforestry systems with apple (PB), pear (LB), and peach trees (TB), aiming to understand the impact of these systems on soil health and microbial diversity. Results Soil in the GAB systems showed increased levels of essential nutrients but lower pH and ammonium nitrogen levels compared to the control. Significant improvements in organic matter, total phosphorus, and total potassium were observed in TB, PB, and LB systems, respectively. The bacterial diversity increased in GAB systems, with significant changes in microbial phyla indicative of a healthier soil ecosystem. The correlation between soil properties and bacterial communities was stronger than with fungal communities. Discussion Integrating B. striata with fruit trees enhances soil nutrients and microbial diversity but may lead to soil acidification. Adjustments such as using controlled-release fertilizers and soil amendments like lime could mitigate negative impacts, improving soil health in GAB systems.
Collapse
Affiliation(s)
- Qiufeng Xie
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - Huimei Xu
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - Rouyuan Wen
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - Le Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yan Yang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Haizhu Zhang
- College of Pharmaceutical Science, Dali University, Dali, China
- Western Yunnan Traditional Chinese Medicine and Ethnic Drug Engineering Center, College of Pharmacy, Dali University, Dali, China
| | - BaoShun Su
- Dali Lin Yun Biotechnology Development Co., Ltd., Dali, China
| |
Collapse
|
6
|
Zhou X, Zhou X, Zhang X, Dong H, Dong Y, Zhu H. Secretory CAZymes profile and GH19 enzymes analysis of Corallococcus silvisoli c25j21. Front Microbiol 2024; 15:1324153. [PMID: 38374914 PMCID: PMC10875029 DOI: 10.3389/fmicb.2024.1324153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
Extracellular enzymes play important roles in myxobacteria degrading macromolecules and preying on other microorganisms. Glycoside hydrolases 19 (GH19) are widely present in myxobacteria, but their evolution and biological functions have not been fully elucidated. Here we investigated the comparative secretory proteome of Corallococcus silvisoli c25j21 in the presence of cellulose and chitin. A total of 313 proteins were detected, including 16 carbohydrate-active enzymes (CAZymes), 7 of which were induced by cellulose or chitin, such as GH6, GH13, GH19, AA4, and CBM56. We further analyzed the sequence and structural characteristics of its three GH19 enzymes to understand their potential functions. The results revealed that myxobacterial GH19 enzymes are evolutionarily divided into two clades with different appended modules, and their different amino acid compositions in the substrate binding pockets lead to the differences in molecular surface electrostatic potentials, which may, in turn, affect their substrate selectivity and biological functions. Our study is helpful for further understanding the biological functions and catalytic mechanisms of myxobacterial CAZymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Cha Y, Kim W, Park Y, Kim M, Son Y, Park W. Antagonistic actions of Paucibacter aquatile B51 and its lasso peptide paucinodin toward cyanobacterial bloom-forming Microcystis aeruginosa PCC7806. JOURNAL OF PHYCOLOGY 2024; 60:152-169. [PMID: 38073162 DOI: 10.1111/jpy.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/08/2023] [Indexed: 02/17/2024]
Abstract
Superior antagonistic activity against axenic Microcystis aeruginosa PCC7806 was observed with Paucibacter sp. B51 isolated from cyanobacterial bloom samples among 43 tested freshwater bacterial species. Complete genome sequencing, analyzing average nucleotide identity and digital DNA-DNA hybridization, designated the B51 strain as Paucibacter aquatile. Electron and fluorescence microscopic image analyses revealed the presence of the B51 strain in the vicinity of M. aeruginosa cells, which might provoke direct inhibition of the photosynthetic activity of the PCC7806 cells, leading to perturbation of cellular metabolisms and consequent cell death. Our speculation was supported by the findings that growth failure of the PCC7806 cells led to low pH conditions with fewer chlorophylls and down-regulation of photosystem genes (e.g., psbD and psaB) during their 48-h co-culture condition. Interestingly, the concentrated ethyl acetate extracts obtained from B51-grown supernatant exhibited a growth-inhibitory effect on PCC7806. The physical separation of both strains by a filter system led to no inhibitory activity of the B51 cells, suggesting that contact-mediated anti-cyanobacterial compounds might also be responsible for hampering the growth of the PCC7806 cells. Bioinformatic tools identified 12 gene clusters that possibly produce secondary metabolites, including a class II lasso peptide in the B51 genome. Further chemical analysis demonstrated anti-cyanobacterial activity from fractionated samples having a rubrivinodin-like lasso peptide, named paucinodin. Taken together, both contact-mediated inhibition of photosynthesis and the lasso peptide secretion of the B51 strain are responsible for the anti-cyanobacterial activity of P. aquatile B51.
Collapse
Affiliation(s)
- Yeji Cha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Yongjun Son
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Chen Y, Topo EJ, Nan B, Chen J. Mathematical modeling of mechanosensitive reversal control in Myxococcus xanthus. Front Microbiol 2024; 14:1294631. [PMID: 38260904 PMCID: PMC10803039 DOI: 10.3389/fmicb.2023.1294631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Adjusting motility patterns according to environmental cues is important for bacterial survival. Myxococcus xanthus, a bacterium moving on surfaces by gliding and twitching mechanisms, modulates the reversal frequency of its front-back polarity in response to mechanical cues like substrate stiffness and cell-cell contact. In this study, we propose that M. xanthus's gliding machinery senses environmental mechanical cues during force generation and modulates cell reversal accordingly. To examine our hypothesis, we expand an existing mathematical model for periodic polarity reversal in M. xanthus, incorporating the experimental data on the intracellular dynamics of the gliding machinery and the interaction between the gliding machinery and a key polarity regulator. The model successfully reproduces the dependence of cell reversal frequency on substrate stiffness observed in M. xanthus gliding. We further propose reversal control networks between the gliding and twitching motility machineries to explain the opposite reversal responses observed in wild type M. xanthus cells that possess both motility mechanisms. These results provide testable predictions for future experimental investigations. In conclusion, our model suggests that the gliding machinery in M. xanthus can function as a mechanosensor, which transduces mechanical cues into a cell reversal signal.
Collapse
Affiliation(s)
- Yirui Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Genetics, Bioinformatics and Computational Biology Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Elias J. Topo
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jing Chen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, United States
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
9
|
Zhang L, Bao L, Li S, Liu Y, Liu H. Active substances of myxobacteria against plant diseases and their action mechanisms. Front Microbiol 2024; 14:1294854. [PMID: 38260911 PMCID: PMC10800785 DOI: 10.3389/fmicb.2023.1294854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Myxobacteria have a complex life cycle and unique social behavior, and obtain nutrients by preying on bacteria and fungi in soil. Chitinase, β-1,3 glucanase and β-1,6 glucanase produced by myxobacteria can degrade the glycosidic bond of cell wall of some plant pathogenic fungi, resulting in a perforated structure in the cell wall. In addition, isooctanol produced by myxobacteria can lead to the accumulation of intracellular reactive oxygen species in some pathogenic fungi and induce cell apoptosis. Myxobacteria can also perforate the cell wall of some plant pathogenic oomycetes by β-1,3 glucanase, reduce the content of intracellular soluble protein and protective enzyme activity, affect the permeability of oomycete cell membrane, and aggravate the oxidative damage of pathogen cells. Small molecule compounds such as diisobutyl phthalate and myxovirescin produced by myxobacteria can inhibit the formation of biofilm and lipoprotein of bacteria, and cystobactamids can inhibit the activity of DNA gyrase, thus changing the permeability of bacterial cell membrane. Myxobacteria, as a new natural compound resource bank, can control plant pathogenic fungi, oomycetes and bacteria by producing carbohydrate active enzymes and small molecular compounds, so it has great potential in plant disease control.
