1
|
Yousefi F, Foster LA, Selim OA, Zhao C. Integrating Physical and Biochemical Cues for Muscle Engineering: Scaffolds and Graft Durability. Bioengineering (Basel) 2024; 11:1245. [PMID: 39768063 PMCID: PMC11673930 DOI: 10.3390/bioengineering11121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts. Transplantation further challenges MuSC viability, often resulting in fibrosis driven by dysregulated fibro-adipogenic progenitors (FAPs). Addressing these issues, scaffold designs integrated with pharmacotherapy emulate ECM environments, providing cues that enhance graft functionality and endurance. These scaffolds facilitate the synergy between mechanotransduction and intracellular signaling, optimizing MuSC proliferation and differentiation. Innovations utilizing human pluripotent stem cell-derived myogenic progenitors and exosome-mediated delivery exploit bioactive properties for targeted repair. Additionally, 3D-printed and electrospun scaffolds with adjustable biomechanical traits tackle scalability in treating volumetric muscle loss. Advanced techniques like single-cell RNA sequencing and high-resolution imaging unravel muscle repair mechanisms, offering precise mapping of cellular interactions. Collectively, this interdisciplinary approach fortifies tissue graft durability and MuSC maintenance, propelling therapeutic strategies for muscle injuries and degenerative diseases.
Collapse
Affiliation(s)
- Farbod Yousefi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Lauren Ann Foster
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
- Atlanta Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Omar A. Selim
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (F.Y.); (L.A.F.); (O.A.S.)
| |
Collapse
|
2
|
Joseph J, Parameswaran R, Gopalakrishna Panicker U. Recent advancements in blended and reinforced polymeric systems as bioscaffolds. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jasmin Joseph
- Department of Chemistry, National Institute of Technology, Calicut, India
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | - Ramesh Parameswaran
- Division of Polymeric Medical Devices, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | |
Collapse
|
3
|
Lijten OW, Rosero Salazar DH, van Erp M, Bronkhorst E, Von den Hoff JW. Effect of niche components on masseter satellite cell differentiation on fibrin coatings. Eur J Oral Sci 2022; 130:e12849. [PMID: 35020959 PMCID: PMC9303748 DOI: 10.1111/eos.12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
In skeletal muscles, niche factors stimulate satellite cells to activate and induce muscle regeneration after injury. In vitro, matrigel is widely used for myoblast differentiation, however, is unsuitable for clinical applications. Therefore, this study aimed to analyze attachment and differentiation of satellite cells into myotubes on fibrin coatings with selected niche components. The attachment of satellite cells to fibrin alone and fibrin with niche components (laminin, collagen‐IV, laminin‐entactin complex [LEC]) were compared to matrigel. Only on matrigel and fibrin with LEC, Pax7‐positive cells attached well. Then, LEC was selected to analyze proliferation, differentiation, and fusion indices. The proliferation index at day 1 on fibrin‐LEC (22.5%, SD 9.1%) was similar to that on matrigel (30.8% [SD 11.1%]). The differentiation index on fibrin‐LEC (28.7% [SD 6.1%] at day 5 and 32.8% [SD 6.7%] at day 7) was similar to that on matrigel (40.1% [5.1%] at day 5 and 27.1% [SD 4.3%] at day 7). On fibrin‐LEC, the fusion index at day 9 (26.9% [SD 11.5%]) was similar to that on matrigel (25.5% [SD 4.7%]). Our results showed that the addition of LEC enhances the formation of myotubes on fibrin. Fibrin with LEC might be suitable to enhance muscle regeneration after surgery such as cleft palate repair and other muscle defects.
Collapse
Affiliation(s)
- Olivier Willem Lijten
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Doris Haydee Rosero Salazar
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Basic Sciences, Faculty of Health, Universidad Icesi, Cali, Colombia
| | - Merijn van Erp
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ewald Bronkhorst
- Department of Dentistry, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Später T, Ampofo E, Menger MD, Laschke MW. Combining Vascularization Strategies in Tissue Engineering: The Faster Road to Success? Front Bioeng Biotechnol 2020; 8:592095. [PMID: 33364230 PMCID: PMC7752995 DOI: 10.3389/fbioe.2020.592095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Thomas Später
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg, Germany
| |
Collapse
|
6
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Kang MS, Lee SH, Park WJ, Lee JE, Kim B, Han DW. Advanced Techniques for Skeletal Muscle Tissue Engineering and Regeneration. Bioengineering (Basel) 2020; 7:bioengineering7030099. [PMID: 32858848 PMCID: PMC7552709 DOI: 10.3390/bioengineering7030099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering has recently emerged as a novel strategy for the regeneration of damaged skeletal muscle tissues due to its ability to regenerate tissue. However, tissue engineering is challenging due to the need for state-of-the-art interdisciplinary studies involving material science, biochemistry, and mechanical engineering. For this reason, electrospinning and three-dimensional (3D) printing methods have been widely studied because they can insert embedded muscle cells into an extracellular-matrix-mimicking microenvironment, which helps the growth of seeded or laden cells and cell signals by modulating cell–cell interaction and cell–matrix interaction. In this mini review, the recent research trends in scaffold fabrication for skeletal muscle tissue regeneration using advanced techniques, such as electrospinning and 3D bioprinting, are summarized. In conclusion, the further development of skeletal muscle tissue engineering techniques may provide innovative results with clinical potential for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
| | - Seok Hyun Lee
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Won Jung Park
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
| | - Bongju Kim
- Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
- Correspondence: (B.K.); (D.-W.H.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea;
- Department of Optics and Mechatronics, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (S.H.L.); (W.J.P.); (J.E.L.)
- Correspondence: (B.K.); (D.-W.H.)
| |
Collapse
|
8
|
Laurent A, Lin P, Scaletta C, Hirt-Burri N, Michetti M, de Buys Roessingh AS, Raffoul W, She BR, Applegate LA. Bringing Safe and Standardized Cell Therapies to Industrialized Processing for Burns and Wounds. Front Bioeng Biotechnol 2020; 8:581. [PMID: 32637400 PMCID: PMC7317026 DOI: 10.3389/fbioe.2020.00581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/13/2020] [Indexed: 01/28/2023] Open
Abstract
Cultured primary progenitor cell types are worthy therapeutic candidates for regenerative medicine. Clinical translation, industrial transposition, and commercial implementation of products based on such cell sources are mainly hindered by economic or technical barriers and stringent regulatory requirements. Applied research in allogenic cellular therapies in the Lausanne University Hospital focuses on cell source selection technique optimization. Use of fetal progenitor cell sources in Switzerland is regulated through Federal Transplantation Programs and associated Fetal Biobanks. Clinical applications of cultured primary progenitor dermal fibroblasts have been optimized since the 1990s as “Progenitor Biological Bandages” for pediatric burn patients and adults presenting chronic wounds. A single organ donation procured in 2009 enabled the establishment of a standardized cell source for clinical and industrial developments to date. Non-enzymatically isolated primary dermal progenitor fibroblasts (FE002-SK2 cell type) served for the establishment of a clinical-grade Parental Cell Bank, based on a patented method. Optimized bioprocessing methodology for the FE002-SK2 cell type has demonstrated that extensive and consistent progenitor cell banks can be established. In vitro mechanistic characterization and in vivo preclinical studies have confirmed potency, preliminary safety and efficacy of therapeutic progenitor cells. Most importantly, highly successful industrial transposition and up-scaling of biobanking enabled the establishment of tiered Master and Working Cell Banks using Good Manufacturing Practices. Successive and successful transfers of technology, know-how and materials to different countries around the world have been performed. Extensive developments based on the FE002-SK2 cell source have led to clinical trials for burns and wound dressing. Said trials were approved in Japan, Taiwan, USA and are continuing in Switzerland. The Swiss Fetal Transplantation Program and pioneer clinical experience in the Lausanne Burn Center over three decades constitute concrete indicators that primary progenitor dermal fibroblasts should be considered as therapeutic flagships in the domain of wound healing and for regenerative medicine in general. Indeed, one single organ donation potentially enables millions of patients to benefit from high-quality, safe and effective regenerative therapies. This work presents a technical and translational overview of the described progenitor cell technology harnessed in Switzerland as cellular therapies for treatment of burns and wounds around the globe.
