1
|
Qifti A, Adeeko A, Rennie M, McGlaughlin E, McKinnon D, Rosati B, Scarlata S. Hypoosmotic stress shifts transcription of circadian genes. Biophys J 2025; 124:565-573. [PMID: 39754358 DOI: 10.1016/j.bpj.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Cells respond to hypoosmotic stress by initial swelling followed by intracellular increases in the number of osmolytes and initiation of gene transcription that allow cells to adapt to the stress. Here, we have studied the genes that change expression under mild hypoosmotic stress for 12 and 24 h in rat cultured smooth muscle cells (WKO-3M22). We find shifts in the transcription of many genes, several of which are associated with circadian rhythm, such as per1, nr1d1, per2, dbp, and Ciart. To determine whether there is a connection between osmotic stress and circadian rhythm, we first subjected cells to hypoosmotic stress for 12 h, and find that Bmal1, a transcription factor whose nuclear localization promotes transit through the cell cycle, localizes to the cytoplasm, which may connect osmotic stress to cell cycle. Bmal1 nuclear localization recovers after 24 h and cell cycle resumes even though the osmotic stress remains elevated. We hypothesized that osmotic force is transmitted into the cell by deforming caveolae membrane domains releasing one of its structural proteins, cavin-1, which can travel to the nucleus and affect gene transcription. In support of this idea, we find that Bmal1 localization becomes independent of osmotic stress with cavin-1 downregulation, and Bmal1 localization is independent of osmotic stress in a cell line with low caveolae expression. These studies indicate that osmotic stress transiently arrests circadian rhythm and cell-cycle progression through caveolae deformation.
Collapse
Affiliation(s)
- Androniqi Qifti
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Ayobami Adeeko
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Elizabeth McGlaughlin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - David McKinnon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Barbara Rosati
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York; Veterans Affairs Medical Center, Northport, New York
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
2
|
Moosmayer T, Kiszka KA, Westphal V, Pape JK, Leutenegger M, Steffens H, Grant SGN, Sahl SJ, Hell SW. MINFLUX fluorescence nanoscopy in biological tissue. Proc Natl Acad Sci U S A 2024; 121:e2422020121. [PMID: 39705311 DOI: 10.1073/pnas.2422020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/22/2024] Open
Abstract
Optical imaging access to nanometer-level protein distributions in intact tissue is a highly sought-after goal, as it would provide visualization in physiologically relevant contexts. Under the unfavorable signal-to-background conditions of increased absorption and scattering of the excitation and fluorescence light in the complex tissue sample, superresolution fluorescence microscopy methods are severely challenged in attaining precise localization of molecules. We reasoned that the typical use of a confocal detection pinhole in MINFLUX nanoscopy, suppressing background and providing optical sectioning, should facilitate the detection and resolution of single fluorophores even amid scattering and optically challenging tissue environments. Here, we investigated the performance of MINFLUX imaging for different synaptic targets and fluorescent labels in tissue sections of the mouse brain. Single fluorophores were localized with a precision of <5 nm at up to 80 µm sample depth. MINFLUX imaging in two color channels allowed to probe PSD95 localization relative to the spine head morphology, while also visualizing presynaptic vesicular glutamate transporter (VGlut) 1 clustering and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering at the postsynapse. Our two-dimensional (2D) and three-dimensional (3D) two-color MINFLUX results in tissue, with <10 nm 3D fluorophore localization, open up broad avenues to investigate protein distributions on the single-synapse level in fixed and living brain slices.
Collapse
Affiliation(s)
- Thea Moosmayer
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Georg-August University School of Science, University of Göttingen, Göttingen 37077, Germany
| | - Kamila A Kiszka
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Volker Westphal
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jasmin K Pape
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marcel Leutenegger
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Heinz Steffens
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Steffen J Sahl
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| |
Collapse
|
3
|
Duranova H, Kuzelova L, Borotova P, Simora V, Fialkova V. Human Umbilical Vein Endothelial Cells as a Versatile Cellular Model System in Diverse Experimental Paradigms: An Ultrastructural Perspective. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:419-439. [PMID: 38817111 DOI: 10.1093/mam/ozae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Human umbilical vein endothelial cells (HUVECs) are primary cells isolated from the vein of an umbilical cord, extensively used in cardiovascular studies and medical research. These cells, retaining the characteristics of endothelial cells in vivo, serve as a valuable cellular model system for understanding vascular biology, endothelial dysfunction, pathophysiology of diseases such as atherosclerosis, and responses to different drugs or treatments. Transmission electron microscopy (TEM) has been a cornerstone in revealing the detailed architecture of multiple cellular model systems including HUVECs, allowing researchers to visualize subcellular organelles, membrane structures, and cytoskeletal elements. Among them, the endoplasmic reticulum, Golgi apparatus, mitochondria, and nucleus can be meticulously examined to recognize alterations indicative of cellular responses to various stimuli. Importantly, Weibel-Palade bodies are characteristic secretory organelles found in HUVECs, which can be easily distinguished in the TEM. These distinctive structures also dynamically react to different factors through regulated exocytosis, resulting in complete or selective release of their contents. This detailed review summarizes the ultrastructural features of HUVECs and highlights the utility of TEM as a pivotal tool for analyzing HUVECs in diverse research frameworks, contributing valuable insights into the comprehension of HUVEC behavior and enriching our knowledge into the complexity of vascular biology.
Collapse
Affiliation(s)
- Hana Duranova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lenka Kuzelova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Petra Borotova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Simora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Veronika Fialkova
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| |
Collapse
|
4
|
Akin EJ, Aoun J, Jimenez C, Mayne K, Baeck J, Young MD, Sullivan B, Sanders KM, Ward SM, Bulley S, Jaggar JH, Earley S, Greenwood IA, Leblanc N. ANO1, CaV1.2, and IP3R form a localized unit of EC-coupling in mouse pulmonary arterial smooth muscle. J Gen Physiol 2023; 155:e202213217. [PMID: 37702787 PMCID: PMC10499037 DOI: 10.1085/jgp.202213217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Pulmonary arterial (PA) smooth muscle cells (PASMC) generate vascular tone in response to agonists coupled to Gq-protein receptor signaling. Such agonists stimulate oscillating calcium waves, the frequency of which drives the strength of contraction. These Ca2+ events are modulated by a variety of ion channels including voltage-gated calcium channels (CaV1.2), the Tmem16a or Anoctamin-1 (ANO1)-encoded calcium-activated chloride (CaCC) channel, and Ca2+ release from the sarcoplasmic reticulum through inositol-trisphosphate receptors (IP3R). Although these calcium events have been characterized, it is unclear how these calcium oscillations underly a sustained contraction in these muscle cells. We used smooth muscle-specific ablation of ANO1 and pharmacological tools to establish the role of ANO1, CaV1.2, and IP3R in the contractile and intracellular Ca2+ signaling properties of mouse PA smooth muscle expressing the Ca2+ biosensor GCaMP3 or GCaMP6. Pharmacological block or genetic ablation of ANO1 or inhibition of CaV1.2 or IP3R, or Ca2+ store depletion equally inhibited 5-HT-induced tone and intracellular Ca2+ waves. Coimmunoprecipitation experiments showed that an anti-ANO1 antibody was able to pull down both CaV1.2 and IP3R. Confocal and superresolution nanomicroscopy showed that ANO1 coassembles with both CaV1.2 and IP3R at or near the plasma membrane of PASMC from wild-type mice. We conclude that the stable 5-HT-induced PA contraction results from the integration of stochastic and localized Ca2+ events supported by a microenvironment comprising ANO1, CaV1.2, and IP3R. In this model, ANO1 and CaV1.2 would indirectly support cyclical Ca2+ release events from IP3R and propagation of intracellular Ca2+ waves.