Collapse
Affiliation(s)
- Lele Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Liangliang Bao
- College of Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Songyuan Li
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yang Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Huirong Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
10
|
Zhou Y, Chen H, Jiang H, Yao Q, Zhu H. Characteristics of a lipase ArEstA with lytic activity against drug-resistant pathogen from a novel myxobacterium, Archangium lipolyticum sp. nov. Front Microbiol 2024; 14:1320827. [PMID: 38239728 PMCID: PMC10794672 DOI: 10.3389/fmicb.2023.1320827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Bacteriolytic myxobacteria are versatile micropredators and are proposed as potential biocontrol agents against diverse bacterial and fungal pathogens. Isolation of new myxobacteria species and exploration of effective predatory products are necessary for successful biocontrol of pathogens. In this study, a myxobacterium strain CY-1 was isolated from a soil sample of a pig farm using the Escherichia coli baiting method. Based on the morphological observation, physiological test, 16S rRNA gene sequence, and genomic data, strain CY-1 was identified as a novel species of the myxobacterial genus Archangium, for which the name Archangium lipolyticum sp. nov. was proposed. Subsequent predation tests indicated that the strain efficiently lysed drug-resistant pathogens, with a higher predatory activity against E. coli 64 than Staphylococcus aureus GDMCC 1.771 (MRSA). The lysis of extracellular proteins against ester-bond-containing substrates (tributyrin, tween 80, egg-yolk, and autoclaved drug-resistant pathogens) inspired the mining of secreted predatory products with lipolytic activity. Furthermore, a lipase ArEstA was identified from the genome of CY-1, and the heterologously expressed and purified enzyme showed bacteriolytic activity against Gram-negative bacteria E. coli 64 but not against Gram-positive MRSA, possibly due to different accessibility of enzyme to lipid substrates in different preys. Our research not only provided a novel myxobacterium species and a candidate enzyme for the development of new biocontrol agents but also reported an experimental basis for further study on different mechanisms of secreted predatory products in myxobacterial killing and degrading of Gram-negative and Gram-positive preys.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Haixin Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongxia Jiang
- Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qing Yao
- College of Horticulture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, South China Agricultural University, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Li L, Huang D, Hu Y, Rudling NM, Canniffe DP, Wang F, Wang Y. Globally distributed Myxococcota with photosynthesis gene clusters illuminate the origin and evolution of a potentially chimeric lifestyle. Nat Commun 2023; 14:6450. [PMID: 37833297 PMCID: PMC10576062 DOI: 10.1038/s41467-023-42193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Photosynthesis is a fundamental biogeochemical process, thought to be restricted to a few bacterial and eukaryotic phyla. However, understanding the origin and evolution of phototrophic organisms can be impeded and biased by the difficulties of cultivation. Here, we analyzed metagenomic datasets and found potential photosynthetic abilities encoded in the genomes of uncultivated bacteria within the phylum Myxococcota. A putative photosynthesis gene cluster encoding a type-II reaction center appears in at least six Myxococcota families from three classes, suggesting vertical inheritance of these genes from an early common ancestor, with multiple independent losses in other lineages. Analysis of metatranscriptomic datasets indicate that the putative myxococcotal photosynthesis genes are actively expressed in various natural environments. Furthermore, heterologous expression of myxococcotal pigment biosynthesis genes in a purple bacterium supports that the genes can drive photosynthetic processes. Given that predatory abilities are thought to be widespread across Myxococcota, our results suggest the intriguing possibility of a chimeric lifestyle (combining predatory and photosynthetic abilities) in members of this phylum.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yaoxun Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nicola M Rudling
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Mun W, Choi SY, Upatissa S, Mitchell RJ. Predatory bacteria as potential biofilm control and eradication agents in the food industry. Food Sci Biotechnol 2023; 32:1729-1743. [PMID: 37780591 PMCID: PMC10533476 DOI: 10.1007/s10068-023-01310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Yeol Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
13
|
Fiegna F, Pande S, Peitz H, Velicer GJ. Widespread density dependence of bacterial growth under acid stress. iScience 2023; 26:106952. [PMID: 37332671 PMCID: PMC10275722 DOI: 10.1016/j.isci.2023.106952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Many microbial phenotypes are density-dependent, including group-level phenotypes emerging from cooperation. However, surveys for the presence of a particular form of density dependence across diverse species are rare, as are direct tests for the Allee effect, i.e., positive density dependence of fitness. Here, we test for density-dependent growth under acid stress in five diverse bacterial species and find the Allee effect in all. Yet social protection from acid stress appears to have evolved by multiple mechanisms. In Myxococcus xanthus, a strong Allee effect is mediated by pH-regulated secretion of a diffusible molecule by high-density populations. In other species, growth from low density under acid stress was not enhanced by high-density supernatant. In M. xanthus, high cell density may promote predation on other microbes that metabolically acidify their environment, and acid-mediated density dependence may impact the evolution of fruiting-body development. More broadly, high density may protect most bacterial species against acid stress.
Collapse
Affiliation(s)
- Francesca Fiegna
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Samay Pande
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Gregory J. Velicer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
14
|
Kaimer C, Weltzer ML, Wall D. Two reasons to kill: predation and kin discrimination in myxobacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001372. [PMID: 37494115 PMCID: PMC10433427 DOI: 10.1099/mic.0.001372] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/15/2023] [Indexed: 07/27/2023]
Abstract
Myxobacteria are social microbial predators that use cell-cell contacts to identify bacterial or fungal prey and to differentiate kin relatives to initiate cellular responses. For prey killing, they assemble Tad-like and type III-like secretion systems at contact sites. For kin discrimination (KD), they assemble outer membrane exchange complexes composed of the TraA and TraB receptors at contacts sites. A type VI secretion system and Rhs proteins also mediate KD. Following cellular recognition, these systems deliver appropriate effectors into target cells. For prey, this leads to cell death and lysis for nutrient consumption by myxobacteria. In KD, a panel of effectors are delivered, and if adjacent cells are clonal cells, resistance ensues because they express a cognate panel of immunity factors; while nonkin lack complete immunity and are intoxicated. This review compares and contrasts recent findings from these systems in myxobacteria.
Collapse
Affiliation(s)
- Christine Kaimer
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael L. Weltzer
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
15
|
Zhang L, Dong C, Wang J, Liu M, Wang J, Hu J, Liu L, Liu X, Xia C, Zhong L, Zhao Y, Ye X, Huang Y, Fan J, Cao H, Wang J, Li Y, Wall D, Li Z, Cui Z. Predation of oomycetes by myxobacteria via a specialized CAZyme system arising from adaptive evolution. THE ISME JOURNAL 2023; 17:1089-1103. [PMID: 37156836 PMCID: PMC10284895 DOI: 10.1038/s41396-023-01423-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
As social micropredators, myxobacteria are studied for their abilities to prey on bacteria and fungi. However, their predation of oomycetes has received little attention. Here, we show that Archangium sp. AC19 secretes a carbohydrate-active enzyme (CAZyme) cocktail during predation on oomycetes Phytophthora. These enzymes include three specialized β-1,3-glucanases (AcGlu13.1, -13.2 and -13.3) that act as a cooperative consortium to target β-1,3-glucans of Phytophthora. However, the CAZymes showed no hydrolytic effects on fungal cells, even though fungi contain β-1,3-glucans. Heterologous expression of AcGlu13.1, -13.2 or -13.3 enzymes in Myxococcus xanthus DK1622, a model myxobacterium that antagonizes but does not predate on P. sojae, conferred a cooperative and mycophagous ability that stably maintains myxobacteria populations as a mixture of engineered strains. Comparative genomic analyses suggest that these CAZymes arose from adaptive evolution among Cystobacteriaceae myxobacteria for a specific prey killing behavior, whereby the presence of Phytophthora promotes growth of myxobacterial taxa by nutrient release and consumption. Our findings demonstrate that this lethal combination of CAZymes transforms a non-predatory myxobacterium into a predator with the ability to feed on Phytophthora, and provides new insights for understanding predator-prey interactions. In summary, our work extends the repertoire of myxobacteria predatory strategies and their evolution, and suggests that these CAZymes can be engineered as a functional consortium into strains for biocontrol of Phytophothora diseases and hence crop protection.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaonan Dong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Juying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiexiong Hu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqin Fan
- The Key Laboratory of Monitoring and Management of Plant Diseases ansingled Insects of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, 1000 E University Avenue, Laramie, WY, 82071, USA
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Yang Y, Tao H, Ma W, Wang N, Chen X, Wang W. Lysis profile and preference of Myxococcus sp. PT13 for typical soil bacteria. Front Microbiol 2023; 14:1211756. [PMID: 37378286 PMCID: PMC10291197 DOI: 10.3389/fmicb.2023.1211756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Myxococcus sp. PT13 is a wild strain with multiple predatory properties that prey on multiple model microorganisms preserved in the laboratory. However, the lysis spectrum of PT13 on typical soil bacteria and its driving effect on soil microecosystems are still unclear. Methods In this study, the lawn predation method was used to determine the predation diameter of 62 typical soil bacteria by myxobacteria PT13 and analyze their lysis spectra. Results and Discussion The results showed that PT13 had a predation diameter greater than 15 mm against typical soil microorganisms such as Aeromonas, Bacillus, Brevibacterium, Fictibacillus, Glutamicibacter, Herbaspirillum, and Leifsonia and had an outstanding lysis effect but a significant preference (p < 0.05). Absolute high-throughput sequencing results showed that PT13 predation drove the microcosmic system composed of 16 bacterial genera, with a significant decrease in the Shannon index by 11.8% (CK = 2.04, D = 1.80) and a significant increase in the Simpson index by 45.0% (CK = 0.20, D = 0.29). The results of principal coordinate analysis (PCoA) showed that myxobacterial addition significantly disturbed the microcosmic microbial community structure (ANOSIM, p < 0.05). LEfSe analysis showed that the relative and absolute abundances (copy numbers) of Bacillus, Pedobacter, Staphylococcus, Streptomyces and Fictibacillus decreased significantly very likely due to myxobacterial predation (p < 0.05). However, the predatory effect of PT13 also increased the relative or absolute abundances of some species, such as Sphingobacterium, Paenarthrobacter, Microbacterium, and Leifsonia. It can be concluded that PT13 has a broad-spectrum lysis spectrum but poor cleavage ability for Streptomyces, and the interaction between complex microorganisms limits the predation effect of PT13 on some prey bacteria. This in turn allows some prey to coexist with myxobacteria. This paper will lay a theoretical foundation for the regulation of soil microecology dominated by myxobacteria.