Collapse
Affiliation(s)
- Alexis Laurent
- Tec-Pharma SA, Bercher, Switzerland.,Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Poyin Lin
- Transwell Biotech Co. Ltd., Hsinchu, Taiwan
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland
| | | | - Wassim Raffoul
- Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Bin-Ru She
- Transwell Biotech Co. Ltd., Hsinchu, Taiwan
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Epalinges, Switzerland.,Oxford Suzhou Center for Advanced Research, Science and Technology Co. Ltd., Oxford University, Suzhou, China.,Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Gholobova D, Terrie L, Mackova K, Desender L, Carpentier G, Gerard M, Hympanova L, Deprest J, Thorrez L. Functional evaluation of prevascularization in one-stage versus two-stage tissue engineering approach of human bio-artificial muscle. Biofabrication 2020; 12:035021. [PMID: 32357347 DOI: 10.1088/1758-5090/ab8f36] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A common shortcoming of current tissue engineered constructs is the lack of a functional vasculature, limiting their size and functionality. Prevascularization is a possible strategy to introduce vascular networks in these constructs. It includes among others co-culturing target cells with endothelial (precursor) cells that are able to form endothelial networks through vasculogenesis. In this paper, we compared two different prevascularization approaches of bio-artificial skeletal muscle tissue (BAM) in vitro and in vivo. In a one-stage approach, human muscle cells were directly co-cultured with endothelial cells in 3D. In a two-stage approach, a one week old BAM containing differentiated myotubes was coated with a fibrin hydrogel containing endothelial cells. The obtained endothelial networks were longer and better interconnected with the two-stage approach. We evaluated whether prevascularization had a beneficial effect on in vivo perfusion of the BAM and improved myotube survival by implantation on the fascia of the latissimus dorsi muscle of NOD/SCID mice for 5 or 14 d. Also in vivo, the two-stage approach displayed the highest vascular density. At day 14, anastomosis of implanted endothelial networks with the host vasculature was apparent. BAMs without endothelial networks contained longer and thicker myotubes in vitro, but their morphology degraded in vivo. In contrast, maintenance of myotube morphology was well supported in the two-stage prevascularized BAMs. To conclude, a two-stage prevascularization approach for muscle engineering improved the vascular density in the construct and supported myotube maintenance in vivo.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sparks DS, Savi FM, Saifzadeh S, Schuetz MA, Wagels M, Hutmacher DW. Convergence of Scaffold-Guided Bone Reconstruction and Surgical Vascularization Strategies-A Quest for Regenerative Matching Axial Vascularization. Front Bioeng Biotechnol 2020; 7:448. [PMID: 31998712 PMCID: PMC6967032 DOI: 10.3389/fbioe.2019.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalent challenge facing tissue engineering today is the lack of adequate vascularization to support the growth, function, and viability of tissue engineered constructs (TECs) that require blood vessel supply. The research and clinical community rely on the increasing knowledge of angiogenic and vasculogenic processes to stimulate a clinically-relevant vascular network formation within TECs. The regenerative matching axial vascularization approach presented in this manuscript incorporates the advantages of flap-based techniques for neo-vascularization yet also harnesses the in vivo bioreactor principle in a more directed "like for like" approach to further assist regeneration of the specific tissue type that is lost, such as a corticoperiosteal flap in critical sized bone defect reconstruction.
Collapse
Affiliation(s)
- David S Sparks
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia
| | - Flavia Medeiros Savi
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Siamak Saifzadeh
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD, Australia
| | - Michael A Schuetz
- Department of Orthopaedic Surgery, Royal Brisbane Hospital, Herston, QLD, Australia.,Jamieson Trauma Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Michael Wagels
- Department of Plastic & Reconstructive Surgery, Princess Alexandra Hospital, Woolloongabba, QLD, Australia.,Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD, Australia.,Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD, Australia
| | - Dietmar W Hutmacher
- Centre for Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,ARC Centre for Additive Bio-Manufacturing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
11
|
Gilbert-Honick J, Grayson W. Vascularized and Innervated Skeletal Muscle Tissue Engineering. Adv Healthc Mater 2020; 9:e1900626. [PMID: 31622051 PMCID: PMC6986325 DOI: 10.1002/adhm.201900626] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/27/2019] [Indexed: 12/12/2022]
Abstract
Volumetric muscle loss (VML) is a devastating loss of muscle tissue that overwhelms the native regenerative properties of skeletal muscle and results in lifelong functional deficits. There are currently no treatments for VML that fully recover the lost muscle tissue and function. Tissue engineering presents a promising solution for VML treatment and significant research has been performed using tissue engineered muscle constructs in preclinical models of VML with a broad range of defect locations and sizes, tissue engineered construct characteristics, and outcome measures. Due to the complex vascular and neural anatomy within skeletal muscle, regeneration of functional vasculature and nerves is vital for muscle recovery following VML injuries. This review aims to summarize the current state of the field of skeletal muscle tissue engineering using 3D constructs for VML treatment with a focus on studies that have promoted vascular and neural regeneration within the muscle tissue post-VML.
Collapse
Affiliation(s)
- Jordana Gilbert-Honick
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Warren Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology (INBT), Johns Hopkins University School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
12
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
13
|
Rnjak‐Kovacina J, Gerrand Y, Wray LS, Tan B, Joukhdar H, Kaplan DL, Morrison WA, Mitchell GM. Vascular Pedicle and Microchannels: Simple Methods Toward Effective In Vivo Vascularization of 3D Scaffolds. Adv Healthc Mater 2019; 8:e1901106. [PMID: 31714024 DOI: 10.1002/adhm.201901106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Poor vascularization remains a key limiting factor in translating advances in tissue engineering to clinical applications. Vascular pedicles (large arteries and veins) isolated in plastic chambers are known to sprout an extensive capillary network. This study examined the effect vascular pedicles and scaffold architecture have on vascularization and tissue integration of implanted silk scaffolds. Porous silk scaffolds with or without microchannels are manufactured to support implantation of a central vascular pedicle, without a chamber, implanted in the groin of Sprague Dawley rats, and assessed morphologically and morphometrically at 2 and 6 weeks. At both time points, blood vessels, connective tissue, and an inflammatory response infiltrate all scaffold pores externally, and centrally when a vascular pedicle is implanted. At week 2, vascular pedicles significantly increase the degree of scaffold tissue infiltration, and both the pedicle and the scaffold microchannels significantly increase vascular volume and vascular density. Interestingly, microchannels contribute to increased scaffold vascularity without affecting overall tissue infiltration, suggesting a direct effect of biomaterial architecture on vascularization. The inclusion of pedicles and microchannels are simple and effective proangiogenic techniques for engineering thick tissue constructs as both increase the speed of construct vascularization in the early weeks post in vivo implantation.
Collapse
Affiliation(s)
- Jelena Rnjak‐Kovacina
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
- Graduate School of Biomedical EngineeringUniversity of New South Wales Sydney NSW 2052 Australia
| | - Yi‐wen Gerrand
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
| | - Lindsay S. Wray
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| | - Beryl Tan
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
| | - Habib Joukhdar
- Graduate School of Biomedical EngineeringUniversity of New South Wales Sydney NSW 2052 Australia
| | - David L. Kaplan
- Department of Biomedical EngineeringTufts University Medford MA 02155 USA
| | - Wayne A. Morrison
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
- Department of Surgery at St Vincent's HospitalUniversity of Melbourne Melbourne VIC 3065 Australia
- Health Sciences FacultyAustralian Catholic University Melbourne VIC 3065 Australia
| | - Geraldine M. Mitchell
- O'Brien Institute DepartmentSt Vincent's Institute for Medical Research Melbourne VIC 3065 Australia
- Department of Surgery at St Vincent's HospitalUniversity of Melbourne Melbourne VIC 3065 Australia
- Health Sciences FacultyAustralian Catholic University Melbourne VIC 3065 Australia
| |
Collapse
|
14
|
Enhanced Host Neovascularization of Prevascularized Engineered Muscle Following Transplantation into Immunocompetent versus Immunocompromised Mice. Cells 2019; 8:cells8121472. [PMID: 31757007 PMCID: PMC6953003 DOI: 10.3390/cells8121472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/10/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
: Engineering of functional tissue, by combining either autologous or allogeneic cells with biomaterials, holds promise for the treatment of various diseases and injuries. Prevascularization of the engineered tissue was shown to enhance and improve graft integration and neovascularization post-implantation in immunocompromised mice. However, the neovascularization and integration processes of transplanted engineered tissues have not been widely studied in immunocompetent models. Here, we fabricated a three-dimensional (3D) vascularized murine muscle construct that was transplanted into immunocompetent and immunocompromised mice. Intravital imaging demonstrated enhanced neovascularization in immunocompetent mice compared to immunocompromised mice, 18 days post-implantation, indicating the advantageous effect of an intact immune system on neovascularization. Moreover, construct prevascularization enhanced neovascularization, integration, and myogenesis in both animal models. These findings demonstrate the superiority of implantation into immunocompetent over immunocompromised mice and, therefore, suggest that using autologous cells might be beneficial compared to allogeneic cells and subsequent immunosuppression. Taken together, these observations have the potential to advance the field of regenerative medicine and tissue engineering, ultimately reducing the need for donor organs and tissues.
