1
|
Cai H, Chen S, Sun Y, Zheng T, Liu Y, Tao J, Zhang Y. Interleukin-22 receptor 1-mediated stimulation of T-type Ca 2+ channels enhances sensory neuronal excitability through the tyrosine-protein kinase Lyn-dependent PKA pathway. Cell Commun Signal 2024; 22:307. [PMID: 38831315 PMCID: PMC11145867 DOI: 10.1186/s12964-024-01688-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.
Collapse
Affiliation(s)
- Hua Cai
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
| | - Siyu Chen
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China
| | - Yufang Sun
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China
| | - Tingting Zheng
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
| | - Yulu Liu
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China
| | - Jin Tao
- Department of Physiology and Neurobiology & Centre for Ion Channelopathy, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China.
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, P.R. China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, P.R. China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, P.R. China.
| |
Collapse
|
2
|
Poorghobadi S, Hosseini SY, Sadat SM, Abdoli A, Irani S, Baesi K. The Combinatorial Effect of Ad-IL-24 and Ad-HSV-tk/GCV on Tumor Size, Autophagy, and UPR Mechanisms in Multiple Myeloma Mouse Model. Biochem Genet 2024:10.1007/s10528-024-10671-2. [PMID: 38436816 DOI: 10.1007/s10528-024-10671-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Multiple myeloma is a type of malignant neoplasia whose treatment has changed over the past decade. This study aimed to investigate the effects of combination of Adenovector-carrying interleukin-24 and herpes simplex virus 1 thymidine kinase/ganciclovir on tumor growth, autophagy, and unfolded protein response mechanisms in mouse model of multiple myeloma. Six groups of mice, including Ad-HSV-tk/GCV, Ad-IL-24, Ad-HSV-tk/IL-24, Ad-GFP, and positive and negative controls, were investigated, and each group was injected every 72 h. The tumor size was measured several times. The expression of LC3B evaluated through western blotting and ASK-1, CHOP, Caspase-3, and ATF-6 genes in the UPR and apoptosis pathways were also analyzed by the quantitative polymerase chain reaction (qPCR) method. The present results showed that the injection of Ad-HSV-tk/GCV, Ad-HSV-tk/IL-24, and metformin reduced the tumor size. The expression of LC3B was significantly higher in the treatment groups and positive control groups compared to the negative control group. The expression of CHOP, caspase-3, and ATF-6 genes was significantly higher in the Ad-IL-24 group compared to the other treatment groups. Besides, the ASK-1 expression was significantly lower in the Ad-IL-24 group as compared to the other groups. Overall, the results indicated that the presence of the HSV-tk gene in the adenovectors reduced the size of tumors and induced autophagy by triggering the expression of LC3B protein. The presence of the IL-24 might affect tumor growth but not as much the therapeutic effect of HSV-tk. Furthermore, the results indicated that co-administration of IL-24 and HSV-tk had no synergistic effect on tumor size control.
Collapse
Affiliation(s)
- Shima Poorghobadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, P.O. Box 14115-331, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, P.O. Box 14115-331, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, P.O. Box 14115-331, Tehran, Iran.
| |
Collapse
|
3
|
Chakraborty R, Darido C, Liu F, Maselko M, Ranganathan S. Head and Neck Cancer Immunotherapy: Molecular Biological Aspects of Preclinical and Clinical Research. Cancers (Basel) 2023; 15:cancers15030852. [PMID: 36765809 PMCID: PMC9913716 DOI: 10.3390/cancers15030852] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Breakthrough research in the field of immune checkpoint inhibitors and the development of a human papilloma virus vaccine triggered a plethora of research in the field of cancer immunotherapy. Both had significant effects on the treatment of head and neck squamous cell carcinoma. The advent of preclinical models and multidisciplinary approaches including bioinformatics, genetic engineering, clinical oncology, and immunology helped in the development of tumour-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy. Here, we discuss different immunotherapies such as adoptive T-cell transfer, immune checkpoint inhibitors, interleukins, and cancer vaccines for the treatment of head and neck cancer. This review showcases the intrinsic relation between the understanding and implementation of basic biology and clinical practice. We also address potential limitations of each immunotherapy approach and the advantages of personalized immunotherapy. Overall, the aim of this review is to encourage further research in the field of immunotherapy for head and neck cancer.