Collapse
Affiliation(s)
- Elizabeth J. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Joydeep Aoun
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Connor Jimenez
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Katie Mayne
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Julius Baeck
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Michael D. Young
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Brennan Sullivan
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Kenton M. Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Sean M. Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Simon Bulley
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan H. Jaggar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Scott Earley
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| | - Iain A. Greenwood
- Department of Vascular Pharmacology, Molecular and Clinical Science Research Institute, St. George’s University of London, London, UK
| | - Normand Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence (COBRE) for Molecular and Cellular Signal Transduction in the Cardiovascular System, Reno, NV, USA
| |
Collapse
|
5
|
Castillo-Sanchez R, Cortes-Reynosa P, Lopez-Perez M, Garcia-Hernandez A, Salazar EP. Caveolae Microdomains Mediate STAT5 Signaling Induced by Insulin in MCF-7 Breast Cancer Cells. J Membr Biol 2023; 256:79-90. [PMID: 35751654 DOI: 10.1007/s00232-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
6
|
Peruzzu D, Boussadia Z, Fratini F, Spadaro F, Bertuccini L, Sanchez M, Carollo M, Matarrese P, Falchi M, Iosi F, Raggi C, Parolini I, Carè A, Sargiacomo M, Gagliardi MC, Fecchi K. Inhibition of cholesterol transport impairs Cav-1 trafficking and small extracellular vesicles secretion, promoting amphisome formation in melanoma cells. Traffic 2023; 24:76-94. [PMID: 36519961 DOI: 10.1111/tra.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Zaira Boussadia
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Fratini
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Spadaro
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Bertuccini
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Carollo
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome
| | - Francesca Iosi
- Core Facilities Technical Scientific Service, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- National Center for the control and evaluation of Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Parolini
- Department Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sargiacomo
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
7
|
Otero-Tarrazón A, Perelló-Amorós M, Jorge-Pedraza V, Moshayedi F, Sánchez-Moya A, García-Pérez I, Fernández-Borràs J, García de la serrana D, Navarro I, Blasco J, Capilla E, Gutierrez J. Muscle regeneration in gilthead sea bream: Implications of endocrine and local regulatory factors and the crosstalk with bone. Front Endocrinol (Lausanne) 2023; 14:1101356. [PMID: 36755925 PMCID: PMC9899866 DOI: 10.3389/fendo.2023.1101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Fish muscle regeneration is still a poorly known process. In the present study, an injury was done into the left anterior epaxial skeletal muscle of seventy 15 g gilthead sea bream (Sparus aurata) juveniles to evaluate at days 0, 1, 2, 4, 8, 16 and 30 post-wound, the expression of several muscle genes. Moreover, transcripts' expression in the bone (uninjured tissue) was also analyzed. Histology of the muscle showed the presence of dead tissue the first day after injury and how the damaged fibers were removed and replaced by new muscle fibers by day 16 that kept growing up to day 30. Gene expression results showed in muscle an early upregulation of igf-2 and a downregulation of ghr-1 and igf-1. Proteolytic systems expression increased with capn2 and ctsl peaking at 1 and 2 days post-injury, respectively and mafbx at day 8. A pattern of expression that fitted well with active myogenesis progression 16 days after the injury was then observed, with the recovery of igf-1, pax7, cmet, and cav1 expression; and later on, that of cav3 as well. Furthermore, the first days post-injury, the cytokines il-6 and il-15 were also upregulated confirming the tissue inflammation, while tnfα was only upregulated at days 16 and 30 to induce satellite cells recruitment; overall suggesting a possible role for these molecules as myokines. The results of the bone transcripts showed an upregulation first, of bmp2 and ctsk at days 1 and 2, respectively; then, ogn1 and ocn peaked at day 4 in parallel to mstn2 downregulation, and runx2 and ogn2 increased after 8 days of muscle injury, suggesting a possible tissue crosstalk during the regenerative process. Overall, the present model allows studying the sequential involvement of different regulatory molecules during muscle regeneration, as well as the potential relationship between muscle and other tissues such as bone to control musculoskeletal development and growth, pointing out an interesting new line of research in this group of vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Joaquin Gutierrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
9
|
Wei Q, Wang Y, Liu Z, Liu M, Cao S, Jiang H, Xia J. Multienzyme Assembly on Caveolar Membranes In Cellulo. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qixin Wei
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yue Wang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhenjun Liu
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Min Liu
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sheng Cao
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Jiang
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry and Center for Cell & Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
10
|
Abstract
Several studies have reported a significant association between the metabolic syndrome (MetS) and mortality around the world. Caveolin-1 (CAV-1) has been widely studied in dyslipidaemia, and several studies have indicated that CAV-1 genetic variations may correlate with dietary intake of fatty acids. This study aimed to investigate the interaction of CAV-1 rs3807992 with types of dietary fatty acid in the MetS risk. This cross-sectional study was carried out on 404 overweight and obese females. Dietary intake was obtained from a 147-item FFQ. The CAV-1 genotype was measured using the PCR-restriction fragment length polymorphism method. Anthropometric values and serum levels (TC, LDL, HDL, TAG and FBS) were measured by standard methods. It was observed that the (AA + AG) group had significantly higher BMI, waist circumference and DBP (P = 0·02, P = 0·02, and P = 0·01, respectively) and lower serum LDL, HDL and TC (P < 0·05) than the GG group. It was found that A allele carriers were at higher odds of the MetS (P = 0·01), abdominal obesity (P = 0·06), increased TAG concentration (P = 0·01), elevated blood pressure (BP) (P = 0·01), increased glucose concentration (P = 0·45) and decreased HDL-cholesterol concentration (P = 0·03). Moreover, the interaction of CAV-1 and SFA intake was significant in terms of the MetS (P = 0·03), LDL (P = 0·03) and BP (P = 0·01). Additionally, the (AA + AG) group was significantly related to PUFA intake in terms of the MetS (P = 0·04), TAG (P = 0·02), glucose (P = 0·02) and homoeostasis model assessment insulin resistance (P = 0·01). Higher PUFA consumption might attenuate the CAV-1 rs3807992 associations with the MetS, and individuals with greater genetic predisposition appeared to have a higher risk of the MetS, associated with higher SFA consumption.
Collapse
|
11
|
Zaffina S, Piano Mortari E, Di Prinzio RR, Cappa M, Novelli A, Agolini E, Raponi M, Dallapiccola B, Locatelli F, Perno CF, Carsetti R. Case Report: Precision COVID-19 Immunization Strategy to Overcome Individual Fragility: A Case of Generalized Lipodystrophy Type 4. Front Immunol 2022; 13:869042. [PMID: 35464479 PMCID: PMC9020769 DOI: 10.3389/fimmu.2022.869042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
A 48-year-old patient affected with congenital generalized lipodystrophy type 4 failed to respond to two doses of the BNT162b2 vaccine, consisting of lipid nanoparticle encapsulated mRNA. As the disease is caused by biallelic variants of CAVIN1, a molecule indispensable for lipid endocytosis and regulation, we complemented the vaccination cycle with a single dose of the Ad26.COV2 vaccine. Adenovirus-based vaccine entry is mediated by the interaction with adenovirus receptors and transport occurs in clathrin-coated pits. Ten days after Ad26.COV2 administration, S- and RBD-specific antibodies and high-affinity memory B cells increased significantly to values close to those observed in Health Care Worker controls.
Collapse
Affiliation(s)
- Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Reparata Rosa Di Prinzio
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Cappa
- Unit of Endocrinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Sapienza, University of Rome, Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit and Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Microbiology and Diagnostic Immunology Unit and Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Yang L, Pierce S, Gould TW, Craviso GL, Leblanc N. Ultrashort nanosecond electric pulses activate a conductance in bovine adrenal chromaffin cells that involves cation entry through TRPC and NALCN channels. Arch Biochem Biophys 2022; 723:109252. [DOI: 10.1016/j.abb.2022.109252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022]
|
13
|
Jethwani P, Rao A, Bow L, Menon MC. Donor–Recipient Non-HLA Variants, Mismatches and Renal Allograft Outcomes: Evolving Paradigms. Front Immunol 2022; 13:822353. [PMID: 35432337 PMCID: PMC9012490 DOI: 10.3389/fimmu.2022.822353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 12/22/2022] Open
Abstract
Despite significant improvement in the rates of acute allograft rejection, proportionate improvements in kidney allograft longevity have not been realized, and are a source of intense research efforts. Emerging translational data and natural history studies suggest a role for anti-donor immune mechanisms in a majority of cases of allograft loss without patient death, even when overt evidence of acute rejection is not identified. At the level of the donor and recipient genome, differences in highly polymorphic HLA genes are routinely evaluated between donor and recipient pairs as part of organ allocation process, and utilized for patient-tailored induction and maintenance immunosuppression. However, a growing body of data have characterized specific variants in donor and recipient genes, outside of HLA loci, that induce phenotypic changes in donor organs or the recipient immune system, impacting transplant outcomes. Newer mechanisms for “mismatches” in these non-HLA loci have also been proposed during donor–recipient genome interactions with transplantation. Here, we review important recent data evaluating the role of non-HLA genetic loci and genome-wide donor-recipient mismatches in kidney allograft outcomes.