Collapse
|
15
|
Wang Z, Mithieux SM, Weiss AS. Fabrication Techniques for Vascular and Vascularized Tissue Engineering. Adv Healthc Mater 2019; 8:e1900742. [PMID: 31402593 DOI: 10.1002/adhm.201900742] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Impaired or damaged blood vessels can occur at all levels in the hierarchy of vascular systems from large vasculatures such as arteries and veins to meso- and microvasculatures such as arterioles, venules, and capillary networks. Vascular tissue engineering has become a promising approach for fabricating small-diameter vascular grafts for occlusive arteries. Vascularized tissue engineering aims to fabricate meso- and microvasculatures for the prevascularization of engineered tissues and organs. The ideal small-diameter vascular graft is biocompatible, bridgeable, and mechanically robust to maintain patency while promoting tissue remodeling. The desirable fabricated meso- and microvasculatures should rapidly integrate with the host blood vessels and allow nutrient and waste exchange throughout the construct after implantation. A number of techniques used, including engineering-based and cell-based approaches, to fabricate these synthetic vasculatures are herein explored, as well as the techniques developed to fabricate hierarchical structures that comprise multiple levels of vasculature.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Suzanne M. Mithieux
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences University of Sydney NSW 2006 Australia
- Charles Perkins Centre University of Sydney NSW 2006 Australia
- Bosch Institute University of Sydney NSW 2006 Australia
- Sydney Nano Institute University of Sydney NSW 2006 Australia
| |
Collapse
|
16
|
Genetically engineered human muscle transplant enhances murine host neovascularization and myogenesis. Commun Biol 2018; 1:161. [PMID: 30320229 PMCID: PMC6172230 DOI: 10.1038/s42003-018-0161-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/24/2018] [Indexed: 11/30/2022] Open
Abstract
Engineered tissues are a promising tool for addressing the growing need for tissues and organs in surgical reconstructions. Prevascularization of implanted tissues is expected to enhance survival prospects post transplantation and minimize deficiencies and/or hypoxia deeper in the tissue. Here, we fabricate a three-dimensional, prevascularized engineered muscle containing human myoblasts, genetically modified endothelial cells secreting angiopoietin 1 (ANGPT1) and genetically modified smooth muscle cells secreting vascular endothelial growth factor (VEGF). The genetically engineered human muscle shows enhanced host neovascularization and myogenesis following transplantation into a mouse host, compared to the non-secreting control. The vascular, genetically modified cells have been cleared for clinical trials and can be used to construct autologous vascularized tissues. Therefore, the described genetically engineered vascularized muscle has the potential to be fully translated to the clinical setting to overcome autologous tissue shortage and to accelerate host neovascularization and integration of engineered grafts following transplantation. Luba Perry et al. report transplantation of engineered prevascularized human muscle into mice to repair an abdominal muscle defect. They show that genetically engineering smooth muscle cells to secrete VEGF and endothelial cells to secrete ANGPT1 significantly improves host neovascularization and myogenesis.
Collapse
|
17
|
Ectopic BAT mUCP-1 overexpression in SKM by delivering a BMP7/PRDM16/PGC-1a gene cocktail or single PRMD16 using non-viral UTMD gene therapy. Gene Ther 2018; 25:497-509. [PMID: 30072816 DOI: 10.1038/s41434-018-0036-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
Here we present our progress in inducing an ectopic brown adipose tissue (BAT) phenotype in skeletal muscle (SKM) as a potential gene therapy for obesity and its comorbidities. We used ultrasound-targeted microbubble destruction (UTMD), a novel targeted, non-viral approach to gene therapy, to deliver genes in the BAT differentiation pathway into rodent SKM to engineer a thermogenic BAT phenotype with ectopic mUCP-1 overexpression. In parallel, we performed a second protocol using wild-type Ucp-1-null knockout mice to test whether the effects of the gene therapy are UCP-1 dependent. Our main findings were a robust cellular presence of mUCP-1 immunostaining (IHC), significantly higher expression levels of mUCP-1 measured by qRT-PCR, and highest temperature elevation measured by infrared thermography in the treated thigh, achieved in rats after delivering the UTMD-PRDM16/PGC-1a/BMP7/hyPB gene cocktail. Interestingly, the weight loss obtained in the treated rats with the triple gene delivery, never recovered the levels observed in the controls in spite of food intake recovery. Our results establish the feasibility of minimally invasive UTMD gene-based therapy administration in SKM, to induce overexpression of ectopic mUCP-1 after delivery of the thermogenic BAT gene program, and describe systemic effects of this intervention on food intake, weight loss, and thermogenesis.
Collapse
|
18
|
Monico MD, Tahriri M, Fahmy MD, Ghassemi H, Vashaee D, Tayebi L. Cartilage and facial muscle tissue engineering and regeneration: a mini review. Biodes Manuf 2018. [DOI: 10.1007/s42242-018-0011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Klein D. iPSCs-based generation of vascular cells: reprogramming approaches and applications. Cell Mol Life Sci 2018; 75:1411-1433. [PMID: 29243171 PMCID: PMC5852192 DOI: 10.1007/s00018-017-2730-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
Recent advances in the field of induced pluripotent stem cells (iPSCs) research have opened a new avenue for stem cell-based generation of vascular cells. Based on their growth and differentiation potential, human iPSCs constitute a well-characterized, generally unlimited cell source for the mass generation of lineage- and patient-specific vascular cells without any ethical concerns. Human iPSCs-derived vascular cells are perfectly suited for vascular disease modeling studies because patient-derived iPSCs possess the disease-causing mutation, which might be decisive for full expression of the disease phenotype. The application of vascular cells for autologous cell replacement therapy or vascular engineering derived from immune-compatible iPSCs possesses huge clinical potential, but the large-scale production of vascular-specific lineages for regenerative cell therapies depends on well-defined, highly reproducible culture and differentiation conditions. This review will focus on the different strategies to derive vascular cells from human iPSCs and their applications in regenerative therapy, disease modeling and drug discovery approaches.
Collapse
Affiliation(s)
- Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Virchowstr. 173, 45122, Essen, Germany.
| |
Collapse
|
20
|
Flow-Induced Axial Vascularization: The Arteriovenous Loop in Angiogenesis and Tissue Engineering. Plast Reconstr Surg 2017; 138:825-835. [PMID: 27673517 DOI: 10.1097/prs.0000000000002554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fabrication of a viable vascular network providing oxygen supply is identified as one crucial limiting factor to generate more complex three-dimensional constructs. The arteriovenous loop model provides initial blood supply and has a high angioinductive potency, making it suitable for vascularization of larger, tissue-engineered constructs. Also because of its angiogenic capabilities the arteriovenous loop is recently also used as a model to evaluate angiogenesis in vivo. This review summarizes the history of the arteriovenous loop model in research and its technical and surgical aspects. Through modifications of the isolation chamber and its containing matrices, tissue generation can be enhanced. In addition, matrices can be used as release systems for local application of growth factors, such as vascular endothelial growth factor and basic fibroblast growth factor, to affect vascular network formation. A special focus in this review is set on the assessment of angiogenesis in the arteriovenous loop model. This model provides good conditions for assessment of angiogenesis with the initial cell-free environment of the isolation chamber, which is vascularized by the arteriovenous loop. Because of the angiogenic capabilities of the arteriovenous loop model, different attempts were performed to create functional tissue in the isolation chamber for potential clinical application. Arteriovenous loops in combination with autologous bone marrow aspirate were already used to reconstruct large bone defects in humans.
