1
|
Zhang C, Zhang C, Wang K, Wang H. Orchestrating smart therapeutics to achieve optimal treatment in small cell lung cancer: recent progress and future directions. J Transl Med 2023; 21:468. [PMID: 37452395 PMCID: PMC10349514 DOI: 10.1186/s12967-023-04338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Small cell lung cancer (SCLC) is a recalcitrant malignancy with elusive mechanism of pathogenesis and dismal prognosis. Over the past decades, platinum-based chemotherapy has been the backbone treatment for SCLC. However, subsequent chemoresistance after initial effectiveness urges researchers to explore novel therapeutic targets of SCLC. Recent years have witnessed significant improvements in targeted therapy in SCLC. New molecular candidates such as Ataxia telangiectasia and RAD3-related protein (ATR), WEE1, checkpoint kinase 1 (CHK1) and poly-ADP-ribose polymerase (PARP) have shown promising therapeutic utility in SCLC. While immune checkpoint inhibitor (ICI) has emerged as an indispensable treatment modality for SCLC, approaches to boost efficacy and reduce toxicity as well as selection of reliable biomarkers for ICI in SCLC have remained elusive and warrants our further investigation. Given the increasing importance of precision medicine in SCLC, optimal subtyping of SCLC using multi-omics have gradually applied into clinical practice, which may identify more drug targets and better tailor treatment strategies to each individual patient. The present review summarizes recent progress and future directions in SCLC. In addition to the emerging new therapeutics, we also focus on the establishment of predictive model for early detection of SCLC. More importantly, we also propose a multi-dimensional model in the prognosis of SCLC to ultimately attain the goal of accurate treatment of SCLC.
Collapse
Affiliation(s)
- Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, China
| | - Chenxing Zhang
- Department of Nephrology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Number 440, Ji Yan Road, Jinan, China.
| |
Collapse
|
2
|
Camidge DR, Moran T, Demedts I, Grosch H, Mileham K, Molina J, Juan-Vidal O, Bepler G, Goldman JW, Park K, Wallin J, Wijayawardana SR, Wang XA, Wacheck V, Smit E. A Randomized, Open-Label Phase 2 Study Evaluating Emibetuzumab Plus Erlotinib and Emibetuzumab Monotherapy in MET Immunohistochemistry Positive NSCLC Patients with Acquired Resistance to Erlotinib. Clin Lung Cancer 2022; 23:300-310. [DOI: 10.1016/j.cllc.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022]
|
3
|
Henriques-Pons A, Beghini DG, Silva VDS, Iwao Horita S, da Silva FAB. Pulmonary Mesenchymal Stem Cells in Mild Cases of COVID-19 Are Dedicated to Proliferation; In Severe Cases, They Control Inflammation, Make Cell Dispersion, and Tissue Regeneration. Front Immunol 2022; 12:780900. [PMID: 35095855 PMCID: PMC8793136 DOI: 10.3389/fimmu.2021.780900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For many reasons, these cells are a promising therapeutic alternative to treat patients with severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential for tissue regeneration; they can also alter the pulmonary environment through the paracrine secretion of several mediators. They can control or promote inflammation, induce other stem cells differentiation, restrain the virus load, and much more. In this work, we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage samples from control individuals and COVID-19 patients with mild and severe clinical conditions. When we compared samples from mild cases with control individuals, most genes transcriptionally upregulated in COVID-19 were involved in cell proliferation. However, a new set of genes with distinct biological functions was upregulated when we compared severely affected with mild COVID-19 patients. In this analysis, the cells upregulated genes related to cell dispersion/migration and induced the γ-activated sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was upregulated, one of the GAS target genes, leading to the interferon-stimulated response (ISR) and the overexpression of many signature target genes. The MSCs also upregulated genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative analysis, we observed that MSCs from severe cases do not express many NF-κB upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor (TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-κB inhibitors were upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do not play a role in the "cytokine storm" observed. Therefore, lung MSCs in COVID-19 sense immune danger and act protectively in concert with the pulmonary environment, confirming their therapeutic potential in cell-based therapy for COVID-19. The transcription of MSCs senescence markers is discussed.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | - Daniela Gois Beghini
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | | - Samuel Iwao Horita
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | |
Collapse
|
4
|
MacNeil IA, Khan SA, Sen A, Soltani SM, Burns DJ, Sullivan BF, Laing LG. Functional signaling test identifies HER2 negative breast cancer patients who may benefit from c-Met and pan-HER combination therapy. Cell Commun Signal 2022; 20:4. [PMID: 34998412 PMCID: PMC8742957 DOI: 10.1186/s12964-021-00798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Research is revealing the complex coordination between cell signaling systems as they adapt to genetic and epigenetic changes. Tools to uncover these highly complex functional linkages will play an important role in advancing more efficacious disease treatments. Current tumor cell signal transduction research is identifying coordination between receptor types, receptor families, and transduction pathways to maintain tumor cell viability despite challenging tumor microenvironment conditions. Methods In this report, coactivated abnormal levels of signaling activity for c-Met and HER family receptors in live tumor cells were measured by a new clinical test to identify a subpopulation of breast cancer patients that could be responsive to combined targeted therapies. The CELsignia Multi-Pathway Signaling Function (CELsignia) Test uses an impedance biosensor to quantify an individual patient’s ex vivo live tumor cell signaling response in real-time to specific HER family and c-Met co-stimulation and targeted therapies. Results The test identified breast tumors with hyperactive HER1, HER2, HER3/4, and c-Met coordinated signaling that express otherwise normal amounts of these receptors. The supporting data of the pre-clinical verification of this test included analyses of 79 breast cancer patients’ cell response to HER and c-Met agonists. The signaling results were confirmed using clinically approved matching targeted drugs, and combinations of targeted drugs in addition to correlative mouse xenograft tumor response to HER and c-Met targeted therapies. Conclusions The results of this study demonstrated the potential benefit of a functional test for identifying a subpopulation of breast cancer patients with coordinated abnormal HER and c-Met signaling for a clinical trial testing combination targeted therapy. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00798-9.
Collapse
Affiliation(s)
- Ian A MacNeil
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Salmaan A Khan
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Adrish Sen
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Sajjad M Soltani
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - David J Burns
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Brian F Sullivan
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Lance G Laing
- Celcuity, Inc., 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA.
| |
Collapse
|
5
|
Garcia-Robledo JE, Rosell R, Ruíz-Patiño A, Sotelo C, Arrieta O, Zatarain-Barrón L, Ordoñez C, Jaller E, Rojas L, Russo A, de Miguel-Pérez D, Rolfo C, Cardona AF. KRAS and MET in non-small-cell lung cancer: two of the new kids on the 'drivers' block. Ther Adv Respir Dis 2022; 16:17534666211066064. [PMID: 35098800 PMCID: PMC8808025 DOI: 10.1177/17534666211066064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a heterogeneous disease, and therapeutic management has advanced to identify various critical oncogenic mutations that promote lung cancer tumorigenesis. Subsequent studies have developed targeted therapies against these oncogenes in the hope of personalized treatment based on the tumor's molecular genomics. This review presents a comprehensive review of the biology, new therapeutic interventions, and resistance patterns of two well-defined subgroups, tumors with KRAS and MET alterations. We also discuss the status of molecular testing practices for these two key oncogenic drivers, considering the progressive introduction of next-generation sequencing (NGS) and RNA sequencing in regular clinical practice.
Collapse
Affiliation(s)
| | - Rafael Rosell
- Cancer Biology and Precision Medicine Program, Germans Trias i Pujol Research Institute (IGTP)/Dr. Rosell Oncology Institute (IOR), Quirón-Dexeus University Institute, Barcelona, Spain
| | - Alejandro Ruíz-Patiño
- Direction of Research and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Carolina Sotelo
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), México City, México
| | - Camila Ordoñez
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad El Bosque, Bogotá, Colombia
| | - Elvira Jaller
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Colombia
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia Department of Clinical Oncology, Clínica Colsanitas, Bogotá, Colombia Clinical and Translational Oncology Group, Clínica del Country, Bogotá, Colombia
| | - Alessandro Russo
- Medical Oncology Unit, A.O. Papardo, Messina, Italy Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Diego de Miguel-Pérez
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christian Rolfo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
6
|
Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta 2021; 525:69-83. [PMID: 34951962 DOI: 10.1016/j.cca.2021.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
The MET proto-oncogene was first identified in osteosarcoma cells exposed to carcinogens. Although expressed in many normal cells, MET is overexpressed in many human cancers. MET is involved in the initiation and development of various human cancers and mediates proliferation, migration and invasion. Accordingly, MET has been successfully used as a biomarker for diagnosis and prognosis, survival, post-operative recurrence, risk assessment and pathologic grading, as well as a therapeutic target. In addition, recent work indicates that inhibition of MET expression and function has potential clinical benefit. This review summarizes the role, mechanism, and clinical significance of MET in the formation and development of human cancer.
Collapse
Affiliation(s)
- Xin Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
7
|
Dong X, Luo Y, Lu S, Ma H, Zhang W, Zhu Y, Sun G, Sun X. Ursodesoxycholic acid alleviates liver fibrosis via proregeneration by activation of the ID1-WNT2/HGF signaling pathway. Clin Transl Med 2021; 11:e296. [PMID: 33635004 PMCID: PMC7828260 DOI: 10.1002/ctm2.296] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The human liver possesses a remarkable capacity for self-repair. However, liver fibrosis remains a serious medical concern, potentially progressing to end-stage liver cirrhosis and even death. Liver fibrosis is characterized by excess accumulation of extracellular matrix in response to chronic injury. Liver regenerative ability, a strong indicator of liver health, is important in resisting fibrosis. In this study, we provide evidence that ursodesoxycholic acid (UDCA) can alleviate liver fibrosis by promoting liver regeneration via activation of the ID1-WNT2/hepatocyte growth factor (HGF) pathway. METHODS Bile duct ligation (BDL) and partial hepatectomy (PH) mouse models were used to verify the effects of UDCA on liver fibrosis, regeneration, and the ID1-WNT2/HGF pathway. An Id1 knockdown mouse model was also used to assess the role of Id1 in UDCA alleviation of liver fibrosis. RESULTS Our results demonstrate that UDCA can alleviate liver fibrosis in the BDL mice and promote liver regeneration via the ID1-WNT2/HGF pathway in PH mice. In addition, Id1 knockdown abolished the protection afforded by UDCA in BDL mice. CONCLUSIONS We conclude that UDCA protects against liver fibrosis by proregeneration via activation of the ID1-WNT2/HGF pathway.