Collapse
Affiliation(s)
- Priyanka Jethwani
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Arundati Rao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Laurine Bow
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Madhav C. Menon
- Department of Medicine, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Madhav C. Menon,
| |
Collapse
|
14
|
Hawn MB, Akin E, Hartzell H, Greenwood IA, Leblanc N. Molecular mechanisms of activation and regulation of ANO1-Encoded Ca 2+-Activated Cl - channels. Channels (Austin) 2021; 15:569-603. [PMID: 34488544 PMCID: PMC8480199 DOI: 10.1080/19336950.2021.1975411] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 01/13/2023] Open
Abstract
Ca2+-activated Cl- channels (CaCCs) perform a multitude of functions including the control of cell excitability, regulation of cell volume and ionic homeostasis, exocrine and endocrine secretion, fertilization, amplification of olfactory sensory function, and control of smooth muscle cell contractility. CaCCs are the translated products of two members (ANO1 and ANO2, also known as TMEM16A and TMEM16B) of the Anoctamin family of genes comprising ten paralogs. This review focuses on recent progress in understanding the molecular mechanisms involved in the regulation of ANO1 by cytoplasmic Ca2+, post-translational modifications, and how the channel protein interacts with membrane lipids and protein partners. After first reviewing the basic properties of native CaCCs, we then present a brief historical perspective highlighting controversies about their molecular identity in native cells. This is followed by a summary of the fundamental biophysical and structural properties of ANO1. We specifically address whether the channel is directly activated by internal Ca2+ or indirectly through the intervention of the Ca2+-binding protein Calmodulin (CaM), and the structural domains responsible for Ca2+- and voltage-dependent gating. We then review the regulation of ANO1 by internal ATP, Calmodulin-dependent protein kinase II-(CaMKII)-mediated phosphorylation and phosphatase activity, membrane lipids such as the phospholipid phosphatidyl-(4,5)-bisphosphate (PIP2), free fatty acids and cholesterol, and the cytoskeleton. The article ends with a survey of physical and functional interactions of ANO1 with other membrane proteins such as CLCA1/2, inositol trisphosphate and ryanodine receptors in the endoplasmic reticulum, several members of the TRP channel family, and the ancillary Κ+ channel β subunits KCNE1/5.
Collapse
Affiliation(s)
- M. B. Hawn
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - E. Akin
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| | - H.C. Hartzell
- Department of Cell Biology, Emory University School of Medicine, USA
| | - I. A. Greenwood
- Department of Vascular Pharmacology, St. George’s University of London, UK
| | - N. Leblanc
- Department of Pharmacology and Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, United States
| |
Collapse
|
15
|
Generalized lipoatrophy syndromes. Presse Med 2021; 50:104075. [PMID: 34562560 DOI: 10.1016/j.lpm.2021.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 11/23/2022] Open
Abstract
Generalized lipodystrophy (GL) syndromes are a group of rare heterogenous disorders, characterized by total subcutaneous fat loss. The frequency of GL is currently assessed as approximately 0,23 cases per million of the population, in Europe - as 0,96 cases per million of the population. They can be congenital (CGL) or acquired (AGL) depending on the etiology and the time of the onset of fat loss. Both CGL and AGL are often associated with different metabolic complications, such as hypertriglyceridemia, insulin resistance and lipoatrophic diabetes mellitus, metabolically associated FLD, arterial hypertension, proteinuria, reproductive system disorders. In this review we aimed to summarize the information on all forms of generalized lipodystrophy, especially the ones of genetic etiology, their clinical manifestations and complications, the perspectives for diagnostics, treatment and further research.
Collapse
|
16
|
Mahendra Y, He M, Rouf MA, Tjakra M, Fan L, Wang Y, Wang G. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clin Biomech (Bristol, Avon) 2021; 88:105417. [PMID: 34246943 DOI: 10.1016/j.clinbiomech.2021.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.
Collapse
Affiliation(s)
- Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Longling Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
17
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
18
|
Shin EY, Soung NK, Schwartz MA, Kim EG. Altered endocytosis in cellular senescence. Ageing Res Rev 2021; 68:101332. [PMID: 33753287 PMCID: PMC8131247 DOI: 10.1016/j.arr.2021.101332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence occurs in response to diverse stresses (e.g., telomere shortening, DNA damage, oxidative stress, oncogene activation). A growing body of evidence indicates that alterations in multiple components of endocytic pathways contribute to cellular senescence. Clathrin-mediated endocytosis (CME) and caveolae-mediated endocytosis (CavME) represent major types of endocytosis that are implicated in senescence. More recent research has also identified a chromatin modifier and tumor suppressor that contributes to the induction of senescence via altered endocytosis. Here, molecular regulators of aberrant endocytosis-induced senescence are reviewed and discussed in the context of their capacity to serve as senescence-inducing stressors or modifiers.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea
| | - Nak-Kyun Soung
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang-eup, Cheongju, 28116, South Korea
| | - Martin Alexander Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, And Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06511, USA; Wellcome Trust Centre for Cell-matrix Research, University of Manchester, Manchester, UK.
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, 28644, South Korea.
| |
Collapse
|
19
|
Effect of Verapamil, an L-Type Calcium Channel Inhibitor, on Caveolin-3 Expression in Septic Mouse Hearts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6667074. [PMID: 33927797 PMCID: PMC8052133 DOI: 10.1155/2021/6667074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
Sepsis-induced myocardial dysfunction considerably increases mortality risk in patients with sepsis. Previous studies from our group have shown that sepsis alters the expression of structural proteins in cardiac cells, resulting in cardiomyocyte degeneration and impaired communication between cardiac cells. Caveolin-3 (CAV3) is a structural protein present in caveolae, located in the membrane of cardiac muscle cells, which regulates physiological processes such as calcium homeostasis. In sepsis, there is a disruption of calcium homeostasis, which increases the concentration of intracellular calcium, which can lead to the activation of potent cellular enzymes/proteases which cause severe cellular injury and death. The purpose of the present study was to test the hypotheses that sepsis induces CAV3 overexpression in the heart, and the regulation of L-type calcium channels directly relates to the regulation of CAV3 expression. Severe sepsis increases the expression of CAV3 in the heart, as immunostaining in our study showed CAV3 presence in the cardiomyocyte membrane and cytoplasm, in comparison with our control groups (without sepsis) that showed CAV3 presence predominantly in the plasma membrane. The administration of verapamil, an L-type calcium channel inhibitor, resulted in a decrease in mortality rates of septic mice. This effect was accompanied by a reduction in the expression of CAV3 and attenuation of cardiac lesions in septic mice treated with verapamil. Our results indicate that CAV3 has a vital role in cardiac dysfunction development in sepsis and that the regulation of L-type calcium channels may be related to its expression.
Collapse
|
20
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
21
|
Caveolin-3: A Causative Process of Chicken Muscular Dystrophy. Biomolecules 2020; 10:biom10091206. [PMID: 32825241 PMCID: PMC7565761 DOI: 10.3390/biom10091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022] Open
Abstract
The etiology of chicken muscular dystrophy is the synthesis of aberrant WW domain containing E3 ubiquitin-protein ligase 1 (WWP1) protein made by a missense mutation of WWP1 gene. The β-dystroglycan that confers stability to sarcolemma was identified as a substrate of WWP protein, which induces the next molecular collapse. The aberrant WWP1 increases the ubiquitin ligase-mediated ubiquitination following severe degradation of sarcolemmal and cytoplasmic β-dystroglycan, and an erased β-dystroglycan in dystrophic αW fibers will lead to molecular imperfection of the dystrophin-glycoprotein complex (DGC). The DGC is a core protein of costamere that is an essential part of force transduction and protects the muscle fibers from contraction-induced damage. Caveolin-3 (Cav-3) and dystrophin bind competitively to the same site of β-dystroglycan, and excessive Cav-3 on sarcolemma will block the interaction of dystrophin with β-dystroglycan, which is another reason for the disruption of the DGC. It is known that fast-twitch glycolytic fibers are more sensitive and vulnerable to contraction-induced small tears than slow-twitch oxidative fibers under a variety of diseased conditions. Accordingly, the fast glycolytic αW fibers must be easy with rapid damage of sarcolemma corruption seen in chicken muscular dystrophy, but the slow oxidative fibers are able to escape from these damages.