Collapse
|
21
|
Abstract
Vascular tissue engineering has significant potential to make a major impact on a wide array of clinical problems. Continued progress in understanding basic vascular biology will be invaluable in making further advancements. Past and current achievements in tissue engineering of microvasculature to perfuse organ specific constructs, small vessels for dialysis grafts, and modified synthetic and pediatric large caliber-vessel grafts will be discussed. An emphasis will be placed on clinical trial results with small and large-caliber vessel grafts. Challenges to achieving engineered constructs that satisfy the physiologic, immunologic, and manufacturing demands of engineered vasculature will be explored.
Collapse
|
22
|
Perry L, Flugelman MY, Levenberg S. Elderly Patient-Derived Endothelial Cells for Vascularization of Engineered Muscle. Mol Ther 2017; 25:935-948. [PMID: 28279644 DOI: 10.1016/j.ymthe.2017.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 11/29/2022] Open
Abstract
In vitro prevascularization of engineered tissue constructs promises to enhance their clinical applicability. We hypothesize that adult endothelial cells (ECs), isolated from limb veins of elderly patients, bear the vasculogenic properties required to form vascular networks in vitro that can later integrate with the host vasculature upon implantation. Here, we show that adult ECs formed vessel networks that were more developed and complex than those formed by human umbilical vein endothelial cells (HUVECs) seeded with various supporting cells on three-dimensional (3D) biodegradable polymer scaffolds. In parallel, secreted levels of key proangiogenic cytokines were significantly higher in adult EC-bearing scaffolds as compared to HUVEC scaffolds. As a proof of concept for applicability of this model, adult ECs were co-seeded with human myoblasts as well as supporting cells and successfully formed a branched network, which was surrounded by aligned human myotubes. The vascularized engineered muscle tissue implanted into a full-thickness defect in immunodeficient mice remained viable and anastomosed with the host vasculature within 9 days of implantation. Functional "chimeric" blood vessels and various types of anastomosis were observed. These findings provide strong evidence of the applicability of adult ECs in construction of clinically relevant autologous vascularized tissue.
Collapse
Affiliation(s)
- Luba Perry
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel; Inter-departmental Program in Biotechnology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Moshe Y Flugelman
- Department of Cardiovascular Medicine, Lady Davis Carmel Medical Center, Haifa 32000, Israel
| | - Shulamit Levenberg
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
23
|
Scott JB, Ward CL, Corona BT, Deschenes MR, Harrison BS, Saul JM, Christ GJ. Achieving Acetylcholine Receptor Clustering in Tissue-Engineered Skeletal Muscle Constructs In vitro through a Materials-Directed Agrin Delivery Approach. Front Pharmacol 2017; 7:508. [PMID: 28123368 PMCID: PMC5225105 DOI: 10.3389/fphar.2016.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/08/2016] [Indexed: 11/23/2022] Open
Abstract
Volumetric muscle loss (VML) can result from trauma, infection, congenital anomalies, or surgery, and produce permanent functional and cosmetic deficits. There are no effective treatment options for VML injuries, and recent advances toward development of muscle constructs lack the ability to achieve innervation necessary for long-term function. We sought to develop a proof-of-concept biomaterial construct that could achieve acetylcholine receptor (AChR) clustering on muscle-derived cells (MDCs) in vitro. The approach consisted of the presentation of neural (Z+) agrin from the surface of microspheres embedded with a fibrin hydrogel to muscle cells (C2C12 cell line or primary rat MDCs). AChR clustering was spatially restricted to areas of cell (C2C12)-microsphere contact when the microspheres were delivered in suspension or when they were incorporated into a thin (2D) fibrin hydrogel. AChR clusters were observed from 16 to 72 h after treatment when Z+ agrin was adsorbed to the microspheres, and for greater than 120 h when agrin was covalently coupled to the microspheres. Little to no AChR clustering was observed when agrin-coated microspheres were delivered from specially designed 3D fibrin constructs. However, cyclic stretch in combination with agrin-presenting microspheres led to dramatic enhancement of AChR clustering in cells cultured on these 3D fibrin constructs, suggesting a synergistic effect between mechanical strain and agrin stimulation of AChR clustering in vitro. These studies highlight a strategy for maintaining a physiological phenotype characterized by motor endplates of muscle cells used in tissue engineering strategies for muscle regeneration. As such, these observations may provide an important first step toward improving function of tissue-engineered constructs for treatment of VML injuries.
Collapse
Affiliation(s)
- John B Scott
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University Biomedical Engineering, Winston-SalemNC, USA
| | - Catherine L Ward
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; US Army Institute for Surgical Research, San AntonioTX, USA
| | - Benjamin T Corona
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; US Army Institute for Surgical Research, San AntonioTX, USA
| | - Michael R Deschenes
- Department of Neuroscience, College of William and Mary, Williamsburg VA, USA
| | - Benjamin S Harrison
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Virginia Tech - Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest University Biomedical Engineering, Winston-SalemNC, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford OH, USA
| | - George J Christ
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-SalemNC, USA; Department of Biomedical Engineering and Department of Orthopaedic Surgery, University of Virginia, CharlottesvilleVA, USA
| |
Collapse
|
24
|
Weigand A, Beier JP, Arkudas A, Al-Abboodi M, Polykandriotis E, Horch RE, Boos AM. The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering. J Vis Exp 2016. [PMID: 27842348 DOI: 10.3791/54676] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A functional blood vessel network is a prerequisite for the survival and growth of almost all tissues and organs in the human body. Moreover, in pathological situations such as cancer, vascularization plays a leading role in disease progression. Consequently, there is a strong need for a standardized and well-characterized in vivo model in order to elucidate the mechanisms of neovascularization and develop different vascularization approaches for tissue engineering and regenerative medicine. We describe a microsurgical approach for a small animal model for induction of a vascular axis consisting of a vein and artery that are anastomosed to an arteriovenous (AV) loop. The AV loop is transferred to an enclosed implantation chamber to create an isolated microenvironment in vivo, which is connected to the living organism only by means of the vascular axis. Using 3D imaging (MRI, micro-CT) and immunohistology, the growing vasculature can be visualized over time. By implanting different cells, growth factors and matrices, their function in blood vessel network formation can be analyzed without any disturbing influences from the surroundings in a well controllable environment. In addition to angiogenesis and antiangiogenesis studies, the AV loop model is also perfectly suited for engineering vascularized tissues. After a certain prevascularization time, the generated tissues can be transplanted into the defect site and microsurgically connected to the local vessels, thereby ensuring immediate blood supply and integration of the engineered tissue. By varying the matrices, cells, growth factors and chamber architecture, it is possible to generate various tissues, which can then be tailored to the individual patient's needs.
Collapse
Affiliation(s)
- Annika Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU);
| | - Justus P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Andreas Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Majida Al-Abboodi
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU); Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University
| | | | - Raymund E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| | - Anja M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU)
| |
Collapse
|
25
|
Shadrin IY, Khodabukus A, Bursac N. Striated muscle function, regeneration, and repair. Cell Mol Life Sci 2016; 73:4175-4202. [PMID: 27271751 PMCID: PMC5056123 DOI: 10.1007/s00018-016-2285-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022]
Abstract
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice.
Collapse
Affiliation(s)
- I Y Shadrin
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA
| | - A Khodabukus
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA
| | - N Bursac
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA.
| |
Collapse
|
26
|
Huang RL, Kobayashi E, Liu K, Li Q. Bone Graft Prefabrication Following the In Vivo Bioreactor Principle. EBioMedicine 2016; 12:43-54. [PMID: 27693103 PMCID: PMC5078640 DOI: 10.1016/j.ebiom.2016.09.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/11/2016] [Accepted: 09/16/2016] [Indexed: 01/31/2023] Open
Abstract
Large bone defect treatment represents a great challenge due to the difficulty of functional and esthetic reconstruction. Tissue-engineered bone grafts created by in vitro manipulation of bioscaffolds, seed cells, and growth factors have been considered potential treatments for bone defect reconstruction. However, a significant gap remains between experimental successes and clinical translation. An emerging strategy for bridging this gap is using the in vivo bioreactor principle and flap prefabrication techniques. This principle focuses on using the body as a bioreactor to cultivate the traditional triad (bioscaffolds, seed cells, and growth factors) and leveraging the body's self-regenerative capacity to regenerate new tissue. Additionally, flap prefabrication techniques allow the regenerated bone grafts to be transferred as prefabricated bone flaps for bone defect reconstruction. Such a strategy has been used successfully for reconstructing critical-sized bone defects in animal models and humans. Here, we highlight this concept and provide some perspective on how to translate current knowledge into clinical practice. The in vivo bioreactor principle and flap prefabrication technique is a promising strategy for bone defect reconstruction. The in vivo bioreactor principle focuses on using the body’s self-regenerative capacity to regenerate new tissue. This strategy has been successfully used to reconstruct critical-sized bone defects in humans.