Collapse
Affiliation(s)
- Rajdeep Chakraborty
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fei Liu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Maciej Maselko
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Shoba Ranganathan
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
4
|
Ru(II)-modified TiO2 nanoparticles for hypoxia-adaptive photo-immunotherapy of oral squamous cell carcinoma. Biomaterials 2022; 289:121757. [DOI: 10.1016/j.biomaterials.2022.121757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022]
|
5
|
Jin S, Wang Q, Wu H, Pang D, Xu S. Oncolytic viruses for triple negative breast cancer and beyond. Biomark Res 2021; 9:71. [PMID: 34563270 PMCID: PMC8466906 DOI: 10.1186/s40364-021-00318-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Biological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.
Collapse
Affiliation(s)
- Shengye Jin
- Harbin Medical University, 157 Baojian Road, Harbin, 150086, China.,Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Qin Wang
- Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Hao Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Sino-Russian Medical Research Cen8ter, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, 157 Baojian Road, Harbin, 150086, China. .,Translational Medicine Research and Cooperation Center of Northern China, Harbin Medical University, 150 Haping Road, Harbin, 1550081, China.
| |
Collapse
|
6
|
Zahradník J, Kolářová L, Peleg Y, Kolenko P, Svidenská S, Charnavets T, Unger T, Sussman JL, Schneider B. Flexible regions govern promiscuous binding ofIL‐24 to receptorsIL‐20R1 andIL‐22R1. FEBS J 2019; 286:3858-3873. [DOI: 10.1111/febs.14945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jiří Zahradník
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
- Weizmann Institute of Science Rehovot Israel
| | - Lucie Kolářová
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Yoav Peleg
- Weizmann Institute of Science Rehovot Israel
| | - Petr Kolenko
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Prague Czech Republic
| | - Silvie Svidenská
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Tatsiana Charnavets
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| | - Tamar Unger
- Weizmann Institute of Science Rehovot Israel
| | | | - Bohdan Schneider
- Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
| |
Collapse
|
7
|
Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028548. [PMID: 29038121 DOI: 10.1101/cshperspect.a028548] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Members of the interleukin (IL)-10 family of cytokines play important roles in regulating immune responses during host defense but also in autoimmune disorders, inflammatory diseases, and cancer. Although IL-10 itself primarily acts on leukocytes and has potent immunosuppressive functions, other family members preferentially target nonimmune compartments, such as tissue epithelial cells, where they elicit innate defense mechanisms to control viral, bacterial, and fungal infections, protect tissue integrity, and promote tissue repair and regeneration. As cytokines are prime drug targets, IL-10 family cytokines provide great opportunities for the treatment of autoimmune diseases, tissue damage, and cancer. Yet no therapy in this space has been approved to date. Here, we summarize the diverse biology of the IL-10 family as it relates to human disease and review past and current strategies and challenges to target IL-10 family cytokines for clinical use.
Collapse
Affiliation(s)
- Xiaoting Wang
- Department of Comparative Biology and Safety Sciences, Amgen, South San Francisco, California 94080
| | - Kit Wong
- Department of Biomarker Development, Genentech, South San Francisco, California 94080
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen, South San Francisco, California 94080
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech, South San Francisco, California 94080
| |
Collapse
|
8
|
Rasoolian M, Kheirollahi M, Hosseini SY. MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opin Biol Ther 2019; 19:211-223. [PMID: 30612497 DOI: 10.1080/14712598.2019.1566453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION MDA-7/Interleukin-24 (IL-24), as a pleiotropic cytokine, exhibits a specific tumor suppression property that has attracted a great deal of attention. While its anti-tumor induction is mostly attributed to endogenous gene expression, attachment of secreted MDA-7/IL-24 to cognate receptors also triggers the death of cancerous cell via different pathways. Therefore, precise targeting of secreted MDA-7/IL-24 to tumor cells would render it more efficacy and specificity. AREAS COVERED In order to target soluble cytokines, particularly MDA-7/IL-24 to the neighbor tumor sites and enhance their therapeutic efficiency, fusing with cell penetrating peptides (CPPs) or Tumor homing peptides (THPs) seems logical due to the improvement of their bystander effects. Although the detailed anti-tumor mechanisms of endogenous mda-7/IL-24 have been largely investigated, the significance of the secreted form in these activities and methods of its improving by CPPs or THPs need more discussion. EXPERT OPINION While the employment of CPPs/THPs for the improvement of cytokine gene therapy is desirable, to create fusions of CPPs/THPs with MDA-7/IL-24, some hurdles are not avoidable. Regarding our expertise, herein, the importance of CPPs/THPs, needs for their elegant designing in a fusion structure, and their applications in cytokine gene therapy are discussed with a special focus on mda-7/IL-24.