Collapse
Affiliation(s)
- Xi Dong
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Yun Luo
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Shan Lu
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Han Ma
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingP. R. China
| | - Wenchao Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingP. R. China
| | - Yue Zhu
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Guibo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| | - Xiaobo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijing100193P. R. China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193P. R. China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijing100193P. R. China
| |
Collapse
|
8
|
Nishikoba N, Kumagai K, Kanmura S, Nakamura Y, Ono M, Eguchi H, Kamibayashiyama T, Oda K, Mawatari S, Tanoue S, Hashimoto S, Tsubouchi H, Ido A. HGF-MET Signaling Shifts M1 Macrophages Toward an M2-Like Phenotype Through PI3K-Mediated Induction of Arginase-1 Expression. Front Immunol 2020; 11:2135. [PMID: 32983173 PMCID: PMC7492554 DOI: 10.3389/fimmu.2020.02135] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023] Open
Abstract
Backgrounds and Aims: Hepatocyte Growth Factor (HGF)-MET signaling is known to promote biological functions such as cell survival, cell motility, and cell proliferation. However, it is unknown if HGF-MET alters the macrophage phenotype. In this study, we aimed to study the effects of HGF-MET signaling on the M1 macrophage phenotype. Methods and Materials: Bone marrow-derived macrophages (BMDMs) isolated from mice were either polarized to an M1 phenotype by IFN-γ and LPS treatment or to an M2 phenotype by IL-4 treatment. Changes in M1 or M2 markers induced by HGF-MET signaling were evaluated. Mechanisms responsible for alternations in the macrophage phenotype and intracellular metabolism were analyzed. Results: c-Met was expressed especially in M1 macrophages polarized by treatment with IFN-γ and LPS. In M1 macrophages, HGF-MET signaling induced the expression of Arg-1 mRNA and secretion of IL-10 and TGF-β1 and downregulated the mRNA expression of iNOS, TNF-α, and IL-6. In addition, activation of the PI3K pathway and inactivation of NFκB were also observed in M1 macrophages treated with HGF. The increased Arg-1 expression and IL-10 secretion were abrogated by PI3K inhibition, whereas, no changes were observed in TNF-α and IL-6 expression. The inactivation of NFκB was found to be independent of the PI3K pathway. HGF-MET signaling shifted the M1 macrophages to an M2-like phenotype, mainly through PI3K-mediated induction of Arg-1 expression. Finally, HGF-MET signaling also shifted the M1 macrophage intracellular metabolism toward an M2 phenotype, especially with respect to fatty acid metabolism. Conclusion: Our results suggested that HGF treatment not only promotes regeneration in epithelial cells, but also leads to tissue repair by altering M1 macrophages to an M2-like phenotype.
Collapse
Affiliation(s)
- Nao Nishikoba
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Nakamura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mayumi Ono
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromi Eguchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tomomi Kamibayashiyama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirohito Tsubouchi
- Department of Gastroenterology and Hepatology, Kagoshima City Hospital, Kagoshima, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
9
|
Malik R, Mambetsariev I, Fricke J, Chawla N, Nam A, Pharaon R, Salgia R. MET receptor in oncology: From biomarker to therapeutic target. Adv Cancer Res 2020; 147:259-301. [PMID: 32593403 DOI: 10.1016/bs.acr.2020.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
First discovered in the 1984, the MET receptor tyrosine kinase (RTK) and its ligand hepatocyte growth factor or HGF (also known as scatter factor or SF) are implicated as key players in tumor cell migration, proliferation, and invasion in a variety of cancers. This pathway also plays a key role during embryogenesis in the development of muscular and nervous structures. High expression of the MET receptor has been shown to correlate with poor prognosis and resistance to therapy. MET exon 14 splicing variants, initially identified by us in lung cancer, is actionable through various tyrosine kinase inhibitors (TKIs). For this reason, this pathway is of interest as a therapeutic target. In this chapter we will be discussing the history of MET, the genetics of this RTK, and give some background on the receptor biology. Furthermore, we will discuss directed therapeutics, mechanisms of resistance, and the future of MET as a therapeutic target.
Collapse
Affiliation(s)
- Raeva Malik
- George Washington University Hospital, Washington, DC, United States
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Jeremy Fricke
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Neal Chawla
- Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL, United States
| | - Arin Nam
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Rebecca Pharaon
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
10
|
MET Inhibitors in Small Cell Lung Cancer: From the Bench to the Bedside. Cancers (Basel) 2019; 11:cancers11101404. [PMID: 31547040 PMCID: PMC6827355 DOI: 10.3390/cancers11101404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
Small cell lung cancer (SCLC) is the most aggressive type of lung cancer. The different systemic treatment approaches attempted in the last 35 years have not improved overall survival in the advanced stage. Targeted therapies assessed in clinical trials have failed to show efficacy against SCLC. Within the potentially interesting targets, the hepatocyte growth factor (HGF)/mesenchymal-epithelial transition (MET) pathway activation is associated with worse survival and chemoresistance in SCLC. Preclinical data suggest that the inhibition of the MET pathway can revert chemoresistance and prevent tumor growth. Recently, immunotherapy has shown modest but relevant activity in SCLC. Interestingly, MET modulation seems to be involved in increasing the efficacy of standard checkpoint inhibitors. Here, we review the preclinical and clinical data of MET inhibition in SCLC, and the role of this pathway in the immune response.
Collapse
|
11
|
Paeoniflorin Inhibits Hepatocyte Growth Factor- (HGF-) Induced Migration and Invasion and Actin Rearrangement via Suppression of c-Met-Mediated RhoA/ROCK Signaling in Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9053295. [PMID: 30886866 PMCID: PMC6388352 DOI: 10.1155/2019/9053295] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/05/2018] [Accepted: 01/24/2019] [Indexed: 02/04/2023]
Abstract
Paeoniflorin (PF), as one of the important valid natural compounds of the total glucosides of peony, has displayed a potential effect in cancer prevention and treatment. Aggressive migration and invasion, as an important process, can contribute to tumor progression through infiltrating the surround normal tissue. Actin cytoskeleton rearrangement plays a key role in cells migration and invasion, involving multiple signal pathways. HGF/c-Met signal, as an important couple of oncoprotein, has been demonstrated to regulate actin cytoskeleton rearrangement. In our study, we aim to explore whether paeoniflorin can inhibit migration and invasion and actin cytoskeleton rearrangement via regulation of HGF/c-Met/RhoA/ROCK signal. Various approaches were applied to demonstrate the mechanism of paeoniflorin-mediated anticancer effect, including cell wound healing assay, invasion assay, immunofluorescence staining and transfection, and western blotting. We observed that paeoniflorin inhibited HGF-induced migration and invasion and actin cytoskeleton rearrangement in glioblastoma cells. Furthermore, the inhibition of HGF-induced migration and invasion and actin cytoskeleton rearrangement involved c-Met-mediated RhoA/ROCK signaling in glioblastoma. Thus, our study proved that paeoniflorin could inhibit migration and invasion and actin cytoskeleton rearrangement through inhibition of HGF/c-Met/RhoA/ROCK signaling in glioblastoma, suggesting that paeoniflorin might be a candidate compound to treat glioblastoma.
Collapse
|
12
|
ADAMTS-1 disrupts HGF/c-MET signaling and HGF-stimulated cellular processes in fibrosarcoma. Exp Cell Res 2018; 363:271-282. [PMID: 29355494 DOI: 10.1016/j.yexcr.2018.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023]
Abstract
Extracellular matrix (ECM) serves as a reservoir for biologically active factors, such as growth factors and proteases that influence the tumor cell behavior. ADAMTS-1 (a disintegrin and metalloprotease with thrombospondin motifs) is a secreted protease that has the ability to modify the ECM during physiological and pathological processes. Here, we analyzed the role played by ADAMTS-1 regulating HGF and TGF-β1 activities in the high-grade fibrosarcoma cell line (HT1080). We generated HT1080 and HEK293T cells overexpressing ADAMTS-1. HT1080 cells overexpressing ADAMTS-1 (HT1080-MPA) exhibited a significant decrease in cell proliferation and migration velocity, both in presence of HGF. We obtained similar results with ADAMTS-1-enriched conditioned medium from other cell type. However, ADAMTS-1 overexpression failed to affect TGF-β1 activity associated with HT1080 cell proliferation and migration velocity. Immunoblotting showed that ADAMTS-1 overexpression disturbs c-Met activation upon HGF stimulation. Downstream ERK1/2 and FAK signaling pathways are also influenced by this protease. Additionally, ADAMTS-1 decreased the size of the fibrosarcospheres, both under normal conditions and in the presence of HGF. Likewise, in presence of HGF, ADAMTS-1 overexpression in HT1080 disrupted microtumors formation in vivo. These microtumors, including individual cells, presented characteristics of non-invasive lesions (rounded morphology). Our results suggest that ADAMTS-1 is involved in regulating HGF-related functions on fibrosarcoma cells. This protease may then represent an endogenous mechanism in controlling the bioavailability of different growth factors that have a direct influence on tumor cell behavior.