Collapse
|
17
|
Myxobacterial Outer Membrane β-1,6-Glucanase Induced the Cell Death of Fusarium oxysporum by Destroying the Cell Wall Integrity. Appl Environ Microbiol 2023; 89:e0123622. [PMID: 36602342 PMCID: PMC9888188 DOI: 10.1128/aem.01236-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The β-1,6-glucan is the key linker between mannoproteins in the outermost part of the cell wall and β-1,3-glucan/chitin polysaccharide to maintain the rigid structure of the cell wall. The β-1,6-glucanase GluM, which was purified from the fermentation supernatant of Corallococcus sp. EGB, was able to inhibit the germination of Fusarium oxysporum f. sp. cucumerinum conidia at a minimum concentration of 2.0 U/mL (0.08 μg/mL). The survival rates of GluM-treated conidia and monohyphae were 10.4% and 30.7%, respectively, which were significantly lower than that of β-1,3-glucanase treatment (Zymolyase, 20.0 U/mL; equate to 1.0 mg/mL) (72.9% and 73.9%). In contrast to β-1,3-glucanase treatment, the high-osmolarity glycerol (HOG) pathway of F. oxysporum f. sp. cucumerinum cells was activated after GluM treatment, and the intracellular glycerol content was increased by 2.6-fold. Moreover, the accumulation of reactive oxygen species (ROS) in F. oxysporum f. sp. cucumerinum cells after GluM treatment induced apoptosis, but it was not associated with the increased intracellular glycerol content. Together, the results indicate that β-1,6-glucan is a promising target for the development of novel broad-spectrum antifungal agents. IMPORTANCE Phytopathogenic fungi are the most devastating plant pathogens in agriculture, causing enormous economic losses to global crop production. Biocontrol agents have been promoted as replacements to synthetic chemical pesticides for sustainable agriculture development. Cell wall-degrading enzymes (CWDEs), including chitinases and β-1,3-glucanases, have been considered as important armaments to damage the cell wall. Here, we found that F. oxysporum f. sp. cucumerinum is more sensitive to β-1,6-glucanase GluM treatment (0.08 μg/mL) than β-1,3-glucanase Zymolyase (1.0 mg/mL). The HOG pathway was activated in F. oxysporum f. sp. cucumerinum cells after GluM treatment, and the intracellular glycerol content was significantly increased. Moreover, the decomposition of F. oxysporum f. sp. cucumerinum cell wall by GluM induced the burst of intracellular ROS and apoptosis, which eventually leads to cell death. Therefore, we suggest that the β-1,6-glucan of the fungal cell wall may be a better antifungal target compared to the β-1,3-glucan.
Collapse
|
18
|
Ibrahimi M, Loqman S, Jemo M, Hafidi M, Lemee L, Ouhdouch Y. The potential of facultative predatory Actinomycetota spp. and prospects in agricultural sustainability. Front Microbiol 2023; 13:1081815. [PMID: 36762097 PMCID: PMC9905845 DOI: 10.3389/fmicb.2022.1081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
Actinomycetota in the phylum of bacteria has been explored extensively as a source of antibiotics and secondary metabolites. In addition to acting as plant growth-promoting agents, they also possess the potential to control various plant pathogens; however, there are limited studies that report the facultative predatory ability of Actinomycetota spp. Furthermore, the mechanisms that underline predation are poorly understood. We assessed the diversity of strategies employed by predatory bacteria to attack and subsequently induce the cell lysing of their prey. We revisited the diversity and abundance of secondary metabolite molecules linked to the different predation strategies by bacteria species. We analyzed the pros and cons of the distinctive predation mechanisms and explored their potential for the development of new biocontrol agents. The facultative predatory behaviors diverge from group attack "wolfpack," cell-to-cell proximity "epibiotic," periplasmic penetration, and endobiotic invasion to degrade host-cellular content. The epibiotic represents the dominant facultative mode of predation, irrespective of the habitat origins. The wolfpack is the second-used approach among the Actinomycetota harboring predatory traits. The secondary molecules as chemical weapons engaged in the respective attacks were reviewed. We finally explored the use of predatory Actinomycetota as a new cost-effective and sustainable biocontrol agent against plant pathogens.
Collapse
Affiliation(s)
- Manar Ibrahimi
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Sciences and Technics, Sultan Moulay Slimane University, Beni-Mellal, Morocco,Higher School of Technology Fkih Ben Salah, Sultan Moulay Slimane University, Fkih Ben Salah, Morocco
| | - Souad Loqman
- Laboratory of Microbiology and Virology, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakesh, Morocco
| | - Martin Jemo
- AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hafidi
- AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco,Labelled Research Unit N°4 CNRST, Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Laurent Lemee
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP–CNRS UMR 7285), Université de Poitiers, Poitiers, France
| | - Yedir Ouhdouch
- AgroBiosciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco,Labelled Research Unit N°4 CNRST, Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco,*Correspondence: Yedir Ouhdouch,
| |
Collapse
|
19
|
Thiery S, Turowski P, Berleman JE, Kaimer C. The predatory soil bacterium Myxococcus xanthus combines a Tad- and an atypical type 3-like protein secretion system to kill bacterial cells. Cell Rep 2022; 40:111340. [PMID: 36103818 DOI: 10.1016/j.celrep.2022.111340] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
Predatory Myxobacteria employ a multilayered predation strategy to kill and lyse soil microorganisms. Aiming to dissect the mechanism of contact-dependent killing of bacteria, we analyze four protein secretion systems in Myxococcus xanthus and investigate the predation of mutant strains on different timescales. We find that a Tad-like and a type 3-like secretion system (Tad and T3SS∗) fulfill distinct functions during contact-dependent prey killing: the Tad-like system is necessary to induce prey cell death, while the needle-less T3SS∗ initiates prey lysis. Fluorescence microscopy reveals that components of both systems interdependently localize to the predator-prey contact site prior to killing. Swarm expansion assays show that both Tad and T3SS∗ are required to handle live prey and that nutrient extraction from prey bacteria is sufficient to power M. xanthus motility. In conclusion, our observations indicate the functional interplay of two types of secretion systems for killing and lysis of bacterial cells.
Collapse
Affiliation(s)
- Susanne Thiery
- Department of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Pia Turowski
- Department of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - James E Berleman
- Department of Biology, St. Mary's College, Moraga, CA 94556, USA
| | - Christine Kaimer
- Department of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| |
Collapse
|
20
|
Three New Stigmatellin Derivatives Reveal Biosynthetic Insights of Its Side Chain Decoration. Molecules 2022; 27:molecules27144656. [PMID: 35889529 PMCID: PMC9317276 DOI: 10.3390/molecules27144656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Myxobacteria generate natural products with unique chemical structures, which not only feature remarkable biological functions, but also demonstrate unprecedented biosynthetic assembly strategies. The stigmatellins have been previously described as potent inhibitors of the mitochondrial and photosynthetic respiratory chain and originate from an unusual polyketide synthase assembly line. While previous biosynthetic investigations were focused on the formation of the 5,7-dimethoxy-8-hydroxychromone ring, side chain decoration of the hydrophobic alkenyl chain in position 2 was investigated less thoroughly. We report here the full structure elucidation, as well as cytotoxic and antimicrobial activities of three new stigmatellins isolated from the myxobacterium Vitiosangium cumulatum MCy10943T with side chain decorations distinct from previously characterized members of this compound family. The hydrophobic alkenyl chain in position 2 of the herein described stigmatellins feature a terminal carboxylic acid group (1), a methoxy group at C-12′ (2) or a vicinal diol (3). These findings provide further implications considering the side chain decoration of these aromatic myxobacterial polyketides and their underlying biosynthesis.