Collapse
|
22
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|
23
|
Reppetti J, Reca A, Seyahian EA, Medina Y, Martínez N, Szpilbarg N, Damiano AE. Intact caveolae are required for proper extravillous trophoblast migration and differentiation. J Cell Physiol 2019; 235:3382-3392. [DOI: 10.1002/jcp.29226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Julieta Reppetti
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Alejandra Reca
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - E. Abril Seyahian
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Yollyseth Medina
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Nora Martínez
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Natalia Szpilbarg
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
| | - Alicia E. Damiano
- Laboratorio de Biología de la Reproducción, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO)‐CONICET‐ Facultad de Medicina Universidad de Buenos Aires Buenos Aires Argentina
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Buenos Aires Argentina
| |
Collapse
|
24
|
Pennington MR, Saha A, Painter DF, Gavazzi C, Ismail AM, Zhou X, Chodosh J, Rajaiya J. Disparate Entry of Adenoviruses Dictates Differential Innate Immune Responses on the Ocular Surface. Microorganisms 2019; 7:E351. [PMID: 31540200 PMCID: PMC6780103 DOI: 10.3390/microorganisms7090351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Human adenovirus infection of the ocular surface is associated with severe keratoconjunctivitis and the formation of subepithelial corneal infiltrates, which may persist and impair vision for months to years following infection. Long term pathology persists well beyond the resolution of viral replication, indicating that the prolonged immune response is not virus-mediated. However, it is not clear how these responses are sustained or even initiated following infection. This review discusses recent work from our laboratory and others which demonstrates different entry pathways specific to both adenovirus and cell type. These findings suggest that adenoviruses may stimulate specific pattern recognition receptors in an entry/trafficking-dependent manner, leading to distinct immune responses dependent on the virus/cell type combination. Additional work is needed to understand the specific connections between adenoviral entry and the stimulation of innate immune responses by the various cell types present on the ocular surface.
Collapse
Affiliation(s)
- Matthew R Pennington
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Amrita Saha
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - David F Painter
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Christina Gavazzi
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Xiaohong Zhou
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Buyang Huanwu Decoction Exerts Cardioprotective Effects through Targeting Angiogenesis via Caveolin-1/VEGF Signaling Pathway in Mice with Acute Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4275984. [PMID: 31178960 PMCID: PMC6501136 DOI: 10.1155/2019/4275984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 11/18/2022]
Abstract
Background Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The idea of therapeutic angiogenesis in ischemic myocardium is a promising strategy for MI patients. Buyang Huanwu decoction (BHD), a famous Chinese herbal prescription, exerted antioxidant, antiapoptotic, and anti-inflammatory effects, which contribute to cardio-/cerebral protection. Here, we aim to investigate the effects of BHD on angiogenesis through the caveolin-1 (Cav-1)/vascular endothelial growth factor (VEGF) pathway in MI model of mice. Materials and Methods C57BL/6 mice were randomly divided into 3 groups by the table of random number: (1) sham-operated group (sham, n = 15), (2) AMI group (AMI+sham, n = 20), and (3) BHD-treated group (AMI+BHD, n = 20). 2,3,5-Triphenyltetrazolium chloride solution stain was used to determine myocardial infarct size. Myocardial histopathology was tested using Masson staining and hematoxylin-eosin staining. CD31 immunofluorescence staining was used to analyze the angiogenesis in the infarction border zone. Western blot analysis, immunofluorescence staining, and/or real-time quantitative reverse transcription polymerase chain reaction was applied to test the expression of Cav-1, VEGF, vascular endothelial growth factor receptor 2 (VEGFR2), and/or phosphorylated extracellular signal-regulated kinase (p-ERK). All statistical analyses were performed using the SPSS 20.0 software and GraphPad Prism 6.05. Values of P < 0.05 were considered as statistically significant. Results and Conclusion Compared with the AMI group, the BHD-treated group showed a significant improvement in the heart weight/body weight ratio, echocardiography images, cardiac function, infarct size, Mason staining of the collagen deposition area, and density of microvessel in the infarction border zone (P < 0.05). Compared with the AMI group, BHD promoted the expression of Cav-1, VEGF, VEGFR2, and p-ERK in the infarction border zone after AMI. BHD could exert cardioprotective effects on the mouse model with AMI through targeting angiogenesis via Cav-1/VEGF signaling pathway.
Collapse
|
26
|
Rodríguez Zorrilla S, Pérez-Sayans M, Fais S, Logozzi M, Gallas Torreira M, García García A. A Pilot Clinical Study on the Prognostic Relevance of Plasmatic Exosomes Levels in Oral Squamous Cell Carcinoma Patients. Cancers (Basel) 2019; 11:cancers11030429. [PMID: 30917536 PMCID: PMC6468603 DOI: 10.3390/cancers11030429] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background: To evaluate the relationship between the plasmatic CD63 and CAV1 positive exosome levels, in patients with OSCC before and after surgical treatment and to correlate it with their overall survival. Methods: A double-blind pilot study over 10 patients OSCC and T4 stage without distant metastases or local bone invasion has been performed. The average follow-up period was 37.64 months (34.3–40.84). We obtained 2 plasma tubes of 1 mL each before surgery and 7 days after surgery. Before performing the immunocapture-based analysis, EVs (Extracellular Vesicles) were isolated from the plasma and characterized with western blot analysis. Results: Mean values of CD63 positive plasmatic exosomes (EXO-CD63) after surgery decreased from 750.88 ± 286.67 to 541.71 ± 244.93 (p = 0.091). On the other hand, CAV-1 positive plasmatic exosomes (EXO-CAV-1) increased after surgery from 507 ± 483.39 to 1120.25 ± 1151.17 (p = 0.237). Patients with EXO-CD63 levels lower than the mean global value before the surgery had a survival of 36.04 months compared with the group with EXO-CD63 higher than the average who only survived 12.49 ± 1.67 months from the diagnosis, p = 0.225. When EXO-CAV-1 levels before surgery was lower than the average (813.94 ± 801.21) overall survival was 24.69 ± 22.23 months in contrast when it was higher that was only 11.64 months, p = 0.157. Patients with lower EXO-CD63 levels after surgery lived an average of 23.84 ± 23.9 months, while those with higher plasmatic levels of EXO-CD63 live 13.35 months, p = 0.808. When EXO-CAV-1 levels after surgery were lower, the average overall survival was 20.344 ± 15.40 months, in contrast when the EXO-CAV-1 levels were higher showing rather an estimate survival expectation of 1.64 months. Conclusions: Surgical treatment induced a dramatic reduction of the plasmatic levels of exosomes expressing CD63 as early as 1 week after resection. This first result suggests that the tumour mass is responsible of the high levels of circulating exosomes detected in cancer patients. At the same time point exosome expressing CAV-1 increased, possibly due to the inflammatory reaction immediately after surgery. Lastly, statistical analysis showed that lower levels of plasmatic exosomes both before and after surgery correlated with a better life expectancy of OSCC patients. Hopefully, this approach will prove useful in the clinical follow-up of cancer patients.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
| | - Mario Pérez-Sayans
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706 Coruña, Spain.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanitá, 00161 Rome, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanitá, 00161 Rome, Italy.
| | - Mercedes Gallas Torreira
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
| | - Abel García García
- Oral Medicine, Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela, 15782 Galicia, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15706 Coruña, Spain.