Collapse
|
13
|
Carr AC, Khaled AS, Bassiouni R, Flores O, Nierenberg D, Bhatti H, Vishnubhotla P, Manuel JP, Santra S, Khaled AR. Targeting chaperonin containing TCP1 (CCT) as a molecular therapeutic for small cell lung cancer. Oncotarget 2017; 8:110273-110288. [PMID: 29299146 PMCID: PMC5746381 DOI: 10.18632/oncotarget.22681] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/05/2017] [Indexed: 12/20/2022] Open
Abstract
Identifying new druggable targets is desired to meet the needs for effective cancer treatments. To this end, we previously reported the efficacy of a therapeutic peptide called CT20p that displays selective cytotoxicity through inhibition of a multi-subunit, protein-folding complex called Chaperonin-Containing TCP-1 (CCT). To investigate the role of CCT in cancer progression, we examined protein levels of CCT subunits in liver, prostate, and lung cancer using human tissue microarrays. We found that these cancers expressed higher levels of CCT2 as compared to normal tissues. Small cell lung cancer (SCLC) stood out as having statistically significant difference in CCT2. Higher levels of CCT2 in tumors from lung cancer patients were also associated with decreased survival. Using SCLC cell lines, we observed detectable amounts of CCT subunits and cells were susceptible to killing by CT20p. Treatment with CT20p, delivered to cells using polymeric nanoparticles, was cytotoxic to all SCLC cell lines, decreasing the levels of CCT client proteins like STAT3. In contrast, treatment with a STAT3 inhibitor was effective in one of the SCLC cell lines. While we found that CCT levels could vary in cell lines, normal tissues had low levels of CCT and minimal toxicity to liver or kidney function was observed in mice treated with CT20p. These results indicate that in SCLC, changes in CCT levels could be used as a biomarker for diagnosis and that targeting CCT for inhibition with CT20p is a promising treatment approach for those cancers such as SCLC that currently lack targeted therapeutics.
Collapse
Affiliation(s)
- Ana C. Carr
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Amr S. Khaled
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - Rania Bassiouni
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Orielyz Flores
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Daniel Nierenberg
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Hammad Bhatti
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - Priya Vishnubhotla
- Department of Pathology and Laboratory Medicine, Department of Internal Medicine, Orlando VA Medical Center, Orlando, FL 32803, USA
| | - J. Perez Manuel
- Biomedical Imaging Research Institute, & Samuel Oschin Comprehensive Cancer Institute, Department of Biomedical Sciences and Department of Neurosurgery, Cedar Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Annette R. Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
14
|
Park YR, Bae SH, Ji W, Seo EJ, Lee JC, Kim HR, Jang SJ, Choi CM. GAB2 Amplification in Squamous Cell Lung Cancer of Non-Smokers. J Korean Med Sci 2017; 32:1784-1791. [PMID: 28960030 PMCID: PMC5639058 DOI: 10.3346/jkms.2017.32.11.1784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 08/04/2017] [Indexed: 01/12/2023] Open
Abstract
Lung squamous cell cancer (SCC) is typically found in smokers and has a very low incidence in non-smokers, indicating differences in the tumor biology of lung SCC in smokers and non-smokers. However, the specific mutations that drive tumor growth in non-smokers have not been identified. To identify mutations in lung SCC of non-smokers, we performed a genetic analysis using arrays comparative genomic hybridization (ArrayCGH). We analyzed 19 patients with lung SCC who underwent surgical treatment between April 2005 and April 2015. Clinical characteristics were reviewed, and DNA was extracted from fresh frozen lung cancer specimens. All of copy number alterations from ArrayCGH were validated using The Cancer Genome Atlas (TCGA) copy number variation (CNV) data of lung SCC. We examined the frequency of copy number changes according to the smoking status (non-smoker [n = 8] or smoker [n = 11]). We identified 16 significantly altered regions from ArrayCGH data, three gain and four loss regions overlapped with the TCGA lung squamous cell carcinoma (LUSC) patients. Within these overlapped significant regions, we detected 15 genes that have been reported in the Cancer Gene census. We also found that the proto-oncogene GAB2 (11q14.1) was significantly amplified in non-smokers patients and vice versa in both ArrayCGH and TCGA data. Immunohistochemical analyses showed that GAB2 protein was relatively upregulated in non-smoker than smoker tissues (37.5% vs. 9.0%, P = 0.007). GAB2 amplification may have an important role in the development of lung SCC in non-smokers. GAB2 may represent a potential biomarker for lung SCC in non-smokers.
Collapse
Affiliation(s)
- Yu Rang Park
- Clinical Research Center, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Biomedical Informatics, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Soo Hyeon Bae
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Wonjun Ji
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jae Cheol Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hyeong Ryul Kim
- Department of Thoracic Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Chang Min Choi
- Department of Pulmonology and Critical Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Office of Clinical Research Information, Asan Institute of Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
15
|
The Role of PI3K Isoforms in Regulating Bone Marrow Microenvironment Signaling Focusing on Acute Myeloid Leukemia and Multiple Myeloma. Cancers (Basel) 2017; 9:cancers9040029. [PMID: 28350342 PMCID: PMC5406704 DOI: 10.3390/cancers9040029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
Despite the development of novel treatments in the past 15 years, many blood cancers still remain ultimately fatal and difficult to treat, particularly acute myeloid leukaemia (AML) and multiple myeloma (MM). While significant progress has been made characterising small-scale genetic mutations and larger-scale chromosomal translocations that contribute to the development of various blood cancers, less is understood about the complex microenvironment of the bone marrow (BM), which is known to be a key player in the pathogenesis of chronic lymphocytic leukaemia (CLL), AML and MM. This niche acts as a sanctuary for the cancerous cells, protecting them from chemotherapeutics and encouraging clonal cell survival. It does this by upregulating a plethora of signalling cascades within the malignant cell, with the phosphatidylinositol-3-kinase (PI3K) pathway taking a critical role. This review will focus on how the PI3K pathway influences disease progression and the individualised role of the PI3K subunits. We will also summarise the current clinical trials for PI3K inhibitors and how these trials impact the treatment of blood cancers.
Collapse
|
16
|
Wang J, Cheng JX. c-Met inhibition enhances chemosensitivity of human ovarian cancer cells. Clin Exp Pharmacol Physiol 2016; 44:79-87. [PMID: 27658187 DOI: 10.1111/1440-1681.12672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Jing Wang
- Department of Gynaecology and Obstetrics; The Third Hospital of Hebei Medical University; Shijiazhuang Hebei Province China
| | - Jian-Xin Cheng
- Department of Gynaecology and Obstetrics; The Third Hospital of Hebei Medical University; Shijiazhuang Hebei Province China
| |
Collapse
|
17
|
Targeting the Mammalian Target of Rapamycin in Lung Cancer. Am J Med Sci 2016; 352:507-516. [PMID: 27865299 DOI: 10.1016/j.amjms.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/09/2016] [Accepted: 08/18/2016] [Indexed: 12/19/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Despite advances in its prevention and management, the prognosis of patients with lung cancer remains poor. Therefore, much attention is being given to factors that contribute to the development of this disease, the mechanisms that drive oncogenesis and tumor progression and the search for novel targets that could lead to the development of more effective treatments. One cellular pathway implicated in lung cancer development and progression is that of the mammalian target of rapamycin. Studies involving human tissues have linked lung cancer with abnormalities in this pathway. Furthermore, studies in vitro and in vivo using animal models of lung cancer reveal that targeting this pathway might represent an effective means of treating this disease. As a result, there is significant effort invested in the development of drugs targeting mammalian target of rapamycin and related pathways in the clinical setting.
Collapse
|
18
|
Bill KLJ, Garnett J, Ma X, May C, Bolshakov S, Lazar AJ, Lev D, Pollock RE. The hepatocyte growth factor receptor as a potential therapeutic target for dedifferentiated liposarcoma. J Transl Med 2015; 95:951-61. [PMID: 26006023 PMCID: PMC4520775 DOI: 10.1038/labinvest.2015.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022] Open
Abstract
Dedifferentiated liposarcomas (DDLPS) are highly resistant to conventional chemo- and radiotherapies, with surgical resection remaining the classic treatment strategy; therefore, there is a pressing need for novel anti-DDLPS-targeted chemotherapeutics. Hepatocyte growth factor receptor (Met) expression is elevated in DDLPS, but the functional role of Met signaling in this disease is not known. We found that the in vitro stimulation of DDLPS cells with hepatocyte growth factor (HGF) elevated the degree of PI3K/AKT and MAPK pathway signaling, and that pro-tumorigenic phenotypes such as cell proliferation, invasion, and migration were significantly enhanced. Conversely, Met knockdown using shRNA-mediated interference decreased HGF-induced Met signaling, the invasive and migratory nature of DDLPS cells in vitro, and the tumorigenicity of DDLPS cells in vivo. These data strongly support the role for Met as a DDLPS therapeutic target. To that end, using EMD1214063, an ATP-competitive kinase inhibitor that targets Met more specifically than other kinases, inhibited Met-dependent signaling, reduced the oncogenicity of DDLPS cells in vitro, and significantly increased the survival of nude mice bearing subcutaneous DDLPS xenografts. These findings support further investigations of HGF-induced Met signaling inhibition in DDLPS, as a potential strategy to enhance clinical outcomes for this disease.