Collapse
|
21
|
Carreira LAM, Szadkowski D, Müller F, Søgaard-Andersen L. Spatiotemporal regulation of switching front–rear cell polarity. Curr Opin Cell Biol 2022; 76:102076. [DOI: 10.1016/j.ceb.2022.102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
|
22
|
Li Y, Zhou X, Zhang X, Xu Z, Dong H, Yu G, Cheng P, Yao Q, Zhu H. A myxobacterial GH19 lysozyme with bacteriolytic activity on both Gram-positive and negative phytopathogens. AMB Express 2022; 12:54. [PMID: 35551524 PMCID: PMC9098779 DOI: 10.1186/s13568-022-01393-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Myxobacteria, as predatory bacteria, have good application potential in the biocontrol of pathogenic microorganisms. Extracellular enzymes are thought to play an important role in their predation and also provide resources for discovering new antibacterial molecules. We previously isolated a myxobacterium, Corallococcus silvisoli c25j21 GDMCC 1.1387, which is predatory to plant pathogenic bacteria. In this study, we identified an endolysin-like GH19 glycoside hydrolase, C25GH19B, from the genome of c25j21. After its heterologous expression and purification from E. coli, the enzymatic properties of C25GH19B were characterized. C25GH19B showed lysozyme activity with the optimal reaction conditions at 40 °C and pH 4.5-5.0. Moreover, C25GH19B showed bacteriolytic activity against both Gram-positive and Gram-negative plant pathogenic bacteria. Our research provides not only a candidate enzyme for the development of novel biocontrol agents but also an experimental basis for further study on the function and mechanisms of extracellular enzymes in myxobacterial predation.
Collapse
|
23
|
Chen J, Nan B. Flagellar Motor Transformed: Biophysical Perspectives of the Myxococcus xanthus Gliding Mechanism. Front Microbiol 2022; 13:891694. [PMID: 35602090 PMCID: PMC9120999 DOI: 10.3389/fmicb.2022.891694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Many bacteria move on solid surfaces using gliding motility, without involvement of flagella or pili. Gliding of Myxococcus xanthus is powered by a proton channel homologous to the stators in the bacterial flagellar motor. Instead of being fixed in place and driving the rotation of a circular protein track like the flagellar basal body, the gliding machinery of M. xanthus travels the length of the cell along helical trajectories, while mechanically engaging with the substrate. Such movement entails a different molecular mechanism to generate propulsion on the cell. In this perspective, we will discuss the similarities and differences between the M. xanthus gliding machinery and bacterial flagellar motor, and use biophysical principles to generate hypotheses about the operating mechanism, efficiency, sensitivity to control, and mechanosensing of M. xanthus gliding.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Dye KJ, Yang Z. Analysis of Myxococcus xanthus Vegetative Biofilms With Microtiter Plates. Front Microbiol 2022; 13:894562. [PMID: 35572678 PMCID: PMC9100584 DOI: 10.3389/fmicb.2022.894562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The bacterium Myxococcus xanthus forms both developmental and vegetative types of biofilms. While the former has been studied on both agar plates and submerged surfaces, the latter has been investigated predominantly on agar surfaces as swarming colonies. Here we describe the development of a microplate-based assay for the submerged biofilms of M. xanthus under vegetative conditions. We examined the impacts of inoculation, aeration, and temperature to optimize the conditions for the assay. Aeration was observed to be critical for the effective development of submerged biofilms by M. xanthus, an obligate aerobic bacterium. In addition, temperature plays an important role in the development of M. xanthus submerged biofilms. It is well established that the formation of submerged biofilms by many bacteria requires both exopolysaccharide (EPS) and the type IV pilus (T4P). EPS constitutes part of the biofilm matrix that maintains and organizes bacterial biofilms while the T4P facilitates surface attachment as adhesins. For validation, we used our biofilm assay to examine a multitude of M. xanthus strains with various EPS and T4P phenotypes. The results indicate that the levels of EPS, but not of piliation, positively correlate with submerged biofilm formation in M. xanthus.
Collapse
|
25
|
Distinctions Organize Information in Mind and Nature: Empirical Findings of Identity–Other Distinctions (D) in Cognitive and Material Complexity. SYSTEMS 2022. [DOI: 10.3390/systems10020041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transdisciplinary importance of distinctions is well-established as foundational to such diverse phenomena as recognition, identification, individual and social identity, marginalization, externalities, boundaries, concept formation, etc., and synonymous general ideas, such as thingness, concepts, nodes, objects, etc. Cabrera provides a formal description of and predictions for identity–other distinctions (D) or “D-rule” as one of four universals for the organization of information that is foundational to systems and systems thinking, as well as the consilience of knowledge. This paper presents seven empirical studies in which (unless otherwise noted) software was used to create an experiment for subjects to complete a task and/or answer a question. The samples varied for each study (ranging from N = 407 to N = 34,398) and were generalizable to a normal distribution of the US population. These studies support—with high statistical significance—the predictions made by DSRP theory regarding identity–other distinctions including its: universality as an observable phenomenon in both mind (cognitive complexity) and nature (ontological complexity) (i.e., parallelism); internal structures and dynamics; mutual dependencies on other universals (i.e., relationships, systems, and perspectives); role in structural predictions; and efficacy as a metacognitive skill. In conclusion, these data suggest the observable and empirical existence, universality, efficacy, and parallelism (between cognitive and ontological complexity) of identity–other distinctions (D).
Collapse
|
26
|
The “Fish Tank” Experiments: Metacognitive Awareness of Distinctions, Systems, Relationships, and Perspectives (DSRP) Significantly Increases Cognitive Complexity. SYSTEMS 2022. [DOI: 10.3390/systems10020029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the field of systems thinking, there are far too many opinioned frameworks and far too few empirical studies. This could be described as a “gap” in the research but it is more like a dearth in the research. More theory and empirical validation of theory are needed if the field and the phenomenon of systems thinking holds promise and not just popularity. This validation comes in the form of both basic (existential) and applied (efficacy) research studies. This article presents efficacy data for a set of empirical studies of DSRP Theory. According to Cabrera, Cabrera, and Midgley, DSRP Theory has equal or more empirical evidence supporting it than any existing systems theories (including frameworks, which are not theories). Four separate studies show highly statistically relevant findings for the effect of a short (less than one minute) treatment of D, S, R, and P. Subjects’ cognitive complexity and the systemic nature of their thinking increased in all four studies. These findings indicate that even a short treatment in DSRP is effective in increasing systems thinking skills. Based on these results, a longer, more in-depth treatment—such as a one hour or semester long training, such is the norm—would therefore likely garner transformative results and efficacy.
Collapse
|
27
|
Abstract
DSRP Theory is now over 25 years old with more empirical evidence supporting it than any other systems thinking framework. Yet, it is often misunderstood and described in ways that are inaccurate. DSRP Theory describes four patterns and their underlying elements—identity (i) and other (o) for Distinctions (D), part (p) and whole (w) for Systems (S), action (a) and reaction (r) for Relationships (R), and point (ρ) and view (v) for Perspectives (P)—that are universal in both cognitive complexity (mind) and material complexity (nature). DSRP Theory provides a basis for systems thinking or cognitive complexity as well as material complexity (systems science). This paper, as a relatively short primer on the theory, provides clarity to those wanting to understand DSRP and its implications.
Collapse
|
28
|
Keuter S, Koch H, Sass K, Wegen S, Lee N, Lücker S, Spieck E. Some like it cold: The cellular organization and physiological limits of cold-tolerant nitrite-oxidizing Nitrotoga. Environ Microbiol 2022; 24:2059-2077. [PMID: 35229435 DOI: 10.1111/1462-2920.15958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system. Immunocytochemical analyses localized the nitrite-oxidizing enzyme machinery in the wide irregularly shaped periplasm, apparently without contact to the cytoplasmic membrane, confirming previous genomic data suggesting a soluble nature. Interestingly, in two strains we also observed multicellular complexes with a shared periplasmic space, which seem to form through incomplete cell division and might enhance fitness or survival. Physiological tests revealed differing tolerance limits towards dissolved inorganic nitrogen concentrations and confirmed the generally psychrotolerant nature of the genus was. Moreover, comparative analysis of 15 Nitrotoga genomes showed, e.g., a unique gene repertoire of the marine strain that could be advantageous in its natural habitat and confirmed the lack of genes for assimilatory nitrite reduction in a strain found to require ammonium for growth. Overall, these novel insights largely broaden our knowledge of Nitrotoga and elucidate the metabolic variability, physiological limits and thus potential ecological roles of this group of nitrite oxidizers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sabine Keuter
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Hanna Koch
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Katharina Sass
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Simone Wegen
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Science and Research Infrastructure Fluorescence in situ Hybridization (FISH), Chemical Biological Centre, Umeå University, Umeå, Sweden.,Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Eva Spieck
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Dong H, Xu X, Gao R, Li Y, Li A, Yao Q, Zhu H. Myxococcus xanthus R31 Suppresses Tomato Bacterial Wilt by Inhibiting the Pathogen Ralstonia solanacearum With Secreted Proteins. Front Microbiol 2022; 12:801091. [PMID: 35197943 PMCID: PMC8859152 DOI: 10.3389/fmicb.2021.801091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022] Open
Abstract
The pathogenic bacterium Ralstonia solanacearum caused tomato bacterial wilt (TBW), a destructive soil-borne disease worldwide. There is an urgent need to develop effective control methods. Myxobacteria are microbial predators and are widely distributed in the soil. Compared with other biocontrol bacteria that produce antibacterial substances, the myxobacteria have great potential for biocontrol. This study reports a strain of Myxococcus xanthus R31 that exhibits high antagonistic activity to R. solanacearum. Plate test indicated that the strain R31 efficiently predated R. solanacearum. Pot experiments showed that the biocontrol efficacy of strain R31 against TBW was 81.9%. Further study found that the secreted protein precipitated by ammonium sulfate had significant lytic activity against R. solanacearum cells, whereas the ethyl acetate extract of strain R31 had no inhibitory activity against R. solanacearum. Substrate spectroscopy assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of secreted proteins showed that some peptidases, lipases, and glycoside hydrolases might play important roles and could be potential biocontrol factors involved in predation. The present study reveals for the first time that the use of strain M. xanthus R31 as a potential biocontrol agent could efficiently control TBW by predation and secreting extracellular lyase proteins.