| |
Collapse
|
27
|
Craveiro Sarmento AS, Ferreira LC, Lima JG, de Azevedo Medeiros LB, Barbosa Cunha PT, Agnez-Lima LF, Galvão Ururahy MA, de Melo Campos JTA. The worldwide mutational landscape of Berardinelli-Seip congenital lipodystrophy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:30-52. [PMID: 31416577 DOI: 10.1016/j.mrrev.2019.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/26/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare disease characterized by the near total absence of body fat at birth. BSCL etiology involves genetic variations in four different genes: AGPAT2, BSCL2, CAV1, and CAVIN1. The four different biochemical subtypes of the disease are distinguished depending on which gene is mutated. The diagnosis of lipodystrophy can be based on clinical criteria, but the gold standard remains genetic testing. Since many different mutations have already been correlated with the onset of the disease, the most indicative method is DNA sequencing. However, not all laboratories have the resources to perform sequencing. Thus, less expensive techniques that include narrow gene regions may be applied. In such cases, the target mutations to be tested must be carefully determined taking into account the frequency of the description of the mutations in the literature, the nationality of the patient, as well as their phenotype. This review considers the molecular basis of BSCL, including the manual count of the majority of mutations reported in the literature up to the year 2018. Ninety different genetic mutations in 332 cases were reported at different frequencies. Some mutations were distributed homogeneously and others were specific to geographic regions. Type 2 BSCL was mentioned most often in the literature (50.3% of the cases), followed by Type 1 (38.0%), Type 4 (10.2%), and Type 3 (1.5%). The mutations comprised frameshifts (34.4%), nonsense (26.6%), and missense (21.1%). The c.517dupA in the BSCL2 gene was the most frequent (13.3%), followed by c.589-2A>G in the AGPAT2 gene (11.5%), c.507_511delGTATC in the BSCL2 gene (9.7%), c.317-588del in the AGPAT2 gene (7.3%), and c.202C>T in the AGPAT2 gene (4.5%). This information should prove valuable for analysts in making decisions regarding the best therapeutic targets in a population-specific context, which will benefit patients and enable faster and less expensive treatment.
Collapse
Affiliation(s)
- Aquiles Sales Craveiro Sarmento
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Leonardo Capistrano Ferreira
- Instituto de Medicina Tropical, Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Josivan Gomes Lima
- Departamento de Medicina Clínica, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Lázaro Batista de Azevedo Medeiros
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Marcela Abbott Galvão Ururahy
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Julliane Tamara Araújo de Melo Campos
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
28
|
Qu C, Sun J, Liu Y, Wang X, Wang L, Han C, Chen Q, Guan T, Li H, Zhang Y, Wang Y, Liu J, Zou W, Liu J. Caveolin-1 facilitated KCNA5 expression, promoting breast cancer viability. Oncol Lett 2018; 16:4829-4838. [PMID: 30250548 PMCID: PMC6144920 DOI: 10.3892/ol.2018.9261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Potassium voltage-gated channel subfamily A member 5 (KCNA5) is a voltage-gated potassium channel protein encoded by the KCNA5 gene. A large number of studies have shown that KCNA5 is associated with the survival of malignant tumors, including breast cancer, but the detailed mechanism remains inconclusive. Our previous study found that KCNA5 is co-expressed with a scaffolding protein, caveolin-1 in MCF-10A-neoT non-tumorigenic epithelial cell. In the present study, KCNA5 and caveolin-1 were expressed in breast cancer tissues and cell lines. Exposing MCF-10A-neoT to 2 mM of methyl-β-cyclodextrin, an agent to disrupt caveolae and lipid rafts led to a downregulation of caveolin-1 that reduced the expression of KCNA5. Furthermore, following caveolin-1 knockdown, the expression of KCNA5 was decreased in MDA-MB-231 human breast cancer and MCF-10A-neoT non-tumorigenic epithelial cell lines. In subsequent experiments, the MTT assay showed that increased caveolin-1 and KCNA5 expression promoted the survival of MCF-7 human breast cancer cells, but cell survival was not affected following KCNA5 overexpression alone. Using small interfering RNA technology, KCNA5-silenced MCF-10A-neoT cells were established and a decreased level of phosphorylated-AKT serine/threonine kinase (AKT) was observed in the cells compared with the parental cells. Overall, these results suggested that caveolin-1 facilitated KCNA5 expression and may be associated with AKT activation.
Collapse
Affiliation(s)
- Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116085, P.R. China.,No. 210 Hospital of Chinese People's Liberation Army, Dalian, Liaoning 116021, P.R. China
| | - Jia Sun
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Ying Liu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xiaobo Wang
- No. 210 Hospital of Chinese People's Liberation Army, Dalian, Liaoning 116021, P.R. China
| | - Lifen Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Chao Han
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116085, P.R. China
| | - Qian Chen
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Tianhui Guan
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yang Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jia Liu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Jing Liu
- Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116085, P.R. China
| |
Collapse
|
29
|
Ho YT, Kamm RD, Kah JCY. Influence of protein corona and caveolae-mediated endocytosis on nanoparticle uptake and transcytosis. NANOSCALE 2018; 10:12386-12397. [PMID: 29926047 DOI: 10.1039/c8nr02393j] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transcytosis of nanoparticles (NPs) is emerging as an attractive alternative to the paracellular route in cancer drug delivery with studies suggesting targeting caveolae-mediated endocytosis to maximize NP transcytosis. However, there are limited studies on transcytosis of NPs, especially for corona-coated NPs. Most studies focused on cellular uptake as an indirect measure of the NP's transcellular permeability (Pd). Here, we probed the effect of protein corona on the uptake and transcytosis of 20, 40, 100, and 200 nm polystyrene nanoparticles (pNP-PC) across HUVECs in a microfluidic channel that modelled the microvasculature. We observed increased cell uptake with size of pNP-PC although it was the smallest 20 nm pNP-PC that exhibited the highest transcellular Pd. In the absence of corona however, cell uptake decreased with size, and the largest 200 nm pNP-PEG exhibited the lowest transcellular Pd. By inhibiting caveolae-mediated endocytosis in HUVECs, smaller pNPs had a larger drop in cell uptake than larger pNPs, regardless of surface coating. However, only the smallest (20 nm) and largest (200 nm) pNP-PC had a decrease in Pd following inhibition with MβCD. Our findings showed that the protein corona affected the transcytosis of NPs, and their uptake by caveolae-mediated endocytosis did not necessarily lead to transcytosis.
Collapse
Affiliation(s)
- Yan Teck Ho
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|
30
|
Słuczanowska-Głąbowska S, Malinowski D, Safranow K, Domański L, Czerewaty M, Ustianowski P, Laszczyńska M, Pawlik A. Caveolin-1 rs4730751 gene polymorphism in kidney allograft recipients. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter RJ, Hemati K, Ghaznavi H, Mehrzadi S. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin. Life Sci 2018; 201:17-29. [PMID: 29567077 DOI: 10.1016/j.lfs.2018.03.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health, San Antonio, TX, USA
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Alterations in endocytic protein expression with increasing age in the transgenic APP695 V717I London mouse model of amyloid pathology. Neuroreport 2017; 28:963-968. [DOI: 10.1097/wnr.0000000000000861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Nguyen KCT, Cho KA. Versatile Functions of Caveolin-1 in Aging-related Diseases. Chonnam Med J 2017; 53:28-36. [PMID: 28184336 PMCID: PMC5299127 DOI: 10.4068/cmj.2017.53.1.28] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) is a trans-membrane protein that is a major component of the caveolae structure on the plasma membrane. Cav-1 is involved in the regulation of various cellular processes, including cell growth, differentiation, endocytosis, and in particular it has been implied in cellular senescence. Here we review current knowledge about Cav-1 in cellular signaling and discuss the role of Cav-1 in aging-related diseases.
Collapse
Affiliation(s)
- Kim Cuc Thi Nguyen
- Deparment of Life Science, ThaiNguyen University of Science, TanThinh Ward, ThaiNguyen, VietNam
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
34
|
Subedi KP, Ong HL, Ambudkar IS. Assembly of ER-PM Junctions: A Critical Determinant in the Regulation of SOCE and TRPC1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:253-276. [PMID: 29594865 DOI: 10.1007/978-3-319-55858-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Store-operated calcium entry (SOCE), a unique plasma membrane Ca2+ entry mechanism, is activated when ER-[Ca2+] is decreased. SOCE is mediated via the primary channel, Orai1, as well as others such as TRPC1. STIM1 and STIM2 are ER-Ca2+ sensor proteins that regulate Orai1 and TRPC1. SOCE requires assembly of STIM proteins with the plasma membrane channels which occurs within distinct regions in the cell that have been termed as endoplasmic reticulum (ER)-plasma membrane (PM) junctions. The PM and ER are in close proximity to each other within this region, which allows STIM1 in the ER to interact with and activate either Orai1 or TRPC1 in the plasma membrane. Activation and regulation of SOCE involves dynamic assembly of various components that are involved in mediating Ca2+ entry as well as those that determine the formation and stabilization of the junctions. These components include proteins in the cytosol, ER and PM, as well as lipids in the PM. Recent studies have also suggested that SOCE and its components are compartmentalized within ER-PM junctions and that this process might require remodeling of the plasma membrane lipids and reorganization of structural and scaffolding proteins. Such compartmentalization leads to the generation of spatially- and temporally-controlled Ca2+signals that are critical for regulating many downstream cellular functions.