Collapse
Affiliation(s)
- Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Kai Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
27
|
Nagao RJ, Ouyang Y, Keller R, Nam SY, Malik GR, Emelianov SY, Suggs LJ, Schmidt CE. Ultrasound-guided photoacoustic imaging-directed re-endothelialization of acellular vasculature leads to improved vascular performance. Acta Biomater 2016; 32:35-45. [PMID: 26708553 DOI: 10.1016/j.actbio.2015.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
As increasing effort is dedicated to investigating the regenerative capacity of decellularized tissues, research has progressed to recellularizing these tissues prior to implantation. The delivery and support of cells seeded throughout acellular scaffolds are typically conducted through the vascular axis of the tissues. However, it is unclear how cell concentration and injection frequency can affect the distribution of cells throughout the scaffold. Furthermore, what effects re-endothelialization have on vascular patency and function are not well understood. We investigated the use of ultrasound-guided photoacoustic (US/PA) imaging as a technique to visualize the distribution of microvascular endothelial cells within an optimized acellular construct upon re-endothelialization and perfusion conditioning. We also evaluated the vascular performance of the re-endothelialized scaffold using quantitative vascular corrosion casting (qVCC) and whole-blood perfusion. We found US/PA imaging was an effective technique to visualize the distribution of cells. Cellular retention following perfusion conditioning was also detected with US/PA imaging. Finally, we demonstrated that a partial recovery of vascular performance is possible following re-endothelialization-confirmed by fewer extravasations in qVCC and improved blood clearance following whole-blood perfusion. STATEMENT OF SIGNIFICANCE Re-endothelialization is a method that enables decellularized tissue to become useful as a tissue engineering construct by creating a nutrient delivery and waste removal system for the entire construct. Our approach utilizes a decellularization method that retains the basement ECM of a highly vascularized tissue upon which endothelial cells can be injected to form an endothelium. The US/PA method allows for rapid visualization of cells within a construct several cm thick. This approach can be experimentally used to observe changes in cellular distribution over large intervals of time, to help optimize cell seeding parameters, and to verify cell retention within re-endothelialized constructs. This approach has temporal and depth advantages compared to section reconstruction and imaged fluorophores respectively.
Collapse
|
28
|
Laschke MW, Menger MD. Prevascularization in tissue engineering: Current concepts and future directions. Biotechnol Adv 2015; 34:112-21. [PMID: 26674312 DOI: 10.1016/j.biotechadv.2015.12.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/16/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
Abstract
The survival of engineered tissue constructs during the initial phase after their implantation depends on the rapid development of an adequate vascularization. This, in turn, is a major prerequisite for the constructs' long-term function. 'Prevascularization' has emerged as a promising concept in tissue engineering, aiming at the generation of a preformed microvasculature in tissue constructs prior to their implantation. This should shorten the time period during which the constructs are avascular and suffer hypoxic conditions. Herein, we provide an overview of current strategies for the generation of preformed microvascular networks within tissue constructs. In vitro approaches use cell seeding, spheroid formation or cell sheet technologies. In situ approaches use the body as a natural bioreactor to induce vascularization by angiogenic ingrowth or flap and arteriovenous (AV)-loop techniques. In future, these strategies may be supplemented by the transplantation of adipose tissue-derived microvascular fragments or the in vitro generation of highly organized microvascular networks by means of sophisticated microscale technologies and microfluidic systems. The further advancement of these prevascularization concepts and their adaptation to individual therapeutic interventions will markedly contribute to a broad implementation of tissue engineering applications into clinical practice.
Collapse
Affiliation(s)
- Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, D-66421 Homburg/Saar, Germany.
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, D-66421 Homburg/Saar, Germany
| |
Collapse
|
29
|
Yasa IC, Gunduz N, Kilinc M, Guler MO, Tekinay AB. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis. Sci Rep 2015; 5:16460. [PMID: 26555958 PMCID: PMC4639731 DOI: 10.1038/srep16460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022] Open
Abstract
Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells' growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, "IKVAV", and fibronectin-derived well known adhesive sequence, "RGD", into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.
Collapse
Affiliation(s)
- I. Ceren Yasa
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Nuray Gunduz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Murat Kilinc
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Mustafa O. Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| | - Ayse B. Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey 06800
| |
Collapse
|
30
|
Abstract
To evaluate the anastomotic potential of prevascular tissue constructs generated from scaffold-free self-assembly of human endothelial and fibroblast cells, tissue constructs were implanted into athymic mice and immune-competent rats. Analysis of xenografts placed into hind limb muscle defects showed vascular anastomotic activity by 3 days after implantation and persisting for 2 weeks. Integration of the implanted prevascular tissue constructs with the host circulatory system was evident from presence of red blood cells in the implant as early as 3 days after implantation. Additionally, analysis of 3-day xenografts in the rat model showed activation of skeletal muscle satellite cells based on Pax-7 and MyoD expressions. We conclude that prevascular tissue constructs generated from scaffold-free self-assembly of human endothelial and fibroblast cells are a promising tool to provide both vascular supply and satellite cell activation toward the resolution of skeletal muscle injury.
Collapse
|
31
|
Shieh SJ, Cheng TC. Regeneration and repair of human digits and limbs: fact and fiction. ACTA ACUST UNITED AC 2015; 2:149-68. [PMID: 27499873 PMCID: PMC4857729 DOI: 10.1002/reg2.41] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
A variety of digit and limb repair and reconstruction methods have been used in different clinical settings, but regeneration remains an item on every plastic surgeon's "wish list." Although surgical salvage techniques are continually being improved, unreplantable digits and limbs are still abundant. We comprehensively review the structural and functional salvage methods in clinical practice, from the peeling injuries of small distal fingertips to multisegmented amputated limbs, and the developmental and tissue engineering approaches for regenerating human digits and limbs in the laboratory. Although surgical techniques have forged ahead, there are still situations in which digits and limbs are unreplantable. Advances in the field are delineated, and the regeneration processes of salamander limbs, lizard tails, and mouse digits and each component of tissue engineering approaches for digit- and limb-building are discussed. Although the current technology is promising, there are many challenges in human digit and limb regeneration. We hope this review inspires research on the critical gap between clinical and basic science, and leads to more sophisticated digit and limb loss rescue and regeneration innovations.
Collapse
Affiliation(s)
- Shyh-Jou Shieh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University Tainan Taiwan; International Research Center for Wound Repair and Regeneration (iWRR) National Cheng Kung University Tainan Taiwan
| | - Tsun-Chih Cheng
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine National Cheng Kung University Tainan Taiwan
| |
Collapse
|
32
|
Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN. Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 2015; 53:502-21. [PMID: 25890747 DOI: 10.1016/j.biomaterials.2015.02.110] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscles have a robust capacity to regenerate, but under compromised conditions, such as severe trauma, the loss of muscle functionality is inevitable. Research carried out in the field of skeletal muscle tissue engineering has elucidated multiple intrinsic mechanisms of skeletal muscle repair, and has thus sought to identify various types of cells and bioactive factors which play an important role during regeneration. In order to maximize the potential therapeutic effects of cells and growth factors, several biomaterial based strategies have been developed and successfully implemented in animal muscle injury models. A suitable biomaterial can be utilized as a template to guide tissue reorganization, as a matrix that provides optimum micro-environmental conditions to cells, as a delivery vehicle to carry bioactive factors which can be released in a controlled manner, and as local niches to orchestrate in situ tissue regeneration. A myriad of biomaterials, varying in geometrical structure, physical form, chemical properties, and biofunctionality have been investigated for skeletal muscle tissue engineering applications. In the current review, we present a detailed summary of studies where the use of biomaterials favorably influenced muscle repair. Biomaterials in the form of porous three-dimensional scaffolds, hydrogels, fibrous meshes, and patterned substrates with defined topographies, have each displayed unique benefits, and are discussed herein. Additionally, several biomaterial based approaches aimed specifically at stimulating vascularization, innervation, and inducing contractility in regenerating muscle tissues are also discussed. Finally, we outline promising future trends in the field of muscle regeneration involving a deeper understanding of the endogenous healing cascades and utilization of this knowledge for the development of multifunctional, hybrid, biomaterials which support and enable muscle regeneration under compromised conditions.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany.