Collapse
Affiliation(s)
- Kate Lynn J. Bill
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, OH, USA
| | - Jeannine Garnett
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoyan Ma
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlin May
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Svetlana Bolshakov
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J. Lazar
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
| | - Dina Lev
- Department of Surgery, The Sheba Medical Center, Tel Aviv, Israel
| | - Raphael E. Pollock
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX, USA
- The Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University (OSU), Columbus, OH, USA
| |
Collapse
|
19
|
Ding CB, Yu WN, Feng JH, Luo JM. Structure and function of Gab2 and its role in cancer (Review). Mol Med Rep 2015; 12:4007-4014. [PMID: 26095858 PMCID: PMC4526075 DOI: 10.3892/mmr.2015.3951] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/19/2015] [Indexed: 12/30/2022] Open
Abstract
The docking proteins of the Grb-associated binder (Gab) family transduce cellular signals between receptors and intracellular downstream effectors, and provide a platform for protein-protein interactions. Gab2, a key member of the Gab family of proteins, is involved in the amplification and integration of signal transduction, evoked by a variety of extracellular stimuli, including growth factors, cytokines and antigen receptors. Gab2 protein lacks intrinsic catalytic activity; however, when phosphorylated by protein-tyrosine kinases (PTKs), Gab2 recruits several Src homology-2 (SH2) domain-containing proteins, including the SH2-containing protein tyrosine phosphatase 2 (SHP2), the p85 subunit of phosphoinositide-3 kinase (PI3K), phospholipase C-γ (PLCγ)1, Crk, and GC-GAP. Through these interactions, the Gab2 protein triggers various downstream signal effectors, including SHP2/rat sarcoma viral oncogene/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase and PI3K/AKT, involved in cell growth, differentiation, migration and apoptosis. It has been previously reported that aberrant Gab2 and/or Gab2 signaling is closely associated with human tumorigenesis, particularly in breast cancer, leukemia and melanoma. The present review aimed to focus on the structure and effector function of Gab2, its role in cancer and its potential for use as an effective therapeutic target.
Collapse
Affiliation(s)
- Chen-Bo Ding
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Wei-Na Yu
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Ji-Hong Feng
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| | - Jun-Min Luo
- Department of Immunology and Immunology Innovation Base for Postgraduate Education in Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563099, P.R. China
| |
Collapse
|
20
|
Vasconcelos AC, Wagner VP, Meurer L, Vargas PA, de Souza LB, Fonseca FP, Squarize CH, Castilho RM, Martins MD. Immunoprofile of c-MET/PI3K signaling in human salivary gland tumors. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:238-47. [PMID: 26117810 DOI: 10.1016/j.oooo.2015.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 04/08/2015] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the expression pattern of proteins in the HGF/c-MET/PI3K signaling pathway in salivary gland tumors (SGTs) and to correlate the findings with the proliferative index and clinical parameters. STUDY DESIGN We assembled tissue microarrays (TMAs) of 108 cases of SGTs, including 69 cases of pleomorphic adenoma (PA), 24 cases of adenoid cystic carcinoma (AdCC), and 15 cases of mucoepidermoid carcinoma (MEC). An immunohistochemical analysis of hepatocyte growth factor (HGF), MET phosphorylation (p-MET), protein kinase B (AKT) phosphorylation (p-AKT), and Ki-67 proteins was performed. RESULTS Benign and malignant SGTs presented similar scores of HGF-positive cells (P = .36), whereas, malignant SGTs exhibited higher levels of p-MET (P = .001) and p-AKT (P = .001) than benign SGTs. No correlation of HGF, p-MET, or p-AKT expression was observed with clinical parameters. PA had a lower proliferative index than either AdCC (P = .001) or MEC (P = .001). CONCLUSIONS The salivary gland carcinomas exhibited increased activation of the HGF pathway, as evidenced by the phosphorylation of the MET receptor, and increased activation of the PI3K pathway, as indicated by p-AKT. These data suggest that the HGF/c-MET/PI3K signaling pathway is active in SGTs, especially in malignant neoplasms.
Collapse
Affiliation(s)
- Artur Cunha Vasconcelos
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vivian Petersen Wagner
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luise Meurer
- Department of Pathology, Hospital de Clínicas de Porto Alegre (HCPA/UFRGS), Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Lélia Batista de Souza
- Department of Oral Pathology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Yang J, Yang G, Hou G, Liu Q, Hu W, Zhao PU, He YI. Scutellaria barbata D. Don polysaccharides inhibit the growth of Calu-3 xenograft tumors via suppression of the HER2 pathway and angiogenesis. Oncol Lett 2015; 9:2721-2725. [PMID: 26137135 DOI: 10.3892/ol.2015.3127] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/02/2015] [Indexed: 11/05/2022] Open
Abstract
Scutellaria barbata D. Don, a perennial herb belonging to the family Lamiaceae, is widely distributed throughout China and the Republic of Korea, and has been traditionally used in folk medicine as an antitumor and anti-inflammatory agent. Polysaccharides isolated from Scutellaria barbata D. Don (PSB), have been reported to possess antitumor effects. However, the detailed antitumor mechanisms behind the effects of PSB remain unclear. In the present study, a non-small cell lung cancer cell line harboring the HER2 gene mutation Calu-3, the Calu-3 cell line, was used to investigate the underlying mechanisms of the antitumor effects of PSB. The results revealed that PSB potently inhibited cell proliferation and human epidermal growth factor receptor (HER)2 phosphorylation in vitro, and also downregulated the expression of the downstream signaling molecules, including phosphorylated (phospho-)Akt and phospho-extracellular signal-related kinase. In vivo, PSB demonstrated efficacy at well-tolerated doses, including significant antitumor activity in a Calu-3 subcutaneous xenograft model. Immunohistochemistry (IHC) analysis revealed a PSB dose-dependent reduction of microvessel density, demonstrated by cluster of differentiation 31 staining. The present findings suggest that inhibition of tumor angiogenesis via suppression of the HER2 pathway may be one of the mechanisms by which PSB can be effective in the treatment of cancers.
Collapse
Affiliation(s)
- Junfeng Yang
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Guangyu Yang
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Guangjie Hou
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Qingfeng Liu
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Weicai Hu
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - P U Zhao
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| | - Y I He
- Department of Thoracic Surgery, People's Hospital of Henan Province, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
22
|
Maraldi T, Beretti F, Guida M, Zavatti M, De Pol A. Role of hepatocyte growth factor in the immunomodulation potential of amniotic fluid stem cells. Stem Cells Transl Med 2015; 4:539-47. [PMID: 25873747 DOI: 10.5966/sctm.2014-0266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/23/2015] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Human amniotic fluid stem cells (hAFSCs) may be useful for regenerative medicine because of their potential to differentiate into all three germ layers and to modulate immune response with different types of secretion molecules. This last issue has not been completely elucidated. The aim of this study was to investigate the secretome profile of the hAFSC, focusing on the role of hepatocyte growth factor (HGF) in immunoregulation through short and long cocultures with human peripheral blood mononuclear cells. We found that HGF produced by hAFSCs exerts a cytoprotective role, inducing an increase in caspase-dependent apoptosis in human immune cells. This study provides evidence supporting the hypothesis that amniotic fluid is an ideal source of stem cells for expansion and banking properties for therapeutic use. hAFSCs not only are less immunogenic but also can secrete immunoregulatory factors that may be useful in autoimmune diseases or allogenic implants. SIGNIFICANCE New information about the secretome pattern is reported in this paper. Human amniotic fluid stem cells (hAFSCs) possess immunomodulatory properties involving hepatocyte growth factor production. hAFSCs could be used in immunotherapies and might be able to avoid allogenic rejection.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Francesca Beretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Marianna Guida
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Manuela Zavatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| | - Anto De Pol
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Biomedicine, European Academy of Bozen/Bolzano (EURAC) Research, Bolzano, Italy
| |
Collapse
|
23
|
Yang X, Yang Y, Tang S, Tang H, Yang G, Xu Q, Wu J. Anti-tumor effect of polysaccharides from Scutellaria barbata D. Don on the 95-D xenograft model via inhibition of the C-met pathway. J Pharmacol Sci 2015; 125:255-63. [PMID: 25048016 DOI: 10.1254/jphs.13276fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Polysaccharides isolated from Scutellaria barbata (PSB) have been reported to have anti-tumor effects. To investigate the underlying mechanism, a highly invasive, metastatic and phospho-c-Met overexpression lung carcinoma cell, 95-D cell line was used. The results showed that in vitro, PSB not only could inhibit the proliferation of 95-D cell line (IC(50) = 35.2 μg/mL), but also down-regulated the expression of phospho-c-Met and its downstream signaling molecules including phospho-Erk and phospho-Akt. In vivo, PSB inhibited tumor growth in the 95-D subcutaneous xenograft model in a dose-dependent manner; after once-daily intraperitoneal injection for 3 weeks, tumor growth inhibition T/C ratio for 100 and 200 mg/kg treatments was 42.72% and 13.6%, respectively. In the end of the in vivo study, tumor tissues were harvested for further evaluation of the phosphorylation level of c-Met, AKT, and ERK. Ex vivo results demonstrated that the phosphorylation of c-Met and its downstream signaling molecules were also significantly inhibited by PSB. Immunohistochemistry analysis showed dose-dependent inhibition of tumor cell proliferation (Ki67) and reduction of microvessel density (CD31). In summary, the results indicated that PSB exerted anti-tumor growth activity on human lung cancer 95-D in vitro and in vivo by directly regulating the c-Met signaling pathway and the anti-tumor effects were mainly based on its anti-proliferation and anti-angiogenesis action.
Collapse
Affiliation(s)
- Xiaokun Yang
- Department of Dermatology, Daping Hospital, Third Military Medical University, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Bertaux-Skeirik N, Feng R, Schumacher MA, Li J, Mahe MM, Engevik AC, Javier JE, Peek Jr RM, Ottemann K, Orian-Rousseau V, Boivin GP, Helmrath MA, Zavros Y. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation. PLoS Pathog 2015; 11:e1004663. [PMID: 25658601 PMCID: PMC4450086 DOI: 10.1371/journal.ppat.1004663] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.