Collapse
Affiliation(s)
- Honghong Dong
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xin Xu
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Ruixiang Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yueqiu Li
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Anzhang Li
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application – Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Honghui Zhu,
| |
Collapse
|
30
|
Genomes of Novel Myxococcota Reveal Severely Curtailed Machineries for Predation and Cellular Differentiation. Appl Environ Microbiol 2021; 87:e0170621. [PMID: 34524899 DOI: 10.1128/aem.01706-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cultured Myxococcota are predominantly aerobic soil inhabitants, characterized by their highly coordinated predation and cellular differentiation capacities. Little is currently known regarding yet-uncultured Myxococcota from anaerobic, nonsoil habitats. We analyzed genomes representing one novel order (o__JAFGXQ01) and one novel family (f__JAFGIB01) in the Myxococcota from an anoxic freshwater spring (Zodletone Spring) in Oklahoma, USA. Compared to their soil counterparts, anaerobic Myxococcota possess smaller genomes and a smaller number of genes encoding biosynthetic gene clusters (BGCs), peptidases, one- and two-component signal transduction systems, and transcriptional regulators. Detailed analysis of 13 distinct pathways/processes crucial to predation and cellular differentiation revealed severely curtailed machineries, with the notable absence of homologs for key transcription factors (e.g., FruA and MrpC), outer membrane exchange receptor (TraA), and the majority of sporulation-specific and A-motility-specific genes. Further, machine learning approaches based on a set of 634 genes informative of social lifestyle predicted a nonsocial behavior for Zodletone Myxococcota. Metabolically, Zodletone Myxococcota genomes lacked aerobic respiratory capacities but carried genes suggestive of fermentation, dissimilatory nitrite reduction, and dissimilatory sulfate-reduction (in f_JAFGIB01) for energy acquisition. We propose that predation and cellular differentiation represent a niche adaptation strategy that evolved circa 500 million years ago (Mya) in response to the rise of soil as a distinct habitat on Earth. IMPORTANCE The phylum Myxococcota is a phylogenetically coherent bacterial lineage that exhibits unique social traits. Cultured Myxococcota are predominantly aerobic soil-dwelling microorganisms that are capable of predation and fruiting body formation. However, multiple yet-uncultured lineages within the Myxococcota have been encountered in a wide range of nonsoil, predominantly anaerobic habitats, and the metabolic capabilities, physiological preferences, and capacity of social behavior of such lineages remain unclear. Here, we analyzed genomes recovered from a metagenomic analysis of an anoxic freshwater spring in Oklahoma, USA, that represent novel, yet-uncultured, orders and families in the Myxococcota. The genomes appear to lack the characteristic hallmarks for social behavior encountered in Myxococcota genomes and displayed a significantly smaller genome size and a smaller number of genes encoding biosynthetic gene clusters, peptidases, signal transduction systems, and transcriptional regulators. Such perceived lack of social capacity was confirmed through detailed comparative genomic analysis of 13 pathways associated with Myxococcota social behavior, as well as the implementation of machine learning approaches to predict social behavior based on genome composition. Metabolically, these novel Myxococcota are predicted to be strict anaerobes, utilizing fermentation, nitrate reduction, and dissimilarity sulfate reduction for energy acquisition. Our results highlight the broad patterns of metabolic diversity within the yet-uncultured Myxococcota and suggest that the evolution of predation and fruiting body formation in the Myxococcota has occurred in response to soil formation as a distinct habitat on Earth.
Collapse
|
31
|
Profiling Myxococcus xanthus Swarming Phenotypes through Mutation and Environmental Variation. J Bacteriol 2021; 203:e0030621. [PMID: 34543101 PMCID: PMC8570273 DOI: 10.1128/jb.00306-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a bacterium that lives on surfaces as a predatory biofilm called a swarm. As a growing swarm feeds on prey and expands, it displays dynamic multicellular patterns such as traveling waves called ripples and branching protrusions called flares. The rate at which a swarm expands across a surface, and the emergence of the coexisting patterns, are all controlled through coordinated cell movement. M. xanthus cells move using two motility systems known as adventurous (A) and social (S). Both are involved in swarm expansion and pattern formation. In this study, we describe a set of M. xanthus swarming genotype-to-phenotype associations that include both genetic and environmental perturbations. We identified new features of the swarming phenotype, recorded and measured swarm expansion using time-lapse microscopy, and compared the impact of mutations on different surfaces. These observations and analyses have increased our ability to discriminate between swarming phenotypes and provided context that allows us to identify some phenotypes as improbable outliers within the M. xanthus swarming phenome. IMPORTANCE Myxococcus xanthus grows on surfaces as a predatory biofilm called a swarm. In nature, a feeding swarm expands by moving over and consuming prey bacteria. In the laboratory, a swarm is created by spotting cell suspension onto nutrient agar in lieu of prey. The suspended cells quickly settle on the surface as the liquid is absorbed into the agar, and the new swarm then expands radially. An assay that measures the expansion rate of a swarm of mutant cells is the first, and sometimes only, measurement used to decide whether a particular mutation impacts swarm motility. We have broadened the scope of this assay by increasing the accuracy of measurements and introducing prey, resulting in new identifiable and quantifiable features that can be used to improve genotype-to-phenotype associations.
Collapse
|
32
|
Zhou Y, Yi S, Zang Y, Yao Q, Zhu H. The Predatory Myxobacterium Citreicoccus inhibens gen. nov. sp. nov. Showed Antifungal Activity and Bacteriolytic Property against Phytopathogens. Microorganisms 2021; 9:microorganisms9102137. [PMID: 34683458 PMCID: PMC8538283 DOI: 10.3390/microorganisms9102137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
The application and promotion of biological control agents are limited because of poor efficacy and unstable performance in the field. Screening microorganisms with high antagonistic activity, effective adaptability, and high field-survival should be prospected. Myxobacteria are soil predatory bacteria with wide adaptability, which are considered as good antagonists. Here, we report a myxobacterium strain M34 isolated from subtropical forest soil in South China using the Escherichia coli baiting method. Based on the morphological observation, physiological test, biochemical characteristics, 16S rRNA gene sequence, and genomic data, strain M34 was identified as a novel genus and novel species, representing a new clade of Myxococcaceae, for which the name Citreicoccus inhibens gen. nov. sp. nov. is proposed (type strain M34T = GDMCC 1.2275T = KCTC 82453T). The typical features of M34, including fruiting body formation and extracellular fibrillar interconnection, indicated by microscopic observations, contributed to cell adaption in different environments. Furthermore, the strain showed antifungal activity against phytopathogenic fungi and predatory activity to both Gram-negative and Gram-positive phytopathogenic bacteria. The bioprotective mechanisms are attributed to the presence of pyrrolnitrin and derivative with antifungal activity and the extracellular proteins with lytic activity against pathogenic bacteria. Due to its multiple beneficial traits, strain M34 has the potential to be developed into a versatile biocontrol agent for the management of both fungal and bacterial phytopathogens.
Collapse
Affiliation(s)
- Yang Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.Z.); (S.Y.); (Y.Z.)
| | - Shuoxing Yi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.Z.); (S.Y.); (Y.Z.)
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yi Zang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.Z.); (S.Y.); (Y.Z.)
| | - Qing Yao
- Center for Litchi, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Grass Science, Guangdong Engineering, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Q.Y.); (H.Z.)
| | - Honghui Zhu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; (Y.Z.); (S.Y.); (Y.Z.)
- Correspondence: (Q.Y.); (H.Z.)
| |
Collapse
|
33
|
The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? THE ISME JOURNAL 2021; 15:2665-2675. [PMID: 33746204 PMCID: PMC8397742 DOI: 10.1038/s41396-021-00958-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5-9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized predatory bacteria affiliated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition. Further, they suggest an overlooked, yet ecologically relevant food web module, independent of eukaryotic micropredators and subject to separate environmental and evolutionary pressures.