Collapse
Affiliation(s)
- Krishna P Subedi
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Hwei Ling Ong
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA
| | - Indu S Ambudkar
- Secretory Physiology Section, Molecular Physiology and Therapeutics Branch, NIDCR, NIH, Bethesda, MD, USA.
| |
Collapse
|
35
|
Callera GE, Bruder-Nascimento T, Touyz RM. Assessment of Caveolae/Lipid Rafts in Isolated Cells. Methods Mol Biol 2017; 1527:251-269. [PMID: 28116722 DOI: 10.1007/978-1-4939-6625-7_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter outlines protocols to evaluate protein localization, recruitment or phosphorylation levels in cholesterol/sphingolipids-enriched cell membrane domains and recommends experimental designs with pharmacological tolls to evaluate potential cell functions associated with these domains. We emphasize the need for the combination of several approaches towards understanding the protein components and cellular functions attributed to these distinct microdomains.
Collapse
Affiliation(s)
- G E Callera
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Thiago Bruder-Nascimento
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - R M Touyz
- Kidney Research Centre, Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada. .,Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK.
| |
Collapse
|
36
|
Shimizu K, Kirita K, Aokage K, Kojima M, Hishida T, Kuwata T, Fujii S, Ochiai A, Funai K, Yoshida J, Tsuboi M, Ishii G. Clinicopathological significance of caveolin-1 expression by cancer-associated fibroblasts in lung adenocarcinoma. J Cancer Res Clin Oncol 2016; 143:321-328. [PMID: 27771795 DOI: 10.1007/s00432-016-2285-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
37
|
Molecular Changes Associated with the Protective Effects of Angiopoietin-1 During Blood-Brain Barrier Breakdown Post-Injury. Mol Neurobiol 2016; 54:4232-4242. [DOI: 10.1007/s12035-016-9973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/09/2016] [Indexed: 11/30/2022]
|
38
|
Asker S, Taspinar M, Koyun H, Ozbay B, Arisoy A. Caveolin-1 polymorphisms in patients with severe obstructive sleep apnea. Biomarkers 2016; 22:77-80. [PMID: 27321703 DOI: 10.1080/1354750x.2016.1204007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate the associations of G14713A and T29107A polymorphic variants of Caveolin-1 with severe obstructive sleep apnea (OSA). MATERIALS AND METHODS This study was performed on 86 severe OSA patients and 86 controls. Genotyping was performed to investigate the association of G14713A and T29107A polymorphisms of Caveolin-1 with severe OSA. RESULTS The distribution of genotypes of T29107A was significantly different between controls and OSA patients with a higher proportion of TT carriers in the OSA group. CONCLUSION T29107A-specific genotype of Caveolin-1 may be linked with severe OSA pathogenesis.
Collapse
Affiliation(s)
- Selvi Asker
- a Department of Chest Diseases , Yuzuncu Yil University School of Medicine , Van , Turkey
| | - Mehmet Taspinar
- b Department of Medical Biology , Yuzuncu Yil University School of Medicine , Van , Turkey
| | - Hasan Koyun
- c Biometry and Genetic Unit, Faculty of Agriculture , Yuzuncu Yil University , Van , Turkey
| | - Bulent Ozbay
- d Department of Chest Diseases , Mugla Sitki Kocman University School of Medicine , Mugla , Turkey
| | - Ahmet Arisoy
- a Department of Chest Diseases , Yuzuncu Yil University School of Medicine , Van , Turkey
| |
Collapse
|
39
|
Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci 2016; 157:52-61. [PMID: 27245276 DOI: 10.1016/j.lfs.2016.05.036] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
The Src-family kinases (SFKs), an intracellularly located group of non-receptor tyrosine kinases are involved in oncogenesis. The importance of SFKs has been implicated in the promotion of tumor cell motility, proliferation, inhibition of apoptosis, invasion and metastasis. Recent evidences indicate that specific effects of SFKs on epithelial-to-mesenchymal transition (EMT) as well as on endothelial and stromal cells in the tumor microenvironment can have profound effects on tumor microinvasion and metastasis. Although, having been studied extensively, these novel features of SFKs may contribute to greater understanding of benefits from Src inhibition in various types of cancers. Here we review the novel role of SFKs, particularly c-Src in mediating EMT, modulation of tumor endothelial-barrier, transendothelial migration (microinvasion) and metastasis of cancer cells, and discuss the utility of Src inhibitors in vascular normalization and cancer therapy.
Collapse
Affiliation(s)
- Ami Patel
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Harika Sabbineni
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Andrea Clarke
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States
| | - Payaningal R Somanath
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States; Department of Medicine, Vascular Biology Center and Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
40
|
Probing the structure and dynamics of caveolin-1 in a caveolae-mimicking asymmetric lipid bilayer model. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:511-21. [DOI: 10.1007/s00249-016-1118-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 12/09/2015] [Accepted: 02/10/2016] [Indexed: 01/28/2023]
|
41
|
Cheng CY, Tu WL, Wang SH, Tang PC, Chen CF, Chen HH, Lee YP, Chen SE, Huang SY. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress. PLoS One 2015; 10:e0143418. [PMID: 26587838 PMCID: PMC4654548 DOI: 10.1371/journal.pone.0143418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/04/2015] [Indexed: 12/19/2022] Open
Abstract
This study investigated global gene expression in the small yellow follicles (6-8 mm diameter) of broiler-type B strain Taiwan country chickens (TCCs) in response to acute heat stress. Twelve 30-wk-old TCC hens were divided into four groups: control hens maintained at 25°C and hens subjected to 38°C acute heat stress for 2 h without recovery (H2R0), with 2-h recovery (H2R2), and with 6-h recovery (H2R6). Small yellow follicles were collected for RNA isolation and microarray analysis at the end of each time point. Results showed that 69, 51, and 76 genes were upregulated and 58, 15, 56 genes were downregulated after heat treatment of H2R0, H2R2, and H2R6, respectively, using a cutoff value of two-fold or higher. Gene ontology analysis revealed that these differentially expressed genes are associated with the biological processes of cell communication, developmental process, protein metabolic process, immune system process, and response to stimuli. Upregulation of heat shock protein 25, interleukin 6, metallopeptidase 1, and metalloproteinase 13, and downregulation of type II alpha 1 collagen, discoidin domain receptor tyrosine kinase 2, and Kruppel-like factor 2 suggested that acute heat stress induces proteolytic disintegration of the structural matrix and inflamed damage and adaptive responses of gene expression in the follicle cells. These suggestions were validated through gene expression, using quantitative real-time polymerase chain reaction. Functional annotation clarified that interleukin 6-related pathways play a critical role in regulating acute heat stress responses in the small yellow follicles of TCC hens.