Collapse
Affiliation(s)
- Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Rui Feng
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Michael A. Schumacher
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jing Li
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Maxime M. Mahe
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Amy C. Engevik
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Jose E. Javier
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
| | - Richard M. Peek Jr
- Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of
America
| | - Karen Ottemann
- Department of Microbiology and Environmental Toxicology, University of
California at Santa Cruz, Santa Cruz, California, United States of
America
| | - Veronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute for Toxicology and Genetics,
Hermann von Helmholtzplatz, Germany
| | - Gregory P. Boivin
- Department of Pathology Wright State University, Health Sciences, Dayton,
Ohio, United States of America
- Veterans Affairs Medical Center, Cincinnati, Ohio, United States of
America
| | - Michael A. Helmrath
- Department of Surgery, Division of Pediatric Surgery, Cincinnati
Children’s Hospital Medical Center, Cincinnati, Ohio, United States of
America
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati,
Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
25
|
Gelsomino F, Rossi G, Tiseo M. MET and Small-Cell Lung Cancer. Cancers (Basel) 2014; 6:2100-15. [PMID: 25314153 PMCID: PMC4276958 DOI: 10.3390/cancers6042100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 01/21/2023] Open
Abstract
Small-cell lung cancer (SCLC) is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.
Collapse
Affiliation(s)
- Francesco Gelsomino
- Medical Oncology Unit 1, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milano, Italy.
| | - Giulio Rossi
- Operative Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo 71, 41124 Modena, Italy.
| | - Marcello Tiseo
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Viale A. Gramsci 14, 43126 Parma, Italy.
| |
Collapse
|
26
|
Rolle CE, Kanteti R, Surati M, Nandi S, Dhanasingh I, Yala S, Tretiakova M, Arif Q, Hembrough T, Brand TM, Wheeler DL, Husain AN, Vokes EE, Bharti A, Salgia R. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer. Mol Cancer Ther 2013; 13:576-84. [PMID: 24327519 DOI: 10.1158/1535-7163.mct-13-0109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Small cell lung cancer (SCLC) is a devastating disease, and current therapies have not greatly improved the 5-year survival rates. Topoisomerase (Top) inhibition is a treatment modality for SCLC; however, the response is short lived. Consequently, our research has focused on improving SCLC therapeutics through the identification of novel targets. Previously, we identified MNNG HOS transforming gene (MET) to be overexpressed and functional in SCLC. Herein, we investigated the therapeutic potential of combinatorial targeting of MET using SU11274 and Top1 using 7-ethyl-10-hydroxycamptothecin (SN-38). MET and TOP1 gene copy numbers and protein expression were determined in 29 patients with limited (n = 11) and extensive (n = 18) disease. MET gene copy number was significantly increased (>6 copies) in extensive disease compared with limited disease (P = 0.015). Similar TOP1 gene copy numbers were detected in limited and extensive disease. Immunohistochemical staining revealed a significantly higher Top1 nuclear expression in extensive (0.93) versus limited (0.15) disease (P = 0.04). Interestingly, a significant positive correlation was detected between MET gene copy number and Top1 nuclear expression (r = 0.5). In vitro stimulation of H82 cells revealed hepatocyte growth factor (HGF)-induced nuclear colocalization of p-MET and Top1. Furthermore, activation of the HGF/MET axis enhanced Top1 activity, which was abrogated by SU11274. Combination of SN-38 with SU11274 dramatically decreased SCLC growth as compared with either drug alone. Collectively, these findings suggest that the combinatorial inhibition of MET and Top1 is a potentially efficacious treatment strategy for SCLC.
Collapse
Affiliation(s)
- Cleo E Rolle
- Corresponding Author: Ravi Salgia, Section of Hematology/Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Avenue, MC 2115, Chicago, IL 60637.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kawada I, Hasina R, Arif Q, Mueller J, Smithberger E, Husain AN, Vokes EE, Salgia R. Dramatic antitumor effects of the dual MET/RON small-molecule inhibitor LY2801653 in non-small cell lung cancer. Cancer Res 2013; 74:884-95. [PMID: 24305878 DOI: 10.1158/0008-5472.can-12-3583] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lung cancer is a heterogeneous disease encompassing a wide array of genetic abnormalities. The MET receptor tyrosine kinase is altered in many lung cancers, especially non-small cell lung cancer (NSCLC), and clinical trials of MET inhibitors that are under way are documenting cases of acquired resistance. On the basis of the evidence that the RON tyrosine kinase receptor can also be overexpressed in NSCLC, we evaluated the potent MET/RON dual kinase inhibitor LY2801653 in this setting. LY2801653 was more efficacious than the MET/ALK/RON/ROS inhibitor crizotinib with a distinct pattern of downstream signaling effects. Using the PamGene platform, we found that inhibition of MET and RON was associated with decreased phosphorylation of CBL, PI3K, and STAT3. In classic and orthotopic mouse xenograft models of lung cancer, LY2801653 decreased tumor growth, dramatically inhibiting mitotic events and angiogenesis. Taken together, our results argued that specific targeting of the MET/RON kinases could provide robust inhibition of cell proliferation and tumor outgrowth in multiple in vitro and in vivo models of NSCLC. These findings offer a robust preclinical proof of concept for MET/RON targeting by LY2801653 as a promising small-molecule modality to treat NSCLC.
Collapse
Affiliation(s)
- Ichiro Kawada
- Authors' Affiliations: Departments of Medicine and Pathology, The University of Chicago, Chicago, Illinois
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chakraborty S, Chopra P, Hak A, Dastidar SG, Ray A. Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert Opin Investig Drugs 2013; 22:499-515. [PMID: 23484858 DOI: 10.1517/13543784.2013.778972] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pulmonary fibrosis (PF) is a progressive fatal disorder and is characterized by alveolar epithelial injury, myofibroblast proliferation, and extracellular matrix remodeling, resulting in irreversible distortion of lung's architecture. Available therapies are associated with side effects and show restricted efficacy. Therefore, there is an urgent need to find a therapeutic solution to PF. Therapeutic strategies interfering myofibroblast expansion, apoptosis of epithelial and endothelial cells might be beneficial for treatment of PF. Hepatocyte growth factor (HGF), a pleiotropic growth factor, plays an important role in lung development, inflammation, repair, and regeneration. In animal model of PF, administration of recombinant HGF protein or ectopic HGF expression ameliorates fibrosis. AREAS COVERED The focus of this review is to highlight HGF as a promising therapeutic approach for the treatment of PF. The review discusses the currently available treatment option for PF as well as highlights the possible beneficial effect of HGF as a drug target. EXPERT OPINION HGF with its anti-fibrotic effect provides a promising new therapeutic approach by protecting lung from fibrotic remodeling and also promoting normal regeneration of lung. The development of HGF mimetics may provide a potential attractive therapy for treatment of this devastating and complex disease.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Daiichi Sankyo Life Science Research Centre in India (RCI), Department of Biology, Haryana, India
| | | | | | | | | |
Collapse
|
29
|
Zhao Y, Zhao J, Mialki RK, Wei J, Spannhake EW, Salgia R, Natarajan V. Lipopolysaccharide-induced phosphorylation of c-Met tyrosine residue 1003 regulates c-Met intracellular trafficking and lung epithelial barrier function. Am J Physiol Lung Cell Mol Physiol 2013; 305:L56-63. [PMID: 23624790 DOI: 10.1152/ajplung.00417.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
c-Met, the receptor tyrosine kinase whose natural ligand is hepatocyte growth factor, is known to have a key role in cell motility. We have previously shown that lysophosphatidic acid (LPA) induced a decrease in c-Met activation via serine phosphorylation of c-Met at cell-cell contacts. Here, we demonstrate that lipopolysaccharide (LPS) treatment of human bronchial epithelial cells induced internalization of c-Met via phosphorylation at its tyrosine residue 1003. In addition, it induced epithelial barrier dysfunction as evidenced by a decrease in transepithelial resistance (TER) in a time-dependent manner. Pretreatment with a c-Met inhibitor (PHA-665752) or inhibition of protein kinase C (PKC)-α attenuated the LPS-mediated phosphorylation of c-Met and its internalization. LPS-induced c-Met tyrosine 1003 phosphorylation, activation of PKCα, and c-Met internalization were, however, reversed by pretreatment of cells with LPA, which increased c-Met accumulation at cell-cell contacts. Inhibition of LPS-mediated c-Met tyrosine (Y1003) phosphorylation and internalization by prior treatment with PHA-665752, inhibition of PKCα, or overexpression of c-MetY1003A mutant attenuated LPS-induced reduction of TER. Furthermore, we found that c-Met accumulation at cell-cell contacts contributed to LPA-enhanced epithelial barrier integrity, since downregulation of c-Met by specific small-interfering RNA attenuated LPA-increased TER. The data reveal a novel biological function of c-Met in the regulation of lung epithelial barrier integrity.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of Medicine and the Acute Lung Injury Center of Excellence, the University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
c-MET is a receptor tyrosine kinase that, after binding with its ligand, hepatocyte growth factor, activates a wide range of different cellular signaling pathways, including those involved in proliferation, motility, migration and invasion. Although c-MET is important in the control of tissue homeostasis under normal physiological conditions, it has also been found to be aberrantly activated in human cancers via mutation, amplification or protein overexpression. This paper provides an overview of the c-MET signaling pathway, including its role in the development of cancers, and provides a rationale for targeting the pathway as a possible treatment option.