Collapse
|
34
|
Figueiredo CM, Malvezzi Karwowski MS, da Silva Ramos RCP, de Oliveira NS, Peña LC, Carneiro E, Freitas de Macedo RE, Rosa EAR. Bacteriophages as tools for biofilm biocontrol in different fields. BIOFOULING 2021; 37:689-709. [PMID: 34304662 DOI: 10.1080/08927014.2021.1955866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Microbial biofilms are difficult to control due to the limited accessibility that antimicrobial drugs and chemicals have to the entrapped inner cells. The extracellular matrix, binds water, contributes to altered cell physiology within biofilms and act as a barrier for most antiproliferative molecules. Thus, new strategies need to be developed to overcome biofilm vitality. In this review, based on 223 documents, the advantages, recommendations, and limitations of using bacteriophages as 'biofilm predators' are presented. The plausibility of using phages (bacteriophages and mycoviruses) to control biofilms grown in different environments is also discussed. The topics covered here include recent historical experiences in biofilm control/eradication using phages in medicine, dentistry, veterinary, and food industries, the pros and cons of their use, and the development of microbial resistance/immunity to such viruses.
Collapse
Affiliation(s)
| | | | | | | | - Lorena Caroline Peña
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Everdan Carneiro
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Edvaldo Antonio Ribeiro Rosa
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Graduate Program in Animal Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Xenobiotics Research Unit, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
35
|
Pérez-Burgos M, Søgaard-Andersen L. Biosynthesis and function of cell-surface polysaccharides in the social bacterium Myxococcus xanthus. Biol Chem 2021; 401:1375-1387. [PMID: 32769218 DOI: 10.1515/hsz-2020-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| |
Collapse
|
36
|
Behavioral Interactions between Bacterivorous Nematodes and Predatory Bacteria in a Synthetic Community. Microorganisms 2021; 9:microorganisms9071362. [PMID: 34201688 PMCID: PMC8307948 DOI: 10.3390/microorganisms9071362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 11/17/2022] Open
Abstract
Theory and empirical studies in metazoans predict that apex predators should shape the behavior and ecology of mesopredators and prey at lower trophic levels. Despite the ecological importance of microbial communities, few studies of predatory microbes examine such behavioral res-ponses and the multiplicity of trophic interactions. Here, we sought to assemble a three-level microbial food chain and to test for behavioral interactions between the predatory nematode Caenorhabditis elegans and the predatory social bacterium Myxococcus xanthus when cultured together with two basal prey bacteria that both predators can eat—Escherichia coli and Flavobacterium johnsoniae. We found that >90% of C. elegans worms failed to interact with M. xanthus even when it was the only potential prey species available, whereas most worms were attracted to pure patches of E. coli and F. johnsoniae. In addition, M. xanthus altered nematode predatory behavior on basal prey, repelling C. elegans from two-species patches that would be attractive without M. xanthus, an effect similar to that of C. elegans pathogens. The nematode also influenced the behavior of the bacterial predator: M. xanthus increased its predatory swarming rate in response to C. elegans in a manner dependent both on basal-prey identity and on worm density. Our results suggest that M. xanthus is an unattractive prey for some soil nematodes and is actively avoided when other prey are available. Most broadly, we found that nematode and bacterial predators mutually influence one another’s predatory behavior, with likely consequences for coevolution within complex microbial food webs.
Collapse
|
37
|
Freund L, Vasse M, Velicer GJ. Hidden paths to endless forms most wonderful: parasite-blind diversification of host quality. Proc Biol Sci 2021; 288:20210456. [PMID: 33906400 PMCID: PMC8080016 DOI: 10.1098/rspb.2021.0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Evolutionary diversification can occur in allopatry or sympatry, can be driven by selection or unselected, and can be phenotypically manifested immediately or remain latent until manifested in a newly encountered environment. Diversification of host-parasite interactions is frequently studied in the context of intrinsically selective coevolution, but the potential for host-parasite interaction phenotypes to diversify latently during parasite-blind host evolution is rarely considered. Here, we use a social bacterium experimentally adapted to several environments in the absence of phage to analyse allopatric diversification of host quality-the degree to which a host population supports a viral epidemic. Phage-blind evolution reduced host quality overall, with some bacteria becoming completely resistant to growth suppression by phage. Selective-environment differences generated only mild divergence in host quality. However, selective environments nonetheless played a major role in shaping evolution by determining the degree of stochastic diversification among replicate populations within treatments. Ancestral motility genotype was also found to strongly shape patterns of latent host-quality evolution and diversification. These outcomes show that (i) adaptive landscapes can differ in how they constrain stochastic diversification of a latent phenotype and (ii) major effects of selection on biological diversification can be missed by focusing on trait means. Collectively, our findings suggest that latent-phenotype evolution should inform host-parasite evolution theory and that diversification should be conceived broadly to include latent phenotypes.
Collapse
Affiliation(s)
- Lisa Freund
- Institute for Integrative Biology, ETH Zürich 8092, Zürich, Switzerland
| | - Marie Vasse
- Institute for Integrative Biology, ETH Zürich 8092, Zürich, Switzerland
| | | |
Collapse
|
38
|
Sydney N, Swain MT, So JMT, Hoiczyk E, Tucker NP, Whitworth DE. The Genetics of Prey Susceptibility to Myxobacterial Predation: A Review, Including an Investigation into Pseudomonas aeruginosa Mutations Affecting Predation by Myxococcus xanthus. Microb Physiol 2021; 31:57-66. [PMID: 33794538 DOI: 10.1159/000515546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
Bacterial predation is a ubiquitous and fundamental biological process, which influences the community composition of microbial ecosystems. Among the best characterised bacterial predators are the myxobacteria, which include the model organism Myxococcus xanthus. Predation by M. xanthus involves the secretion of antibiotic metabolites and hydrolytic enzymes, which results in the lysis of prey organisms and release of prey nutrients into the extracellular milieu. Due to the generalist nature of this predatory mechanism, M. xanthus has a broad prey range, being able to kill and consume Gram-negative/positive bacteria and fungi. Potential prey organisms have evolved a range of behaviours which protect themselves from attack by predators. In recent years, several investigations have studied the molecular responses of a broad variety of prey organisms to M. xanthus predation. It seems that the diverse mechanisms employed by prey belong to a much smaller number of general "predation resistance" strategies. In this mini-review, we present the current state of knowledge regarding M. xanthus predation, and how prey organisms resist predation. As previous molecular studies of prey susceptibility have focussed on individual genes/metabolites, we have also undertaken a genome-wide screen for genes of Pseudomonas aeruginosa which contribute to its ability to resist predation. P. aeruginosa is a World Health Organisation priority 1 antibiotic-resistant pathogen. It is metabolically versatile and has an array of pathogenic mechanisms, leading to its prevalence as an opportunistic pathogen. Using a library of nearly 5,500 defined transposon insertion mutants, we screened for "prey genes", which when mutated allowed increased predation by a fluorescent strain of M. xanthus. A set of candidate "prey proteins" were identified, which shared common functional roles and whose nature suggested that predation resistance by P. aeruginosa requires an effective metal/oxidative stress system, an intact motility system, and mechanisms for de-toxifying antimicrobial peptides.
Collapse
Affiliation(s)
- Natashia Sydney
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Jeffery M T So
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Egbert Hoiczyk
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Nicholas P Tucker
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
39
|
Angert ER. Challenges Faced by Highly Polyploid Bacteria with Limits on DNA Inheritance. Genome Biol Evol 2021; 13:6156627. [PMID: 33677487 PMCID: PMC8245194 DOI: 10.1093/gbe/evab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Most studies of bacterial reproduction have centered on organisms that undergo binary fission. In these models, complete chromosome copies are segregated with great fidelity into two equivalent offspring cells. All genetic material is passed on to offspring, including new mutations and horizontally acquired sequences. However, some bacterial lineages employ diverse reproductive patterns that require management and segregation of more than two chromosome copies. Epulopiscium spp., and their close relatives within the Firmicutes phylum, are intestinal symbionts of surgeonfish (family Acanthuridae). Each of these giant (up to 0.6 mm long), cigar-shaped bacteria contains tens of thousands of chromosome copies. Epulopiscium spp. do not use binary fission but instead produce multiple intracellular offspring. Only ∼1% of the genetic material in an Epulopiscium sp. type B mother cell is directly inherited by its offspring cells. And yet, even in late stages of offspring development, mother-cell chromosome copies continue to replicate. Consequently, chromosomes take on a somatic or germline role. Epulopiscium sp. type B is a strict anaerobe and while it is an obligate symbiont, its host has a facultative association with this intestinal microorganism. Therefore, Epulopiscium sp. type B populations face several bottlenecks that could endanger their diversity and resilience. Multilocus sequence analyses revealed that recombination is important to diversification in populations of Epulopiscium sp. type B. By employing mechanisms common to others in the Firmicutes, the coordinated timing of mother-cell lysis, offspring development and congression may facilitate the substantial recombination observed in Epulopiscium sp. type B populations.