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.
| | - Matthias Pumberger
- Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Center for Musculoskeletal Surgery, Charitè - Universitätsmedizin Berlin, Germany.
| | - Sven Geissler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| | - Georg N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Germany; Berlin-Brandenburg School for Regenerative Therapies, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
33
|
Dunda SE, Krings LK, Ranker MF, Wruck C, van Neerven SG, Bozkurt A, Pallua N. Effect of Immunocompromising Therapy on In Vivo Cell Survival in Musculoskeletal Tissue Engineering. J Med Biol Eng 2015. [DOI: 10.1007/s40846-015-0017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. Int J Biochem Cell Biol 2014; 56:38-46. [PMID: 25449260 DOI: 10.1016/j.biocel.2014.10.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/14/2023]
Abstract
Cardiac tissue engineering is developing as an alternative approach to heart transplantation for treating heart failure. Shortage of organ donors and complications arising after orthotopic transplant remain major challenges to the modern field of heart transplantation. Engineering functional myocardium de novo requires an abundant source of cardiomyocytes, a biocompatible scaffold material and a functional vasculature to sustain the high metabolism of the construct. Progress has been made on several fronts, with cardiac cell biology, stem cells and biomaterials research particularly promising for cardiac tissue engineering, however currently employed strategies for vascularisation have lagged behind and limit the volume of tissue formed. Over ten years we have developed an in vivo tissue engineering model to construct vascularised tissue from various cell and tissue sources, including cardiac tissue. In this article we review the progress made with this approach and others, together with their potential to support a volume of engineered tissue for cardiac tissue engineering where contractile mass impacts directly on functional outcomes in translation to the clinic. It is clear that a scaled-up cardiac tissue engineering solution required for clinical treatment of heart failure will include a robust vascular supply for successful translation. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
35
|
Generation of eX vivo-vascularized Muscle Engineered Tissue (X-MET). Sci Rep 2013; 3:1420. [PMID: 23478253 PMCID: PMC3594753 DOI: 10.1038/srep01420] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/25/2013] [Indexed: 11/08/2022] Open
Abstract
The object of this study was to develop an in vitro bioengineered three-dimensional vascularized skeletal muscle tissue, named eX-vivo Muscle Engineered Tissue (X-MET). This new tissue contains cells that exhibit the characteristics of differentiated myotubes, with organized contractile machinery, undifferentiated cells, and vascular cells capable of forming "vessel-like" networks. X-MET showed biomechanical properties comparable with that of adult skeletal muscles; thus it more closely mimics the cellular complexity typical of in vivo muscle tissue than myogenic cells cultured in standard monolayer conditions. Transplanted X-MET was able to mimic the activity of the excided EDL muscle, restoring the functionality of the damaged muscle. Our results suggest that X-MET is an ideal in vitro 3D muscle model that can be employed to repair muscle defects in vivo and to perform in vitro studies, limiting the use of live animals.
Collapse
|
36
|
3D scaffolds in tissue engineering and regenerative medicine: beyond structural templates? ACTA ACUST UNITED AC 2013. [DOI: 10.4155/pbp.13.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Polzer H, Volkmer E, Saller MM, Prall WC, Haasters F, Drosse I, Wilhelmi A, Mutschler W, Schieker M. Comparison of different strategies for in vivo seeding of prevascularized scaffolds. Tissue Eng Part C Methods 2013; 20:11-8. [PMID: 23594127 DOI: 10.1089/ten.tec.2012.0740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Scaffolds seeded with multipotent precursor cells were hypothesized to heal critically sized bone defects. However, the success of this concept was limited by low cell survival after transplantation due to a lack of nutrients and oxygen. In vivo prevascularization of scaffolds before cell seeding may improve cell survival, yet the best seeding technique and time point of cell application remain elusive. Thus, the aim of this study was to compare different strategies. Demineralized bone matrix scaffolds were implanted around the saphenous arteriovenous (AV) bundle in nude mice. In vivo seeding was performed 0, 5, or 21 days after implantation using enhanced green fluorescent protein (eGFP)-expressing mesenchymal stem cells (MSCs). Cells were applied either by injection or the repetitive dripping technique. In vitro seeded and subcutaneously implanted scaffolds served as controls. Fourteen days after cell application, the fluorescence intensity of transplanted cells and the extent of newly formed vessels were quantified. We found that the AV flow through model as well as cell application increased vessel formation. In vitro seeding resulted in significantly higher cell numbers than in vivo seeding. With increasing time of prevascularization, the number of cells declined dramatically. In vivo seeding by cell injection was superior to the repetitive dripping protocol. On subcutaneously implanted scaffolds, significantly, more cells were found than on axially perfused scaffolds. We conclude that in vitro seeding is more efficient compared to the two novel in vivo seeding techniques of prevascularized scaffolds. With increasing time of prevascularization, the seeding efficiency for the in vivo methods further decreases, presumably due to the ingrowth of connective tissue. Even though, the presence of MSCs and the longer period of prevascularization enhances vessel formation, this conceivable advantage is limited supposedly by the inferior seeding efficiency.
Collapse
Affiliation(s)
- Hans Polzer
- 1 Experimental Surgery and Regenerative Medicine, Department of Surgery, University of Munich (LMU) , Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Composition of fibrin glues significantly influences axial vascularization and degradation in isolation chamber model. Blood Coagul Fibrinolysis 2013; 23:419-27. [PMID: 22576289 DOI: 10.1097/mbc.0b013e3283540c0f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study, different fibrin sealants with varying concentrations of the fibrin components were evaluated in terms of matrix degradation and vascularization in the arteriovenous loop (AVL) model of the rat. An AVL was placed in a Teflon isolation chamber filled with 500 μl fibrin gel. The matrix was composed of commercially available fibrin gels, namely Beriplast (Behring GmbH, Marburg, Germany) (group A), Evicel (Omrix Biopharmaceuticals S.A., Somerville, New Jersey, USA) (group B), Tisseel VH S/D (Baxter, Vienna, Austria) with a thrombin concentration of 4 IU/ml and a fibrinogen concentration of 80 mg/ml [Tisseel S F80 (Baxter), group C] and with an fibrinogen concentration of 20 mg/ml [Tisseel S F20 (Baxter), group D]. After 2 and 4 weeks, five constructs per group and time point were investigated using micro-computed tomography, and histological and morphometrical analysis techniques. The aprotinin, factor XIII and thrombin concentration did not affect the degree of clot degradation. An inverse relationship was found between fibrin matrix degradation and sprouting of blood vessels. By reducing the fibrinogen concentration in group D, a significantly decreased construct weight and an increased generation of vascularized connective tissue were detected. There was an inverse relationship between matrix degradation and vascularization detectable. Fibrinogen as the major matrix component showed a significant impact on the matrix properties. Alteration of fibrin gel properties might optimize formation of blood vessels.
Collapse
|
39
|
Zhou W, He DQ, Liu JY, Feng Y, Zhang XY, Hua CG, Tang XF. Angiogenic gene-modified myoblasts promote vascularization during repair of skeletal muscle defects. J Tissue Eng Regen Med 2013; 9:1404-16. [PMID: 23365046 DOI: 10.1002/term.1692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 10/20/2012] [Accepted: 12/20/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Wei Zhou
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Deng-Qi He
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Ji-Yuan Liu
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Yang Feng
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiang-Yu Zhang
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Cheng-Ge Hua
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Xiu-Fa Tang
- Department of Head and Neck Oncology; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
40
|
Nagao RJ, Ouyang Y, Keller R, Lee C, Suggs LJ, Schmidt CE. Preservation of Capillary-beds in Rat Lung Tissue Using Optimized Chemical Decellularization. J Mater Chem B 2013; 1:4801-4808. [PMID: 25558373 DOI: 10.1039/c3tb20640h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Promoting regeneration using scaffolds created by decellularizing native tissue is becoming a popular technique applied to a variety of tissues. We demonstrate a method to decellularize highly vascular tissue keeping the vascular structure intact down to the capillary scale. Using vascular corrosion casting (VCC), we created a method for quantitatively assessing the functionality of vascular extracellular matrix (ECM) following decellularization. Murine lung tissue was decellularized using a number of techniques, then characterized using standard histological methods, as well as our quantitative VCC (qVCC) technique. Using an optimized acellular method, we successfully decellularized lung tissue while leaving behind a patent vascular network based on qualitative and quantitative histological methods.