Collapse
|
31
|
Park JK, Kim MA, Ryu JK, Yoon YB, Kim SW, Han HS, Kang GH, Kim H, Hwang JH, Kim YT. Postoperative prognostic predictors of pancreatic ductal adenocarcinoma: clinical analysis and immunoprofile on tissue microarrays. Ann Surg Oncol 2012; 19:2664-72. [PMID: 22395988 DOI: 10.1245/s10434-012-2277-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most pancreatic ductal adenocarcinomas (PDACs) metastasize even after curative resection. Our goal was to investigate the important factors affecting metastasis and overall survival (OS). METHODS We studied 88 PDACs with R0 resection and evaluated immunohistochemical markers on tissue microarrays to assess the expression levels of the following: EGFR, amphiregulin, VEGF, p-c-met, MMP2, MMP7, MMP9, CXCR3, and CXCR4. RESULTS The median OS in patients who had positive versus negative expression of AREG and MMP9 were 25 versus 16 months and 24 versus 13 months, respectively (P = 0.03, P = 0.006). However, the median OS in patients with positive versus negative expression of MMP2 was 22 versus 37 months (P = 0.04). Immunoprofiles also revealed that patients with positive expression of p-c-met or VEGF had significantly shorter distant metastasis-free survival. Adjuvant treatment, postoperative decrease of CA 19-9, angiolymphatic invasion, AREG, and MMP2 were independent prognostic factors affecting OS in multivariate analysis. CONCLUSIONS Immunoprofiles revealed the groups with unfavorable tumor biology: negative expression of AREG and positive expression of MMP2. Also, high immunoreactivity of p-c-met or VEGF seemed to be associated with early distant organ metastasis in R0 resected PDACs; however, they still need to be further investigated. These results may give us useful insights in understanding the tumor biology and the patterns of PDAC dissemination.
Collapse
Affiliation(s)
- Joo Kyung Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ferreira MBA, Lima JPSN, Cohen EEW. Novel targeted therapies in head and neck cancer. Expert Opin Investig Drugs 2012; 21:281-95. [PMID: 22239178 DOI: 10.1517/13543784.2012.651455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Molecularly targeted therapy, with the potential for increased selectivity and fewer adverse effects, hold promise in the treatment of HNSCC. AREAS COVERED Targeted agents for HNSCC expected to improve the effectiveness of current therapy including HER family, Src-family kinase, cell cycle, MET, AKT, HDAC, PARP, COX inhibitors and antiangiogenesis. EXPERT OPINION Epidermal growth factor receptor inhibitors are established in HNSCC and the need now is to find biomarkers for sensitivity to better select patients. Moreover, other pathway inhibitors hold significant promise and are being tested in clinical trials. Angiogenesis inhibition is likely to yield only modest efficacy alone but may augment existing standards. Lastly, one clinical arena where targeted therapies may find secure purchase is in the adjuvant or prevention setting where minimal or preneoplastic disease can be affected by inhibition of a single or few targets.
Collapse
|
33
|
Abstract
Lung cancer is a heterogeneous disease clinically, biologically, histologically, and molecularly. Understanding the molecular causes of this heterogeneity, which might reflect changes occurring in different classes of epithelial cells or different molecular changes occurring in the same target lung epithelial cells, is the focus of current research. Identifying the genes and pathways involved, determining how they relate to the biological behavior of lung cancer, and their utility as diagnostic and therapeutic targets are important basic and translational research issues. This article reviews current information on the key molecular steps in lung cancer pathogenesis, their timing, and clinical implications.
Collapse
Affiliation(s)
- Jill E Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, 6000 Harry Hines Boulevard, University of Texas Southwestern Medical Center, Dallas, TX 75390-8593, USA
| | | |
Collapse
|
34
|
Larsen JE, Cascone T, Gerber DE, Heymach JV, Minna JD. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 2011; 17:512-27. [PMID: 22157296 PMCID: PMC3381956 DOI: 10.1097/ppo.0b013e31823e701a] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lung cancer remains the leading cancer killer in the United States, recently a number of developments indicate future clinical benefit. These include evidence that computed tomography-based screening decreases lung cancer mortality, the use of stereotactic radiation for early-stage tumors, the development of molecular methods to predict chemotherapy sensitivity, and genome-wide expression and mutation analysis data that have uncovered oncogene "addictions" as important therapeutic targets. Perhaps the most significant advance in the treatment of this challenging disease is the introduction of molecularly targeted therapies, a term that currently includes monoclonal antibodies and small-molecule tyrosine kinase inhibitors. The development of effective targeted therapeutics requires knowledge of the genes and pathways involved and how they relate to the biologic behavior of lung cancer. Drugs targeting the epidermal growth factor receptor, anaplastic lymphoma kinase, and vascular endothelial growth factor are now U.S. Food and Drug Administration approved for the treatment of advanced non-small cell lung cancer. These agents are generally better tolerated than conventional chemotherapy and show dramatic efficacy when their use is coupled with a clear understanding of clinical data, mechanism, patient selection, drug interactions, and toxicities. Integrating genome-wide tumor analysis with drug- and targeted agent-responsive phenotypes will provide a wealth of new possibilities for lung cancer-targeted therapeutics. Ongoing research efforts in these areas as well as a discussion of emerging targeted agents being evaluated in clinical trials are the subjects of this review.
Collapse
Affiliation(s)
- Jill E. Larsen
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas
| | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - David E. Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John V. Heymach
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
35
|
William WN, Glisson BS. Novel strategies for the treatment of small-cell lung carcinoma. Nat Rev Clin Oncol 2011; 8:611-9. [PMID: 21691321 DOI: 10.1038/nrclinonc.2011.90] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Small-cell lung cancer (SCLC) is a disease with a poor prognosis and limited treatment options. Over the past 30 years, basic and clinical research have translated to little innovation in the treatment of this disease. The Study of Picoplatin Efficacy After Relapse (SPEAR) evaluated best supportive care with or without picoplatin for second-line SCLC treatment and failed to meet its primary end point of overall survival. As the largest second-line, randomized study in patients with SCLC, SPEAR provides an opportunity to critically examine the drug development model in this disease. In this Review, we discuss the current standard approach for the management of SCLC that progresses after first-line therapy, analyze the preliminary data that supported the evaluation of picoplatin in this setting, and critically evaluate the SPEAR trial design and results. Lastly, we present advances in the understanding of the molecular biology of SCLC that could potentially inform future clinical trials and hopefully lead to the successful development of molecular targeted agents for the treatment of this disease.
Collapse
Affiliation(s)
- William N William
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 432, Houston, TX 77030, USA
| | | |
Collapse
|
36
|
Xu XL, Wang X, Chen ZL, Jin M, Yang W, Zhao GF, Li JW. Overexpression of Grb2-associated binder 2 in human lung cancer. Int J Biol Sci 2011; 7:496-504. [PMID: 21552417 PMCID: PMC3088873 DOI: 10.7150/ijbs.7.496] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/10/2011] [Indexed: 11/25/2022] Open
Abstract
Objective: Grb2-associated binder 2 (Gab2), a member of the family of Gab scaffolding adaptors, transmits and amplifies the signals from receptor tyrosine kinases. A recent study demonstrated that Gab2 was over-expressed in breast cancers and metastatic melanomas, and Gab2 was an oncogenic protein. However, the roles of Gab2 in lung cancers are largely unknown. Method: In this study, to investigate whether Gab2 expression could be a characteristic of lung cancers, we analyzed the expression of Gab2 in 88 lung frozen tissue samples and 122 paraffin-embedded tissue specimens, using quantitative real-time-PCR, immunohistochemistry and western blot. Results: We found that the positive expression rate of Gab2 in the tumor tissues, as detected by immunohistochemistry, 62.5% in squamous cell cancers, 51.35% in adenocarcinomas, and 75% in other types of lung cancers, was significantly higher than that (12%) in normal lung tissues. The mRNA expression detected by quantitative real-time-PCR and protein expression detected by western blotting in different groups were consistent with the immunohistochemical results. Conclusion: Our data indicate that Gab2 is over-expressed in malignant lung tissues compared with that in normal lung tissues, and suggest that Gab2 expression may play a role in lung cancer development.
Collapse
Affiliation(s)
- Xiu-Li Xu
- Department of Pathology, Tianjin Medical University, Heping District, Tianjin 300070, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Schmitz S, Machiels JP. Molecular biology of squamous cell carcinoma of the head and neck: relevance and therapeutic implications. Expert Rev Anticancer Ther 2011; 10:1471-84. [PMID: 20836682 DOI: 10.1586/era.10.115] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
More than 90% of all head and neck cancers are squamous cell carcinoma. Despite advances in the management of patients with this disease, the survival rate has not been significantly improved. Several mechanisms of carcinogenesis have been elucidated and molecular targeted agents seem to be promising therapeutic tools. Cetuximab, a monoclonal antibody inhibitor of the EGF receptor, improves survival rates in association with radiotherapy in advanced squamous cell carcinoma of the head and neck (SCCHN) or in palliative disease, and is nowadays the only targeted agent approved in this indication. Other targeted agents are also clinically relevant to the treatment of different malignancies, including SCCHN. This article focuses on the major molecular pathways implicated in SCCHN carcinogenesis and provides an overview of their therapeutic implications.
Collapse
Affiliation(s)
- Sandra Schmitz
- Centre du Cancer, Department of Medical Oncology, Clinique de Cancérologie Cervico-Maxillo-Faciale, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
38
|
Abstract
Metastasis remains a major cause of mortality in patients with head and neck squamous cell carcinoma (HNSCC). HNSCC patients with metastatic disease have extremely poor prognoses, with an average survival rate of less than a year. Metastasis is an intricate sequential process that requires a discrete population of tumor cells to possess the capacity to intravasate from the primary tumor into systemic circulation, survive in circulation, extravasate at a distant site, and proliferate in a foreign, hostile environment. Literature has accumulated to provide mechanistic insight into several signal transduction pathways, receptor tyrosine kinases (RTKs), signal transducer and activator of transcription 3 (Stat3), Rho GTPases, protein kinase Cε (PKCsε), and nuclear factor-κB (NF-κB), that are involved in mediating a metastatic tumor cell phenotype in HN-SCC. Herein we highlight accrued information regarding the key molecular parameters of HNSCC metastasis.