Collapse
|
40
|
Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms. Appl Environ Microbiol 2021; 87:AEM.02382-20. [PMID: 33310723 PMCID: PMC8090889 DOI: 10.1128/aem.02382-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus kills other species to use their biomass as energy source. Its predation mechanisms allow feeding on a broad spectrum of bacteria, but the identity of predation effectors and their mode of action remains largely unknown. We initially focused on the role of hydrolytic enzymes for prey killing and compared the activity of secreted M. xanthus proteins against four prey strains. 72 secreted proteins were identified by mass spectrometry, and among them a family 19 glycoside hydrolase that displayed bacteriolytic activity in vivo and in vitro This enzyme, which we name LlpM (lectin/lysozyme-like protein of M. xanthus), was not essential for predation, indicating that additional secreted components are required to disintegrate prey. Furthermore, secreted proteins lysed only Gram-positive, but not Gram-negative species. We thus compared the killing of different preys by cell-associated mechanisms: Individual M. xanthus cells killed all four test strains in a cell-contact dependent manner, but were only able to disintegrate Gram-negative, not Gram-positive cell envelopes. Thus, our data indicate that M. xanthus uses different, multifactorial mechanisms for killing and degrading different preys. Besides secreted enzymes, cell-associated mechanisms that have not been characterized so far, appear to play a major role for prey killing.IMPORTANCEPredation is an important survival strategy of the widespread myxobacteria, but it remains poorly understood on the mechanistic level. Without a basic understanding of how prey cell killing and consumption is achieved, it also remains difficult to investigate the role of predation for the complex myxobacterial lifestyle, reciprocal predator-prey relationships or the impact of predation on complex bacterial soil communities.We study predation in the established model organism Myxococcus xanthus, aiming to dissect the molecular mechanisms of prey cell lysis. In this study, we addressed the role of secreted bacteriolytic proteins, as well as potential mechanistic differences in the predation of Gram-positive and Gram-negative bacteria. Our observation shows that secreted enzymes are sufficient for killing and degrading Gram-positive species, but that cell-associated mechanisms may play a major role for killing Gram-negative and Gram-positive prey on fast timescales.
Collapse
|
41
|
Vij R, Hube B, Brunke S. Uncharted territories in the discovery of antifungal and antivirulence natural products from bacteria. Comput Struct Biotechnol J 2021; 19:1244-1252. [PMID: 33680363 PMCID: PMC7905183 DOI: 10.1016/j.csbj.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
Many fungi can cause deadly diseases in humans, and nearly every human will suffer from some kind of fungal infection in their lives. Only few antifungals are available, and some of these fail to treat intrinsically resistant species and the ever-increasing number of fungal strains that have acquired resistance. In nature, bacteria and fungi display versatile interactions that range from friendly co-existence to predation. The first antifungal drugs, nystatin and amphotericin B, were discovered in bacteria as mediators of such interactions, and bacteria continue to be an important source of antifungals. To learn more about the ecological bacterial-fungal interactions that drive the evolution of natural products and exploit them, we need to identify environments where such interactions are pronounced, and diverse. Here, we systematically analyze historic and recent developments in this field to identify potentially under-investigated niches and resources. We also discuss alternative strategies to treat fungal infections by utilizing the antagonistic potential of bacteria to target fungal stress pathways and virulence factors, and thereby suppress the evolution of antifungal resistance.
Collapse
Affiliation(s)
- Raghav Vij
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute Jena (HKI), Germany
| |
Collapse
|
42
|
Dinet C, Michelot A, Herrou J, Mignot T. Linking single-cell decisions to collective behaviours in social bacteria. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190755. [PMID: 33487114 DOI: 10.1098/rstb.2019.0755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Social bacteria display complex behaviours whereby thousands of cells collectively and dramatically change their form and function in response to nutrient availability and changing environmental conditions. In this review, we focus on Myxococcus xanthus motility, which supports spectacular transitions based on prey availability across its life cycle. A large body of work suggests that these behaviours require sensory capacity implemented at the single-cell level. Focusing on recent genetic work on a core cellular pathway required for single-cell directional decisions, we argue that signal integration, multi-modal sensing and memory are at the root of decision making leading to multicellular behaviours. Hence, Myxococcus may be a powerful biological system to elucidate how cellular building blocks cooperate to form sensory multicellular assemblages, a possible origin of cognitive mechanisms in biological systems. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Céline Dinet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, 31 Chemin Joseph Aiguier, 13009 Marseille, France.,Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Julien Herrou
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
43
|
All living cells are cognitive. Biochem Biophys Res Commun 2020; 564:134-149. [PMID: 32972747 DOI: 10.1016/j.bbrc.2020.08.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
All living cells sense and respond to changes in external or internal conditions. Without that cognitive capacity, they could not obtain nutrition essential for growth, survive inevitable ecological changes, or correct accidents in the complex processes of reproduction. Wherever examined, even the smallest living cells (prokaryotes) display sophisticated regulatory networks establishing appropriate adaptations to stress conditions that maximize the probability of survival. Supposedly "simple" prokaryotic organisms also display remarkable capabilities for intercellular signalling and multicellular coordination. These observations indicate that all living cells are cognitive.
Collapse
|
44
|
Pérez J, Contreras-Moreno FJ, Marcos-Torres FJ, Moraleda-Muñoz A, Muñoz-Dorado J. The antibiotic crisis: How bacterial predators can help. Comput Struct Biotechnol J 2020; 18:2547-2555. [PMID: 33033577 PMCID: PMC7522538 DOI: 10.1016/j.csbj.2020.09.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/30/2022] Open
Abstract
Discovery of antimicrobials in the past century represented one of the most important advances in public health. Unfortunately, the massive use of these compounds in medicine and other human activities has promoted the selection of pathogens that are resistant to one or several antibiotics. The current antibiotic crisis is creating an urgent need for research into new biological weapons with the ability to kill these superbugs. Although a proper solution requires this problem to be addressed in a variety of ways, the use of bacterial predators is emerging as an excellent strategy, especially when used as whole cell therapeutic agents, as a source of new antimicrobial agents by awakening silent metabolic pathways in axenic cultures, or as biocontrol agents. Moreover, studies on their prey are uncovering mechanisms of resistance that can be shared by pathogens, representing new targets for novel antimicrobial agents. In this review we discuss potential of the studies on predator-prey interaction to provide alternative solutions to the problem of antibiotic resistance.
Collapse
Key Words
- AR, antibiotic resistance
- ARB, antibiotic-resistant bacteria
- ARG, antibiotic-resistant gene
- Antibiotic crisis
- BALOs
- BALOs, Bdellovibrio and like organisms
- BGC, biosynthetic gene cluster
- Bacterial predators
- HGT, horizontal gene transfer
- MDRB, multi-drug resistant bacteria
- Myxobacteria
- NRPS, nonribosomal peptide synthetase
- OMV, outer membrane vesicle
- OSMAC, one strain many compounds
- PKS, polyketide synthase
- SM, secondary metabolite
- WHO, World Health Organization
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | | | | | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Avda. Fuentenueva s/n, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
45
|
Overcome Competitive Exclusion in Ecosystems. iScience 2020; 23:101009. [PMID: 32272442 PMCID: PMC7138925 DOI: 10.1016/j.isci.2020.101009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 11/22/2022] Open
Abstract
Explaining biodiversity in nature is a fundamental problem in ecology. An outstanding challenge is embodied in the so-called Competitive Exclusion Principle: two species competing for one limiting resource cannot coexist at constant population densities, or more generally, the number of consumer species in steady coexistence cannot exceed that of resources. The fact that competitive exclusion is rarely observed in natural ecosystems has not been fully understood. Here we show that, by forming chasing pairs and chasing triplets among the consumers and resources in the consumption process, the Competitive Exclusion Principle can be naturally violated. The modeling framework developed here is broadly applicable and can be used to explain the biodiversity of many consumer-resource ecosystems and hence deepens our understanding of biodiversity in nature. Foraging with only chasing pairs cannot break the Competitive Exclusion Principle (CEP) A population dynamics model involving both chasing pairs and triplets can break CEP Redundant foraging within the chasing triplets facilitates species coexistence The theoretical framework is testable in ecosystems involving pack hunting
Collapse
|
46
|
Ye X, Li Z, Luo X, Wang W, Li Y, Li R, Zhang B, Qiao Y, Zhou J, Fan J, Wang H, Huang Y, Cao H, Cui Z, Zhang R. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community. MICROBIOME 2020; 8:49. [PMID: 32252828 PMCID: PMC7137222 DOI: 10.1186/s40168-020-00824-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/05/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Myxobacteria are micropredators in the soil ecosystem with the capacity to move and feed cooperatively. Some myxobacterial strains have been used to control soil-borne fungal phytopathogens. However, interactions among myxobacteria, plant pathogens, and the soil microbiome are largely unexplored. In this study, we aimed to investigate the behaviors of the myxobacterium Corallococcus sp. strain EGB in the soil and its effect on the soil microbiome after inoculation for controlling cucumber Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC). RESULTS A greenhouse and a 2-year field experiment demonstrated that the solid-state fermented strain EGB significantly reduced the cucumber Fusarium wilt by 79.6% (greenhouse), 66.0% (2015, field), and 53.9% (2016, field). Strain EGB adapted to the soil environment well and decreased the abundance of soil-borne FOC efficiently. Spatiotemporal analysis of the soil microbial community showed that strain EGB migrated towards the roots and root exudates of the cucumber plants via chemotaxis. Cooccurrence network analysis of the soil microbiome indicated a decreased modularity and community number but an increased connection number per node after the application of strain EGB. Several predatory bacteria, such as Lysobacter, Microvirga, and Cupriavidus, appearing as hubs or indicators, showed intensive connections with other bacteria. CONCLUSION The predatory myxobacterium Corallococcus sp. strain EGB controlled cucumber Fusarium wilt by migrating to the plant root and regulating the soil microbial community. This strain has the potential to be developed as a novel biological control agent of soil-borne Fusarium wilt. Video abstract.