Collapse
Affiliation(s)
- Chuen-Yu Cheng
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Lin Tu
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Han Wang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Hsin Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Pai Lee
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Shuen-Ei Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| | - San-Yuan Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Center for the Integrative and Evolutionary Galliformes Genomics, iEGG Center, National Chung Hsing University, Taichung, Taiwan
- Center of Nanoscience and Nanotechnology, National Chung Hsing University, Taichung, Taiwan
- * E-mail: (SEC); (SYH)
| |
Collapse
|
42
|
Chand S, Edwards NC, Chue CD, Jesky M, Stringer S, Simmonds MJ, Duff CE, Cockwell P, Harper L, Steeds RP, Townend JN, Ferro CJ, Borrows R. Caveolin-1 single-nucleotide polymorphism and arterial stiffness in non-dialysis chronic kidney disease. Nephrol Dial Transplant 2015; 31:1140-4. [PMID: 26433014 DOI: 10.1093/ndt/gfv350] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/30/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arteriosclerosis is an independent predictor of increased cardiovascular mortality in chronic kidney disease (CKD). Histologically it is characterized by hypertrophy and fibrosis of the arterial media wall leading to increased arterial stiffness and end-organ damage. Caveolin-1 acts as an intracellular signalling pathway chaperone in human fibrotic and vascular diseases. The purpose of this study was to assess the association between caveolin-1 (CAV1) single-nucleotide polymorphism (SNP) rs4730751 and arterial stiffness as measured by arterial pulse wave velocity (PWV) in an early-stage CKD cohort and in a cohort with more severe CKD. METHODS Two prospectively maintained patient cohorts with non-dialysis CKD were studied: 144 patients in the Chronic Renal Impairment in Birmingham (CRIB) cohort and 147 patients in the Renal Impairment in Secondary Care (RIISC) cohort, with matched exclusion criteria and DNA sampling availability. At entry to each cohort database, each patient's initial arterial PWV was measured, as well as their anthropomorphic and biochemical data. CAV1 rs4730751 SNP genotyping was performed using Taqman technology. RESULTS The CAV1 rs4730751 SNP CC genotype was associated with lower arterial PWV in both CRIB early stage CKD patients [8.1 versus 8.6 m/s; coefficient -0.780 (-1.412, -0.149); P = 0.016] and RIISC more advanced stage CKD patients [8.7 versus 9.4 m/s; coefficient -0.695 (-1.288, -0.102); P = 0.022]; these relationships held following adjustment for other important confounders. CONCLUSIONS This replicated study suggests potential utility of the studied CAV1 SNP as a genetic biomarker in CKD and a role for CAV1 in the development of arteriosclerosis in this setting. Further studies are warranted to further explore the basic science driving these clinical observations.
Collapse
Affiliation(s)
- Sourabh Chand
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - Nicola C Edwards
- Department of Cardiology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Colin D Chue
- Department of Cardiology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Mark Jesky
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - Stephanie Stringer
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - Matthew J Simmonds
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Claire E Duff
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Paul Cockwell
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - Lorraine Harper
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - Richard P Steeds
- Department of Cardiology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Jonathan N Townend
- Department of Cardiology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Charles J Ferro
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| | - Richard Borrows
- Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK Centre for Translational Inflammation Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
43
|
Ong HL, Ambudkar IS. Molecular determinants of TRPC1 regulation within ER–PM junctions. Cell Calcium 2015; 58:376-86. [DOI: 10.1016/j.ceca.2015.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/30/2022]
|
44
|
Nakayachi M, Ito J, Hayashida C, Ohyama Y, Kakino A, Okayasu M, Sato T, Ogasawara T, Kaneda T, Suda N, Sawamura T, Hakeda Y. Lectin-like oxidized low-density lipoprotein receptor-1 abrogation causes resistance to inflammatory bone destruction in mice, despite promoting osteoclastogenesis in the steady state. Bone 2015; 75:170-82. [PMID: 25744064 DOI: 10.1016/j.bone.2015.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/19/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Inflammatory bone diseases have been attributed to increased bone resorption by augmented and activated bone-resorbing osteoclasts in response to inflammation. Although the production of diverse proinflammatory cytokines is induced at the inflamed sites, the inflammation also generates reactive oxygen species that modify many biological compounds, including lipids. Among the oxidized low-density lipoprotein (LDL) receptors, lectin-like oxidized LDL receptor-1 (LOX-1), which is a key molecule in the pathogenesis of multifactorial inflammatory atherosclerosis, was downregulated with osteoclast differentiation. Here, we demonstrate that LOX-1 negatively regulates osteoclast differentiation by basically suppressing the cell-cell fusion of preosteoclasts. The LOX-1-deleted (LOX-1(-/-)) mice consistently decreased the trabecular bone mass because of elevated bone resorption during the growing phase. In contrast, when the calvaria was inflamed by a local lipopolysaccharide-injection, the inflammation-induced bone destruction accompanied by the elevated expression of osteoclastogenesis-related genes was reduced by LOX-1 deficiency. Moreover, the expression of receptor activator of NF-κB ligand (RANKL), a trigger molecule for osteoclast differentiation, evoked by the inflammation was also abrogated in the LOX-1(-/-) mice. Osteoblasts, the major producers of RANKL, also expressed LOX-1 in response to proinflammatory agents, interleukin-1β and prostaglandin E2. In the co-culture of LOX-1(-/-) osteoblasts and wild-type osteoclast precursors, the osteoclastogenesis induced by interleukin-1β and prostaglandin E2 decreased; this process occurred in parallel with the downregulation of osteoblastic RANKL expression. Collectively, LOX-1 abrogation results in resistance to inflammatory bone destruction, despite promoting osteoclastogenesis in the steady state. Our findings indicate the novel involvement of LOX-1 in physiological bone homeostasis and inflammatory bone diseases.
Collapse
Affiliation(s)
- Mai Nakayachi
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; Division of Orthodontics, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Junta Ito
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan.
| | - Chiyomi Hayashida
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Yoko Ohyama
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; Division of Oral and Maxillofacial Surgery, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Akemi Kakino
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan
| | - Mari Okayasu
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan; Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Takuya Sato
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Toru Ogasawara
- Division of Oral-maxillofacial Surgery, Dentistry and Orthodontics, The University of Tokyo Hospital, Hongo, Tokyo 113-8655, Japan
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara, Tokyo 142-8501, Japan
| | - Naoto Suda
- Division of Orthodontics, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | - Tatsuya Sawamura
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka 565-8565, Japan; Department of Physiology, Shinshu University School of Medicine, Matsumoto, Nagano 390-8621, Japan
| | - Yoshiyuki Hakeda
- Division of Oral Anatomy, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan.
| |
Collapse
|
45
|
Yu Q, Chen X, Fang X, Chen Q, Hu C. Caveolin-1 aggravates cigarette smoke extract-induced MUC5AC secretion in human airway epithelial cells. Int J Mol Med 2015; 35:1435-42. [PMID: 25776934 DOI: 10.3892/ijmm.2015.2133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Airway mucus hypersecretion is a major pathological characteristic of chronic obstructive pulmonary disease (COPD), and cigarette smoke is highly implicated in mucus secretion and the development of COPD. Cigarette smoke reportedly induces mucin overproduction through the epidermal growth factor receptor (EGFR) in the airway epithelium; however, the underlying mechanisms responsible for the activation of EGFR remain unknown. Caveolin-1, a component protein in the cytomembrane, reportedly regulates airway inflammation and lung injury. In this study, we aimed to determine whether caveolin-1 modulates mucin hyperproduction induced by cigarette smoke. Our results revealed that cigarette smoke extract (CSE) significantly increased MUC5AC production, as well as the levels of phosphorylated EGFR (p-EGFR) and phosphorylated Akt (p-Akt) in human bronchial epithelial cells (16HBE cells), as shown by ELISA, RT-PCR and western blot analysis. These effects were prevented by treatment with EGFR inhibitor (AG1478) and phosphatidylinostol-3-kinase (PI3K) inhibitor (LY294002). We also found that the overexpression of caveolin-1 enhanced the expression of MUC5AC, p-EGFR and p-Akt induced by CSE. Conversely, the downregulation of caveolin-1 by siRNA against caveolin-1 inhibited the expression of MUC5AC, p-EGFR and p-Akt. Taken together, our data suggest that caveolin-1 enhances CSE-induced MUC5AC hypersecretion through the EGFR/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Qiao Yu
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xi Chen
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Chengping Hu
- Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
46
|
Wang XY, Lei R, Huang HD, Wang N, Yuan L, Xiao RY, Bai LD, Li X, Li LM, Yang XD. The permeability and transport mechanism of graphene quantum dots (GQDs) across the biological barrier. NANOSCALE 2015; 7:2034-41. [PMID: 25553649 DOI: 10.1039/c4nr04136d] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As an emerging nanomaterial, graphene quantum dots (GQDs) have shown enormous potential in theranostic applications. However, many aspects of the biological properties of GQDs require further clarification. In the present work, we prepared two sizes of GQDs and for the first time investigated their membrane permeabilities, one of the key factors of all biomedical applications, and transport mechanisms on a Madin Darby Canine Kidney (MDCK) cell monolayer. The experimental results revealed that under ∼300 mg L(-1), GQDs were innoxious to MDCK and did not affect the morphology and integrity of the cell monolayer. The Papp values were determined to be 1-3 × 10(-6) cm s(-1) for the 12 nm GQDs and 0.5-1.5 × 10(-5) cm s(-1) for the 3 nm GQDs, indicating that the 3 nm GQDs are well-transported species while the 12 nm GQDs have a moderate membrane permeability. The transport and uptake of GQDs by MDCK cells were both time and concentration-dependent. Moreover, the incubation of cells with GQDs enhanced the formation of lipid rafts, while inhibition of lipid rafts with methyl-β-cyclodextrin almost eliminated the membrane transport of GQDs. Overall, the experimental results suggested that GQDs cross the MDCK cell monolayer mainly through a lipid raft-mediated transcytosis. The present work has indicated that GQDs are a novel, low-toxic, highly-efficient general carrier for drugs and/or diagnostic agents in biomedical applications.