Collapse
Affiliation(s)
- Sanjay L Bhave
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Medical Center, Columbus OH 43210, USA
| | | | | |
Collapse
|
39
|
Menakongka A, Suthiphongchai T. Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol 2010; 16:713-22. [PMID: 20135719 PMCID: PMC2817059 DOI: 10.3748/wjg.v16.i6.713] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of hepatocyte growth factor (HGF) in cholangiocarcinoma (CCA) cell invasiveness and the mechanisms underlying such cellular responses.
METHODS: Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines, HuCCA-1 and KKU-M213, using Transwell in vitro assay. Levels of proteins of interest and their phosphorylated forms were determined by Western blotting. Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography.
RESULTS: Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line. HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization, but did not affect the levels of secreted matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator, key matrix degrading enzymes involved in cell invasion. Concomitantly, HGF stimulated Akt and extracellular signal-regulated kinase (ERK)1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines. Inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway by the PI3K inhibitor, LY294002, markedly suppressed HGF-stimulated invasion of both CCA cell lines, and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells.
CONCLUSION: These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.
Collapse
|
40
|
Abstract
The MET tyrosine kinase signaling pathway is upregulated in many cancers, including lung cancer. The pathway normally promotes mitosis, cell motility and cell survival; but in cancer it can also promote cell proliferation, invasion, metastasis and angiogenesis. The activating ligand, hepatocyte growth factor (HGF) is normally secreted by fibroblasts and smooth muscle cells, but can also be produced by tumor cells. MET upregulation in lung cancer is caused by overexpression and mutation. These mutations can vary with ethnicity. MET signaling affects cytoskeletal proteins such as paxillin, which participates in cell adhesion, growth and motility. Therapeutic approaches that block MET signaling are being studied, and include the use of: small interference RNA, Geldanamycin, competitive HGF homologues, decoy receptors and direct MET inhibitors such as K252a, SU11274, PHA665752 and PF2341066. It is hoped that blocking MET signaling may one day become an effective treatment for some lung cancers.
Collapse
Affiliation(s)
- Ryan E Lawrence
- Pritzker School of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
41
|
Crosswell HE, Dasgupta A, Alvarado CS, Watt T, Christensen JG, De P, Durden DL, Findley HW. PHA665752, a small-molecule inhibitor of c-Met, inhibits hepatocyte growth factor-stimulated migration and proliferation of c-Met-positive neuroblastoma cells. BMC Cancer 2009; 9:411. [PMID: 19939254 PMCID: PMC2790467 DOI: 10.1186/1471-2407-9-411] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 11/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. METHODS Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-gamma agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration RESULTS High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. CONCLUSION c-Met is highly expressed in most tumors from patients with advanced-stage, metastatic NBL. Furthermore, using the NBL cell line SH-EP as a model, PHA665752 was shown to inhibit cMet/HGF/SF signaling in vitro, suggesting c-Met inhibitors may have efficacy for blocking local progression and/or metastatic spread of c-Met-positive NBL in vivo. These are novel findings for this disease and suggest that further studies of agents targeting the c-Met/HGF axis in NBL are warranted.
Collapse
Affiliation(s)
- Hal E Crosswell
- Division of Pediatric Hematology/Oncology, Children's Hospital and University Medical Group of the Greenville Hospital System, Greenville, SC 29605, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Knowles LM, Stabile LP, Egloff AM, Rothstein ME, Thomas SM, Gubish CT, Lerner EC, Seethala RR, Suzuki S, Quesnelle KM, Morgan S, Ferris RL, Grandis JR, Siegfried JM. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res 2009; 15:3740-50. [PMID: 19470725 DOI: 10.1158/1078-0432.ccr-08-3252] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE We determined hepatocyte growth factor (HGF) and c-Met expression and signaling in human head and neck squamous cell carcinoma (HNSCC) cells and primary tissues and tested the ability of c-Met tyrosine kinase inhibitors (TKI) to block HGF-induced biological signaling. EXPERIMENTAL DESIGN Expression and signaling were determined using immunoblotting, ELISA, and immunohistochemistry. Biological end points included wound healing, cell proliferation, and invasion. c-Met TKIs were tested for their ability to block HGF-induced signaling and biological effects in vitro and in xenografts established in nude mice. RESULTS c-Met was expressed and functional in HNSCC cells. HGF was secreted by HNSCC tumor-derived fibroblasts, but not by HNSCC cells. Activation of c-Met promoted phosphorylation of AKT and mitogen-activated protein kinase as well as release of the inflammatory cytokine interleukin-8. Cell growth and wound healing were also stimulated by HGF. c-Met TKIs blocked HGF-induced signaling, interleukin-8 release, and wound healing. Enhanced invasion of HNSCC cells induced by the presence of tumor-derived fibroblasts was completely blocked with a HGF-neutralizing antibody. PF-2341066, a c-Met TKI, caused a 50% inhibition of HNSCC tumor growth in vivo with decreased proliferation and increased apoptosis within the tumors. In HNSCC tumor tissues, both HGF and c-Met protein were increased compared with expression in normal mucosa. CONCLUSIONS These results show that HGF acts mainly as a paracrine factor in HNSCC cells, the HGF/c-Met pathway is frequently up-regulated and functional in HNSCC, and a clinically relevant c-Met TKI shows antitumor activity in vivo. Blocking the HGF/c-Met pathway may be clinically useful for the treatment of HNSCC.
Collapse
Affiliation(s)
- Lynn M Knowles
- Departments of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Smotrov N, Mathur A, Kariv I, Moxham CM, Bays N. Development of a Cell-Based Assay for Measurement of c-Met Phosphorylation Using AlphaScreenTMTechnology and High-Content Imaging Analysis. ACTA ACUST UNITED AC 2009; 14:404-11. [PMID: 19403923 DOI: 10.1177/1087057109331803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
c-Met is a receptor tyrosine kinase (RTK) with a critical role in many fundamental cellular processes, including cell proliferation and differentiation. Deregulated c-Met signaling has been implicated in both the initiation and progression of human cancers and therefore represents an attractive target for anticancer therapy. Monitoring the phosphorylation status of relevant tyrosine residues provides an important method of assessing c-Met kinase activity. This report describes a novel assay to monitor c-Met phosphorylation in cells using Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen™) technology. Using AlphaScreen™, the authors were able to detect both global and site-specific phosphorylation of c-Met in transformed cell lines. Data obtained from the AlphaScreen™ assay were compared to data obtained from a high-content imaging (HCI) method developed in parallel to monitor c-Met phosphorylation at the single cell level. The AlphaScreen™ assay was miniaturized to a 384-well format with acceptable signal-to-background ratio (S/B) and Z′ statistics and was employed to measure c-Met kinase activity in situ after treatment with potent c-Met-specific kinase inhibitors. The authors discuss the utility of quantifying endogenous cellular c-Met phosphorylation in lead optimization and how the modular design of the AlphaScreen™ assay allows its adaptation to measure cellular activity of other kinases. ( Journal of Biomolecular Screening 2009:404-411)
Collapse
Affiliation(s)
- Nadya Smotrov
- Automated Lead Optimization, Merck Research Laboratories, Boston, Massachusetts
| | - Anjili Mathur
- Pharmacology, Merck Research Laboratories, Boston, Massachusetts
| | - Ilona Kariv
- Automated Lead Optimization, Merck Research Laboratories, Boston, Massachusetts
| | | | - Nathan Bays
- Automated Lead Optimization, Merck Research Laboratories, Boston, Massachusetts
| |
Collapse
|
44
|
Abstract
Lung cancer remains the leading cause of cancer death. It is often diagnosed at late stages and is treated systemically with cytotoxic chemotherapy, which is generally ineffective. Research efforts have focused on developing therapies targeted to growth factor receptor pathways, such as epidermal growth factor receptor (EGFR), but the results from clinical trials overall show very small improvements in survival. Research on signaling pathways dysregulated in lung cancer is ongoing, including investigation of the hepatocyte growth factor receptor (HGFR) or c-Met. Protein tyrosine kinases, such as EGFR and c-Met, are a family of oncogenes that regulate important cellular processes, such as differentiation, proliferation, cell cycle, motility, and apoptosis. Hepatocyte growth factor (HGF), a ligand for c-Met, is secreted by mesodermal cells during development. It produces multiple effects upon binding to its receptor (HGFR/c-Met) and regulates proliferation, motility, mitogenesis, and morphogenesis. Studies in cell lines isolated from various tumors show that several intracellular pathways participate in c-Met signaling, including growth factor receptor-bound protein 2 (Grb2), mitogen-activated protein (MAP) kinase, phosphoinositol 3-kinase (PI3K), and phospholipase C-gamma (PLC-gamma). c-Met is overexpressed in many tumors. However, overexpression may not be sufficient to cause increased activity; the receptor needs to be activated. In some cases, the kinases are constitutively active due to mutations in the gene. The cytoskeletal protein paxillin also appears to be activated along with c-Met. Correlative studies from patient tissue samples and cell lines have rendered the same information, indicating that the signaling pathways dysregulated are complex and interdependent. Mutations in human c-Met have been exogenously expressed in Caenorhabditis elegans, which can serve as a model for determining the role of gene mutations in a whole organism. Several inhibitors of c-Met/HGF binding are in development, including some in phase I trials. Their effectiveness in improving cancer outcomes will be determined in the near future.