Collapse
Affiliation(s)
- Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Wenhui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yongkai Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Rui Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bo Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Qiao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jie Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiaqin Fan
- Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture and Rural Affairs, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Science of Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of plant immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Ruifu Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
47
|
Marine Actinobacteria: Screening for Predation Leads to the Discovery of Potential New Drugs against Multidrug-Resistant Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9020091. [PMID: 32092889 PMCID: PMC7168292 DOI: 10.3390/antibiotics9020091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 11/20/2022] Open
Abstract
Predatory bacteria constitute a heterogeneous group of prokaryotes able to lyse and feed on the cellular constituents of other bacteria in conditions of nutrient scarcity. In this study, we describe the isolation of Actinobacteria predator of other bacteria from the marine water of the Moroccan Atlantic coast. Only 4 Actinobacteria isolates showing strong predation capability against native or multidrug-resistant Gram-positive or Gram-negative bacteria were identified among 142 isolated potential predatory bacteria. These actinobacterial predators were shown to belong to the Streptomyces genus and to inhibit the growth of various native or multidrug-resistant micro-organisms, including Micrococcus luteus, Staphylococcus aureus (native and methicillin-resistant), and Escherichia coli (native and ampicillin-resistant). Even if no clear correlation could be established between the antibacterial activities of the selected predator Actinobacteria and their predatory activity, we cannot exclude that some specific bio-active secondary metabolites were produced in this context and contributed to the killing and lysis of the bacteria. Indeed, the co-cultivation of Actinobacteria with other bacteria is known to lead to the production of compounds that are not produced in monoculture. Furthermore, the production of specific antibiotics is linked to the composition of the growth media that, in our co-culture conditions, exclusively consisted of the components of the prey living cells. Interestingly, our strategy led to the isolation of bacteria with interesting inhibitory activity against methicillin-resistant S. aureus (MRSA) as well as against Gram-negative bacteria.
Collapse
|
48
|
Lee N, Kim W, Chung J, Lee Y, Cho S, Jang KS, Kim SC, Palsson B, Cho BK. Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME JOURNAL 2020; 14:1111-1124. [PMID: 31992858 PMCID: PMC7174319 DOI: 10.1038/s41396-020-0594-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Microbial coculture to mimic the ecological habitat has been suggested as an approach to elucidate the effect of microbial interaction on secondary metabolite biosynthesis of Streptomyces. However, because of chemical complexity during coculture, underlying mechanisms are largely unknown. Here, we found that iron competition triggered antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. During coculture, M. xanthus enhanced the production of a siderophore, myxochelin, leading M. xanthus to dominate iron scavenging and S. coelicolor to experience iron-restricted conditions. This chemical competition, but not physical contact, activated the actinorhodin biosynthetic gene cluster and the branched-chain amino acid degradation pathway which imply the potential to produce precursors, along with activation of a novel actinorhodin export system. Furthermore, we found that iron restriction increased the expression of 21 secondary metabolite biosynthetic gene clusters (smBGCs) in other Streptomyces species. These findings suggested that the availability for key ions stimulates specific smBGCs, which had the potential to enhance secondary metabolite biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jinkyoo Chung
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.,Division of Bio-Analytical Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea. .,Intelligent Synthetic Biology Center, Daejeon, 34141, Republic of Korea. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark.
| |
Collapse
|
49
|
Dynamics of Solitary Predation by Myxococcus xanthus on Escherichia coli Observed at the Single-Cell Level. Appl Environ Microbiol 2020; 86:AEM.02286-19. [PMID: 31704687 DOI: 10.1128/aem.02286-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/07/2019] [Indexed: 11/20/2022] Open
Abstract
The predatory behavior of Myxococcus xanthus has attracted extensive attention due to its unique social traits and inherent biological activities. In addition to group hunting, individual M. xanthus cells are able to kill and lyse prey cells; however, there is little understanding of the dynamics of solitary predation. In this study, by employing a bacterial tracking technique, we investigated M. xanthus predatory dynamics on Escherichia coli at the single-cell level. The killing and lysis of E. coli by a single M. xanthus cell was monitored in real time by microscopic observation, and the plasmolysis of prey cells was identified at a relatively early stage of solitary predation. After quantitative characterization of their solitary predatory behavior, M. xanthus cells were found to respond more dramatically to direct contact with live E. coli cells than heat-killed or UV-killed cells, showing slower predator motion and faster lysing of prey. Among the three contact-dependent killing modes classified according to the major subareas of M. xanthus cells in contact with prey, leading pole contact was observed most. After killing the prey, approximately 72% of M. xanthus cells were found to leave without thorough degradation of the lysed prey, and this postresidence behavior is described as a lysis-leave pattern, indicating that solitary predation has low efficiency in terms of prey-cell consumption. Our results provide a detailed description of the single-cell level dynamics of M. xanthus solitary predation from both prey and predator perspectives.IMPORTANCE Bacterial predation plays multiple essential roles in bacterial selection and mortality within microbial ecosystems. In addition to its ecological and evolutionary importance, many potential applications of bacterial predation have been proposed. The myxobacterium Myxococcus xanthus is a well-known predatory member of the soil microbial community. Its predation is commonly considered a collective behavior comparable to a wolf pack attack; however, individual M. xanthus cells are also able to competently lead to the lysis of a prey cell. Using a bacterial tracking technique, we are able to observe and analyze solitary predation by M. xanthus on Escherichia coli at the single-cell level and reveal the dynamics of both predator and prey during the process. The present study will not only provide a comprehensive understanding of M. xanthus solitary predation but also help to explain why M. xanthus often displays multicellular characteristic predatory behaviors in nature, while a single cell is capable of predation.
Collapse
|
50
|
Thiery S, Kaimer C. The Predation Strategy of Myxococcus xanthus. Front Microbiol 2020; 11:2. [PMID: 32010119 PMCID: PMC6971385 DOI: 10.3389/fmicb.2020.00002] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/03/2020] [Indexed: 11/20/2022] Open
Abstract
Myxobacteria are ubiquitous in soil environments. They display a complex life cycle: vegetatively growing cells coordinate their motility to form multicellular swarms, which upon starvation aggregate into large fruiting bodies where cells differentiate into spores. In addition to growing as saprophytes, Myxobacteria are predators that actively kill bacteria of other species to consume their biomass. In this review, we summarize research on the predation behavior of the model myxobacterium Myxococcus xanthus, which can access nutrients from a broad spectrum of microorganisms. M. xanthus displays an epibiotic predation strategy, i.e., it induces prey lysis from the outside and feeds on the released biomass. This predatory behavior encompasses various processes: Gliding motility and induced cell reversals allow M. xanthus to encounter prey and to remain within the area to sweep up its biomass, which causes the characteristic “rippling” of preying populations. Antibiotics and secreted bacteriolytic enzymes appear to be important predation factors, which are possibly targeted to prey cells with the aid of outer membrane vesicles. However, certain bacteria protect themselves from M. xanthus predation by forming mechanical barriers, such as biofilms and mucoid colonies, or by secreting antibiotics. Further understanding the molecular mechanisms that mediate myxobacterial predation will offer fascinating insight into the reciprocal relationships of bacteria in complex communities, and might spur application-oriented research on the development of novel antibacterial strategies.
Collapse
Affiliation(s)
- Susanne Thiery
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christine Kaimer
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|