Collapse
Affiliation(s)
- Ryan J Nagao
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, Texas, TX 78712, United States of America
| | - Yafei Ouyang
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, Texas, TX 78712, United States of America
| | - Renee Keller
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, Texas, TX 78712, United States of America
| | - Curtis Lee
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, Texas, TX 78712, United States of America
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, Texas, TX 78712, United States of America
| | - Christine E Schmidt
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, Austin, Texas, TX 78712, United States of America ; J. Crayton Pruitt Family Department of Biomedical Engineering, The University of Florida, Gainesville, FL 32611, United States of America
| |
Collapse
|
41
|
Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A. Tissue engineering and regenerative medicine -where do we stand? J Cell Mol Med 2012; 16:1157-65. [PMID: 22436120 PMCID: PMC3823070 DOI: 10.1111/j.1582-4934.2012.01564.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery And Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
42
|
Eweida AM, Nabawi AS, Elhammady HA, Marei MK, Khalil MR, Shawky MS, Arkudas A, Beier JP, Unglaub F, Kneser U, Horch RE. Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model. Arch Orthop Trauma Surg 2012; 132:1353-62. [PMID: 22643804 DOI: 10.1007/s00402-012-1550-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The creation of axially vascularized bone substitutes (AVBS) has been successfully demonstrated in several animal models. One prototypical indication is bone replacement in patients with previously irradiated defect sites, such as in the mandibular region. The downside of current clinical practice, when free fibular or scapular grafts are used, is the creation of significant donor site morbidity. METHODS Based on our previous experiments, we extended the creation of an arterio-venous loop to generate vascularized bone substitutes to a new defect model in the goat mandibula. In this report, we review the literature regarding different models for axially vascularized bone substitutes and present a novel model demonstrating the feasibility of combining this model with synthetic porous scaffold materials and biological tissue adhesives to grow cells and tissue. RESULTS We were able to show the principal possibility to generate axially vascularized bony substitutes in vivo in goat mandibular defects harnessing the regenerative capacity of the living organism and completely avoiding donor site morbidity. CONCLUSION From our findings, we conclude that this novel model may well offer new perspectives for orthopedic and traumatic bone defects that might benefit from the reduction of donor site morbidity.
Collapse
Affiliation(s)
- A M Eweida
- Faculty of Medicine, Department of Head and Neck and Endocrine Surgery, University of Alexandria, ElKhartoom square, Elazarita, Alexandria, Egypt.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
DeQuach JA, Lin JE, Cam C, Hu D, Salvatore MA, Sheikh F, Christman KL, Christman KL. Injectable skeletal muscle matrix hydrogel promotes neovascularization and muscle cell infiltration in a hindlimb ischemia model. Eur Cell Mater 2012; 23:400-12; discussion 412. [PMID: 22665162 PMCID: PMC3524267 DOI: 10.22203/ecm.v023a31] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Peripheral artery disease (PAD) currently affects approximately 27 million patients in Europe and North America, and if untreated, may progress to the stage of critical limb ischemia (CLI), which has implications for amputation and potential mortality. Unfortunately, few therapies exist for treating the ischemic skeletal muscle in these conditions. Biomaterials have been used to increase cell transplant survival as well as deliver growth factors to treat limb ischemia; however, existing materials do not mimic the native skeletal muscle microenvironment they are intended to treat. Furthermore, no therapies involving biomaterials alone have been examined. The goal of this study was to develop a clinically relevant injectable hydrogel derived from decellularized skeletal muscle extracellular matrix and examine its potential for treating PAD as a stand-alone therapy by studying the material in a rat hindlimb ischemia model. We tested the mitogenic activity of the scaffold's degradation products using an in vitro assay and measured increased proliferation rates of smooth muscle cells and skeletal myoblasts compared to collagen. In a rat hindlimb ischemia model, the femoral artery was ligated and resected, followed by injection of 150 µL of skeletal muscle matrix or collagen 1 week post-injury. We demonstrate that the skeletal muscle matrix increased arteriole and capillary density, as well as recruited more desmin-positive and MyoD-positive cells compared to collagen. Our results indicate that this tissue-specific injectable hydrogel may be a potential therapy for treating ischemia related to PAD, as well as have potential beneficial effects on restoring muscle mass that is typically lost in CLI.
Collapse
Affiliation(s)
- Jessica A. DeQuach
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Joy E. Lin
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Cynthia Cam
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Diane Hu
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Michael A. Salvatore
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Farah Sheikh
- Medicine, 9500 Gilman Drive MC 0613-C, University of California, San Diego, La Jolla, California, USA, Phone: 858 534-9628; Fax: 858 534-5722
| | - Karen L. Christman
- Department of Bioengineering, 2880 Torrey Pines Scenic Dr., University of California, San Diego, La Jolla, California, USA, Phone: 858 822-7863; Fax: 858 534-5722
| | | |
Collapse
|
44
|
A new approach of in vivo musculoskeletal tissue engineering using the epigastric artery as central core vessel of a 3-dimensional construct. PLASTIC SURGERY INTERNATIONAL 2012; 2012:510852. [PMID: 22570779 PMCID: PMC3335622 DOI: 10.1155/2012/510852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 12/05/2011] [Indexed: 11/17/2022]
Abstract
The creation of musculoskeletal tissue represents an alternative for the replacement of soft tissue in reconstructive surgery. However, most of the approaches of creating artificial tissue have their limitations in the size as the maximally obtainable dimension of bioartificial tissue (BAT) is limited due to the lack of supporting vessels within the 3-dimensional construct. The seeded myoblasts require high amounts of perfusion, oxygen, and nutrients to survive. To achieve this, we developed a 3-dimensional scaffold which features the epigastric artery as macroscopic core vessel inside the BAT in a rat model (perfused group, n = 4) and a control group (n = 3) without the epigastric vessels and, therefore, without perfusion. The in vivo monitoring of the transplanted myoblasts was assessed by bioluminescence imaging and showed both the viability of the epigastric artery within the 3-dimensional construct and again that cell survival in vivo is highly depending on the blood supply with the beginning of capillarization within the BAT seven days after transplantation in the perfused group. However, further studies focussing on the matrix improvement will be necessary to create a transplantable BAT with the epigastric artery as anastomosable vessel.
Collapse
|
45
|
Gerard C, Forest MA, Beauregard G, Skuk D, Tremblay JP. Fibrin Gel Improves the Survival of Transplanted Myoblasts. Cell Transplant 2012; 21:127-37. [DOI: 10.3727/096368911x576018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most frequent muscular dystrophy in children and young adults. Currently, there is no cure for the disease. The transplantation of healthy myoblasts is an experimental therapeutic strategy, since it could restore the expression of dystrophin in DMD muscles. Nevertheless, this cellular therapy is limited by immune reaction, low migration of the implanted cells, and high early cell death that could be at least partially due to anoikis. To avoid the lack of attachment of the cells to an extracellular matrix after the transplantation, which is the cause of anoikis, we tested the use of a fibrin gel for myoblast transplantation. In vitro, three concentrations of fibrinogen were compared (3, 20, and 50 mg/ml) to form a fibrin gel. A stiffer fibrin gel leads to less degradability and less proliferation of the cells. A concentration of 3 mg/ml fibrin gel enhanced the differentiation of the myoblasts earlier as a culture in monolayer. Human myoblasts were also transplanted in muscles of Rag/mdx mice in a fibrin gel or in a saline solution (control). The use of 3 mg/ml fibrin gel for cell transplantation increased not only the survival of the cells as measured after 5 days but also the number of fibers expressing dystrophin after 21 days, compared to the control. Moreover, the fibrin gel was also compared to a prosurvival cocktail. The survival of the myoblasts at 5 days was increased in both conditions compared to the control but the efficacy of the prosurvival cocktail was not significantly higher than the fibrin gel.