Collapse
Affiliation(s)
- Xin-Yi Wang
- State Key laboratories of Natural and Mimetic Drugs and Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vered M, Lehtonen M, Hotakainen L, Pirilä E, Teppo S, Nyberg P, Sormunen R, Zlotogorski-Hurvitz A, Salo T, Dayan D. Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: an in-vivo and in-vitro study. BMC Cancer 2015; 15:25. [PMID: 25633184 PMCID: PMC4318139 DOI: 10.1186/s12885-015-1030-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Background Caveolin-1 (CAV1) may be upregulated by hypoxia and acts in a tumor-dependent manner. We investigated CAV1 in tongue squamous cell carcinoma (TSCC) and its association with clinical outcomes, and studied in vitro possible ways for CAV1 accumulation in the tumor microenvironment (TME). Methods TSCC cases (N = 64) were immunohistochemically stained for CAV1. Scores were separately assessed in the tumor and TME and plotted for association with recurrence and survival (univariate analysis with log-rank test). In vitro studies were performed on a 3D myoma organotypic model, a mimicker of TME. Prior to monoculturing HSC-3 tongue cancer cells, the model underwent modifications in oxygenation level (1%O2 hypoxia to upregulate CAV1) and/or in the amount of natural soluble factors [deleted by 14-day rinsing (rinsed myoma, RM), to allow only HSC-3-derived factors to act]. Controls included normoxia (21%O2) and naturally occurring soluble factors (intact myoma, IM). HSC-3 cells were also co-cultured with CaDEC12 cells (fibroblasts exposed to human tongue cancer). CAV1 expression and cellular distribution were examined in different cellular components in hypoxic and rinsed myoma assays. Twist served as a marker for the process of epithelial-mesenchymal transition (EMT). Exosomes isolated from HSC-3 media were investigated for containing CAV1. Results Expression of CAV1 in TSCC had a higher score in TME than in the tumor cells and a negative impact on recurrence (p = 0.01) and survival (p = 0.003). Monocultures of HSC-3 revealed expression of CAV1 mainly in the TME-like myoma assay, similar to TSCC. CAV1+, alpha-smooth muscle actin (αSMA) + and Twist + CAF-like cells were observed surrounding the invading HSC-3, possibly reflecting EMT. RM findings were similar to IM, inferring action of HSC-3 derived factors, and no differences were seen when hypoxia was induced. HSC-3-CaDEC12 co-cultures revealed CAV1+, αSMA+ and cytokeratin-negative CAF-like cells, raising the possibility of CaDEC12 cells gaining a CAF phenotype. HSC-3-derived exosomes were loaded with CAV1. Conclusions Accumulation of CAV1-TME in TSCC had a negative prognostic value. In vitro studies showed the presence of CAV1 in cancer cells undergoing EMT and in fibroblasts undergoing trans-differentiation to CAFs. CAV1 delivery to the TME involved cancer cell-derived exosomes.
Collapse
Affiliation(s)
- Marilena Vered
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel. .,Institute of Pathology, The Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | - Meri Lehtonen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Lari Hotakainen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Emma Pirilä
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Susanna Teppo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland.
| | - Pia Nyberg
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland. .,Oulu University Hospital, Oulu, Finland.
| | - Raija Sormunen
- Biocenter Oulu, University of Oulu, Oulu, Finland. .,Medical Research Center, Oulu, Finland.
| | - Ayelet Zlotogorski-Hurvitz
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, University of Oulu, Oulu, Finland. .,Oulu University Hospital, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland. .,Medical Research Center, Oulu, Finland. .,Institute of Dentistry, University of Helsinki, Helsinki, Finland.
| | - Dan Dayan
- Department of Oral Pathology and Oral Medicine, School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
48
|
|
49
|
Burns EM, Elmets CA, Yusuf N. Vitamin D and skin cancer. Photochem Photobiol 2014; 91:201-9. [PMID: 25378147 DOI: 10.1111/php.12382] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022]
Abstract
Vitamin D signaling plays a key role in many important processes, including cellular proliferation, differentiation and apoptosis, immune regulation, hormone secretion and skeletal health. Furthermore, vitamin D production and supplementation have been shown to exert protective effects via an unknown signaling mechanism involving the vitamin D receptor (VDR) in several diseases and cancer types, including skin cancer. With over 3.5 million new diagnoses in 2 million patients annually, skin cancer is the most common cancer type in the United States. While ultraviolet B (UVB) radiation is the main etiologic factor for nonmelanoma skin cancer (NMSC), UVB also induces cutaneous vitamin D production. This paradox has been the subject of contradictory findings in the literature in regards to amount of sun exposure necessary for appropriate vitamin D production, as well as any beneficial or detrimental effects of vitamin D supplementation for disease prevention. Further clinical and epidemiological studies are necessary to elucidate the role of vitamin D in skin carcinogenesis.
Collapse
Affiliation(s)
- Erin M Burns
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | | | | |
Collapse
|
50
|
Shivshankar P, Halade GV, Calhoun C, Escobar GP, Mehr AJ, Jimenez F, Martinez C, Bhatnagar H, Mjaatvedt CH, Lindsey ML, Le Saux CJ. Caveolin-1 deletion exacerbates cardiac interstitial fibrosis by promoting M2 macrophage activation in mice after myocardial infarction. J Mol Cell Cardiol 2014; 76:84-93. [PMID: 25128086 PMCID: PMC4533121 DOI: 10.1016/j.yjmcc.2014.07.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 02/08/2023]
Abstract
Adverse remodeling following myocardial infarction (MI) leading to heart failure is driven by an imbalanced resolution of inflammation. The macrophage cell is an important control of post-MI inflammation, as macrophage subtypes secrete mediators to either promote inflammation and extend injury (M1 phenotype) or suppress inflammation and promote scar formation (M2 phenotype). We have previously shown that the absence of caveolin-1 (Cav1), a membrane scaffolding protein, is associated with adverse cardiac remodeling in mice, but the mechanisms responsible remain to be elucidated. We explore here the role of Cav1 in the activation of macrophages using wild type C57BL6/J (WT) and Cav1(tm1Mls/J) (Cav1(-/-)) mice. By echocardiography, cardiac function was comparable between WT and Cav1(-/-) mice at 3days post-MI. In the absence of Cav1, there were a surprisingly higher percentage of M2 macrophages (arginase-1 positive) detected in the infarcted zone. Conversely, restoring Cav1 function after MI in WT mice by adding back the Cav1 scaffolding domain reduced the M2 activation profile. Further, adoptive transfer of Cav1 null macrophages into WT mice on d3 post-MI exacerbated adverse cardiac remodeling at d14 post-MI. In vitro studies revealed that Cav1 null macrophages had a more pronounced M2 profile activation in response to IL-4 stimulation. In conclusion, Cav1 deletion promotes an array of maladaptive repair processes after MI, including increased TGF-β signaling, increased M2 macrophage infiltration and dysregulation of the M1/M2 balance. Our data also suggest that cardiac remodeling can be improved by therapeutic intervention regulating Cav1 function during the inflammatory response phase.
Collapse
Affiliation(s)
- Pooja Shivshankar
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ganesh V Halade
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Cheresa Calhoun
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gladys P Escobar
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ali J Mehr
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Fabio Jimenez
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Cindy Martinez
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Harshita Bhatnagar
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Corey H Mjaatvedt
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Merry L Lindsey
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Claude Jourdan Le Saux
- Division of Cardiology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|