Collapse
Affiliation(s)
- Ravi Salgia
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA.
| |
Collapse
|
45
|
You WK, McDonald DM. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 2009; 41:833-9. [PMID: 19123972 DOI: 10.5483/bmbrep.2008.41.12.833] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis in tumors is driven by multiple growth factors that activate receptor tyrosine kinases. An important driving force of angiogenesis in solid tumors is signaling through vascular endothelial growth factor (VEGF) and its receptors (VEGFRs). Angiogenesis inhibitors that target this signaling pathway are now in widespread use for the treatment of cancer. However, when used alone, inhibitors of VEGF/VEGFR signaling do not destroy all blood vessels in tumors and do not slow the growth of most human cancers. VEGF/VEGFR signaling inhibitors are, therefore, used in combination with chemotherapeutic agents or radiation therapy. Additional targets for inhibiting angiogenesis would be useful for more efficacious treatment of cancer. One promising target is the signaling pathway of hepatocyte growth factor (HGF) and its receptor (HGFR, also known as c-Met), which plays important roles in angiogenesis and tumor growth. Inhibitors of this signaling pathway have been shown to inhibit angiogenesis in multiple in vitro and in vivo models. The HGF/c-Met signaling pathway is now recognized as a promising target in cancer by inhibiting angiogenesis, tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- Weon-Kyoo You
- Department of Anatomy, University of California, San Francisco, California, USA.
| | | |
Collapse
|
46
|
Abstract
Small cell lung cancer accounts for approximately 15% of bronchogenic carcinomas. It is the cancer most commonly associated with various paraneoplastic syndromes, including the syndrome of inappropriate antidiuretic hormone secretion, paraneoplastic cerebellar degeneration, and Lambert-Eaton myasthenic syndrome. Because of the high propensity of small cell lung cancer to metastasize early, surgery has a limited role as primary therapy. Although the disease is highly sensitive to chemotherapy and radiation, cure is difficult to achieve. The combination of platinum and etoposide is the accepted standard chemotherapeutic regimen. It is also the accepted standard therapy in combination with thoracic radiotherapy (TRT) for limited-stage disease. Adding TRT increases absolute survival by approximately 5% over chemotherapy alone. Thoracic radiotherapy administered concurrently with chemotherapy is more efficacious than sequential therapy. Furthermore, the survival benefit is greater if TRT is given early rather than late in the course of chemotherapy. Regardless of disease stage, no relevant survival benefit results from increased chemotherapy dose intensity or dose density, altered mode of administration (eg, alternating or sequential administration) of various chemotherapeutic agents, or maintenance chemotherapy. Prophylactic cranial radiation prevents central nervous system recurrence and can improve survival. In Japan and some other Asian countries, the combination of irinotecan and cisplatin is the standard chemotherapeutic regimen. Clinical trials using thalidomide, gefitinib, imatinib, temsirolimus, and farnesyltransferase inhibitors have not shown clinical benefit. Other novel agents such as bevacizumab have shown promising early results and are being evaluated in larger trials.
Collapse
Affiliation(s)
- Taimur Sher
- Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
47
|
Ma PC, Tretiakova MS, Nallasura V, Jagadeeswaran R, Husain AN, Salgia R. Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 2007; 97:368-77. [PMID: 17667909 PMCID: PMC2360323 DOI: 10.1038/sj.bjc.6603884] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The c-MET receptor can be overexpressed, amplified, or mutated in solid tumours including small cell lung cancer (SCLC). In c-MET-overexpressing SCLC cell line NCI-H69, hepatocyte growth factor (HGF) dramatically induced c-MET phosphorylation at phosphoepitopes pY1230/1234/1235 (catalytic tyrosine kinase), pY1003 (juxtamembrane), and also of paxillin at pY31 (CRKL-binding site). We utilised a global proteomics phosphoantibody array approach to identify further c-MET/HGF signal transduction intermediates in SCLC. Strong HGF induction of specific phosphorylation sites in phosphoproteins involved in c-MET/HGF signal transduction was detected, namely adducin-alpha [S724], adducin-gamma [S662], CREB [S133], ERK1 [T185/Y187], ERK1/2 [T202/Y204], ERK2 [T185/Y187], MAPKK (MEK) 1/2 [S221/S225], MAPKK (MEK) 3/6 [S189/S207], RB [S612], RB1 [S780], JNK [T183/Y185], STAT3 [S727], focal adhesion kinase (FAK) [Y576/S722/S910], p38alpha-MAPK [T180/Y182], and AKT1[S473] and [T308]. Conversely, inhibition of phosphorylation by HGF in protein kinase C (PKC), protein kinase R (PKR), and also CDK1 was identified. Phosphoantibody-based immunohistochemical analysis of SCLC tumour tissue and microarray established the role of c-MET in SCLC biology. This supports a role of c-MET activation in tumour invasive front in the tumour progression and invasion involving FAK and AKT downstream. The c-MET serves as an attractive therapeutic target in SCLC, as shown through small interfering RNA (siRNA) and selective prototype c-MET inhibitor SU11274, inhibiting the phosphorylation of c-MET itself and its downstream molecules such as AKT, S6 kinase, and ERK1/2. Investigation of mechanisms of invasion and, ultimately, metastasis in SCLC would be very useful with these signal transduction molecules.
Collapse
Affiliation(s)
- P C Ma
- Division of Hematology/Oncology, Department of Medicine, University Hospitals of Case Medical Center and Ireland Cancer Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - M S Tretiakova
- Department of Pathology, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
| | - V Nallasura
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
| | - R Jagadeeswaran
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
| | - A N Husain
- Department of Pathology, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
| | - R Salgia
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Pritzker School of Medicine, and University of Chicago Cancer Research Center, Chicago, IL 60637, USA
- Section of Hematology/Oncology, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, Room M-255A, MC2115, Chicago, IL 60637-1470, USA. E-mail:
| |
Collapse
|
48
|
Marinov M, Fischer B, Arcaro A. Targeting mTOR signaling in lung cancer. Crit Rev Oncol Hematol 2007; 63:172-82. [PMID: 17540577 DOI: 10.1016/j.critrevonc.2007.04.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/07/2007] [Accepted: 04/18/2007] [Indexed: 11/24/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world, with more than 1 million deaths per year. Over the past years, lung cancer treatment has been based on cytotoxic agents and an improvement in the outcome and quality of life for patients has been observed. However, it has become clear that additional therapeutic strategies are urgently required in order to provide an improved survival benefit for patients. Two major intracellular signaling pathways, the Ras/Raf/extracellular signal-regulated kinase (Erk) and the phosphoinositide 3-kinase (PI3K)/Akt pathways have been extensively studied in neoplasia, including lung cancer. Furthermore, the study of constitutively activated receptor tyrosine kinases (RTKs) and their downstream signaling mediators has opened a promising new field of investigation for lung cancer treatment. Since both the Ras/Raf/Erk and the PI3K/Akt pathways are downstream of a plethora of activated RTKs, they have been extensively studied for the development of novel anti-tumor agents. Moreover, the mammalian target of rapamycin (mTOR) has been identified as a downstream target of the PI3K/Akt pathway. Rapamycin and its derivatives are highly selective and very potent inhibitors of mTOR and initial pre-clinical and clinical studies have reported encouraging results for different tumor types. Nevertheless for lung cancer, this approach has not been successful yet. Here we will review the molecular basis of PI3K/Akt/mTOR signaling in lung cancer and further discuss the therapeutic potential of multi-targeted strategies involving mTOR inhibitors.
Collapse
Affiliation(s)
- Marin Marinov
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
49
|
Wozniak AC, Anderson JE. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 2007; 236:240-50. [PMID: 17117435 DOI: 10.1002/dvdy.21012] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Satellite cells (quiescent precursors in normal adult skeletal muscle) are activated for growth and regeneration. Signaling by nitric oxide (NO) and hepatocyte growth factor (HGF) during activation has not been examined in a model that can distinguish quiescent from activated satellite cells. We tested the hypothesis that NO and HGF are required to regulate activation using the single-fiber culture model. In normal fibers, HGF and inhibition of NO synthase (NOS) each increased activation without stretching, and NOS inhibition reduced stretch-activation. Activation in unstretched mdx and NOS-I(-/-) fibers was three- to fourfold higher than normal, and was reduced by stretching. Distinctions were not due to different pax7-expressing populations on normal and mdx fibers. The population of c-met-expressing satellite cells on normal fibers was increased by stretch, demonstrating functional heterogeneity among normal satellite cells. Cycloheximide did not prevent the stretch-related increase in c-met expression, suggesting c-met may be an immediate-early gene in satellite cell activation. Results have important implications for designing new therapies that target the role of exercise in health, aging, and disease.
Collapse
Affiliation(s)
- Ashley C Wozniak
- Department of Human Anatomy and Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
50
|
Bharti A, Ma PC, Salgia R. Biomarker discovery in lung cancer--promises and challenges of clinical proteomics. MASS SPECTROMETRY REVIEWS 2007; 26:451-66. [PMID: 17407130 DOI: 10.1002/mas.20125] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Lung cancer is a devastating illness with an overall poor prognosis. To effectively address this disease, early detection and novel therapeutics are required. Early detection of lung cancer is challenging, in part because of the lack of adequate tumor biomarkers. The goal of this review is to summarize the knowledge of current biomarkers in lung cancer, with a focus on important serum biomarkers. The current knowledge on the known serum cytokines and tumor biomarkers of lung cancer will be presented. Emerging trends and new findings in the search for novel diagnostic and therapeutic tumor biomarkers using proteomics technologies and platforms are emphasized, including recent advances in mass spectrometry to facilitate tumor biomarker discovery program in lung cancer. It is our hope that validation of these new research platforms and technologies will result in improved early detection, prognostication, and finally the treatment of lung cancer with potential novel molecularly targeted therapeutics.
Collapse
Affiliation(s)
- Ajit Bharti
- Center for Molecular Stress Response Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|