Collapse
Affiliation(s)
- Catherine Gerard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Marie Anne Forest
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Genevieve Beauregard
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Daniel Skuk
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| | - Jacques P. Tremblay
- Neurosciences Division-Human Genetics, CHUQ Research Centre-CHUL, Quebec, Canada
| |
Collapse
|
46
|
Pagonis T, Givissis P, Ditsios K, Pagonis A, Petsatodis G, Christodoulou A. The effect of steroid-abuse on anatomic reinsertion of ruptured distal biceps brachii tendon. Injury 2011; 42:1307-12. [PMID: 21481384 DOI: 10.1016/j.injury.2011.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 02/07/2023]
Abstract
INTRODUCTION There is an increase in the number of anabolic-steroid (AS)-abusing trainees, who suffer from sports injuries, needing reconstruction surgery. Rupture of the distal biceps brachii tendon is a common injury in this group. PURPOSE The study aimed to investigate the effect of AS abuse in the anatomic reconstruction of the ruptured distal biceps brachii tendon along with an immediate range-of-motion postoperative protocol. METHODS We conducted an observation study of 17 male athletes suffering from distal biceps tendon ruptures. Six of them reported that they abused AS (group A), whereas the non-users comprised group B (n=11). Both groups were treated with the modified single-incision technique with two suture anchors and an immediate active range-of-motion protocol postoperatively. Follow-up was at 4, 16 and 52 weeks postoperatively, with a final follow-up at 24 months. RESULTS Follow-up at 4, 16 and 52 weeks postoperatively showed a statistical significance in favour of group A for therapeutic outcomes concerning flexion, supination, pronation, Disabilities of the Arm, Shoulder and Hand (DASH) Disability Symptom Scores, Mayo Elbow Performance Elbow Scores and isometric muscle strength tests for both flexion and supination. Twenty-four months postoperatively, statistical significance in favour of group A was recorded in isometric muscle strength tests for both flexion and supination and also in DASH Disability Symptom Score. DISCUSSION The results of our study suggest that there is a correlation between the effect of AS and the quicker and better recuperation and rehabilitation observed in group A. Nonetheless, these results must be interpreted with caution, and further in vivo research is needed to confirm these findings.
Collapse
Affiliation(s)
- Thomas Pagonis
- 1st Orthopaedic Clinic of Aristotle's University of Thessaloniki, G.U.H.G. Papanikolaou, Thessaloniki, Greece.
| | | | | | | | | | | |
Collapse
|
47
|
Popescu LM, Manole E, Serboiu CS, Manole CG, Suciu LC, Gherghiceanu M, Popescu BO. Identification of telocytes in skeletal muscle interstitium: implication for muscle regeneration. J Cell Mol Med 2011; 15:1379-92. [PMID: 21609392 PMCID: PMC4373336 DOI: 10.1111/j.1582-4934.2011.01330.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skeletal muscle interstitium is crucial for regulation of blood flow, passage of substances from capillaries to myocytes and muscle regeneration. We show here, probably, for the first time, the presence of telocytes (TCs), a peculiar type of interstitial (stromal) cells, in rat, mouse and human skeletal muscle. TC features include (as already described in other tissues) a small cell body and very long and thin cell prolongations-telopodes (Tps) with moniliform appearance, dichotomous branching and 3D-network distribution. Transmission electron microscopy (TEM) revealed close vicinity of Tps with nerve endings, capillaries, satellite cells and myocytes, suggesting a TC role in intercellular signalling (via shed vesicles or exosomes). In situ immunolabelling showed that skeletal muscle TCs express c-kit, caveolin-1 and secrete VEGF. The same phenotypic profile was demonstrated in cell cultures. These markers and TEM data differentiate TCs from both satellite cells (e.g. TCs are Pax7 negative) and fibroblasts (which are c-kit negative). We also described non-satellite (resident) progenitor cell niche. In culture, TCs (but not satellite cells) emerge from muscle explants and form networks suggesting a key role in muscle regeneration and repair, at least after trauma.
Collapse
Affiliation(s)
- L M Popescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | | | | | | | |
Collapse
|
48
|
Page RL, Malcuit C, Vilner L, Vojtic I, Shaw S, Hedblom E, Hu J, Pins GD, Rolle MW, Dominko T. Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads. Tissue Eng Part A 2011; 17:2629-40. [PMID: 21699414 DOI: 10.1089/ten.tea.2011.0024] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Large-scale musculoskeletal wounds, such as those seen in trauma injuries, present poor functional healing prognoses. In severe trauma, when the native tissue architecture is destroyed or lost, the regenerative capacity of skeletal muscle is diminished by scar formation. Here we demonstrate that a scaffold system composed of fibrin microthreads can provide an efficient delivery system for cell-based therapies and improve regeneration of a large defect in the tibialis anterior of the mouse. Cell-loaded fibrin microthread bundles implanted into a skeletal muscle resection reduced the overall fibroplasia-associated deposition of collagen in the wound bed and promoted in-growth of new muscle tissue. When fibrin microthreads were seeded with adult human cells, implanted cells contributed to the nascent host tissue architecture by forming skeletal muscle fibers, connective tissue, and PAX7-positive cells. Stable engraftment was observed at 10 weeks postimplant and was accompanied by reduced levels of collagen deposition. Taken together, these data support the design and development of a platform for microthread-based delivery of autologous cells that, when coupled to an in vitro cellular reprogramming process, has the potential to improve healing outcomes in large skeletal muscle wounds.
Collapse
Affiliation(s)
- Raymond L Page
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Klumpp D, Horch RE, Kneser U, Beier JP. Engineering skeletal muscle tissue--new perspectives in vitro and in vivo. J Cell Mol Med 2011; 14:2622-9. [PMID: 21091904 PMCID: PMC4373482 DOI: 10.1111/j.1582-4934.2010.01183.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Muscle tissue engineering (TE) has not yet been clinically applied because of several problems. However, the field of skeletal muscle TE has been developing tremendously and new approaches and techniques have emerged. This review will highlight recent developments in the field of nanotechnology, especially electrospun nanofibre matrices, as well as potential cell sources for muscle TE. Important developments in cardiac muscle TE and clinical studies on Duchenne muscular dystrophy (DMD) will be included to show their implications on skeletal muscle TE.
Collapse
Affiliation(s)
- Dorothee Klumpp
- Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | |
Collapse
|
50
|
Koning M, Werker PMN, van Luyn MJA, Harmsen MC. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle. Tissue Eng Part A 2011; 17:1747-58. [PMID: 21438665 DOI: 10.1089/ten.tea.2010.0624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Facial paralysis is a physically, psychologically, and socially disabling condition. Innovative treatment strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with facial paralysis. The natural source for tissue-engineered muscle would be muscle stem cells, that is, human satellite cells (SC). In vivo, SC respond to hypoxic, ischemic muscle damage by activation, proliferation, differentiation to myotubes, and maturation to muscle fibers, while maintaining their reserve pool of SC. Therefore, our hypothesis is that hypoxia improves proliferation and differentiation of SC. During tissue engineering, a three-dimensional construct, or implanting SC in vivo, SC will encounter hypoxic environments. Thus, we set out to test our hypothesis on SC in vitro. During the first five passages, hypoxically cultured SC proliferated faster than their counterparts under normoxia. Moreover, also at higher passages, a switch from normoxia to hypoxia enhanced proliferation of SC. Hypoxia did not affect the expression of SC markers desmin and NCAM. However, the average surface expression per cell of NCAM was downregulated by hypoxia, and it also downregulated the gene expression of NCAM. The gene expression of the myogenic transcription factors PAX7, MYF5, and MYOD was upregulated by hypoxia. Moreover, gene expression of structural proteins α-sarcomeric actin, and myosins MYL1 and MYL3 was upregulated by hypoxia during differentiation. This indicates that hypoxia promotes a promyogenic shift in SC. Finally, Pax7 expression was not influenced by hypoxia and maintained in a subset of mononucleated cells, whereas these cells were devoid of structural muscle proteins. This suggests that during myogenesis in vitro, at least part of the SC adopt a quiescent, that is, reserve cells, phenotype. In conclusion, tissue engineering under hypoxic conditions would seem favorable in terms of myogenic proliferation, while maintaining the quiescent SC pool.
Collapse
Affiliation(s)
- Merel Koning
- Department of Plastic Surgery, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|