Collapse
Affiliation(s)
- Mohammad Rasoolian
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Majid Kheirollahi
- a Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran.,b Department of Genetics and Molecular Biology, Pediatrics Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Seyed Younes Hosseini
- c Bacteriology and Virology Department, School of Medicine , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
9
|
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 2018; 17:64. [PMID: 29471827 PMCID: PMC5822656 DOI: 10.1186/s12943-018-0765-5] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs that contain approximately 22 nucleotides. They serve as key regulators in various biological processes and their dysregulation is implicated in many diseases including cancer and autoimmune disorders. It has been well established that the maturation of miRNAs occurs in the cytoplasm and miRNAs exert post-transcriptional gene silencing (PTGS) via RNA-induced silencing complex (RISC) pathway in the cytoplasm. However, numerous studies reaffirm the existence of mature miRNA in the nucleus, and nucleus-cytoplasm transport mechanism has also been illustrated. Moreover, active regulatory functions of nuclear miRNAs were found including PTGS, transcriptional gene silencing (TGS), and transcriptional gene activation (TGA), in which miRNAs bind nascent RNA transcripts, gene promoter regions or enhancer regions and exert further effects via epigenetic pathways. Based on existing interaction rules, some miRNA binding sites prediction software tools are developed, which are evaluated in this article. In addition, we attempt to explore and review the nuclear functions of miRNA in immunity, tumorigenesis and invasiveness of tumor. As a non-canonical aspect of miRNA action, nuclear miRNAs supplement miRNA regulatory networks and could be applied in miRNA based therapies.
Collapse
Affiliation(s)
- Hongyu Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Cheng Lei
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Qin He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Zou Pan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- Key Laboratory of Carcinogenesis, Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China.
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Cicchelero L, Denies S, Haers H, Vanderperren K, Stock E, Van Brantegem L, de Rooster H, Sanders NN. Intratumoural interleukin 12 gene therapy stimulates the immune system and decreases angiogenesis in dogs with spontaneous cancer. Vet Comp Oncol 2016; 15:1187-1205. [PMID: 27506827 DOI: 10.1111/vco.12255] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/22/2016] [Accepted: 07/03/2016] [Indexed: 12/13/2022]
Abstract
Interleukin 12 (IL-12) is a powerful immunostimulatory cytokine with a strong antitumoural activity. In this work, the immunological, anti-angiogenic and clinical effects of three consecutive intratumoural IL-12 electrogene therapy (EGT) treatments were evaluated in nine dogs with spontaneous cancer. In all the dogs, tumour biopsies and blood samples were taken prior, during and after the intratumoural IL-12 EGT (on days 1, 8, 35 and 1, 3, 8, 15, 35, respectively). An initial decrease in immune cells was followed by an increase above baseline 1-3 weeks after treatment initiation. Interestingly, the decrease in peripheral leukocytes 2 days after the first intratumoural IL-12 EGT coincided with erythema and tumour swelling. Transient increases of IL-12 and interferon γ were measured in the serum and the tumour tissue, whereas IL-10 transiently increased only in the serum. The effect of intratumoural IL-12 EGT on the levels of IL-24 and vascular endothelial growth factor in the sera and tumour biopsies differed per dog. Via contrast-enhanced ultrasound (US) (on days 1, 8 and 35), we demonstrated that intratumoural IL-12 EGT resulted in a significant decrease of the relative blood volume and blood flow speed in the tumour compared with baseline. Metastases were present in two dogs. In one of these dogs, IL-12 EGT of the primary tumour caused a transient partial regression of the metastases, but not of the primary tumour. The second dog with metastases did not survive long enough to complete the entire treatment cycle. Despite encouraging immunostimulatory and anti-angiogenic effects after intratumoural IL-12 EGT, no clinically relevant outcomes were observed in this study, as persistent tumour regression could not be obtained. On the other hand, the laboratory and US results hold great promise for combinatorial strategies of intratumoural IL-12 EGT with conventional antitumour (immuno)therapies.
Collapse
Affiliation(s)
- L Cicchelero
- Faculty of Veterinary Medicine, Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - S Denies
- Faculty of Veterinary Medicine, Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium
| | - H Haers
- Faculty of Veterinary Medicine, Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - K Vanderperren
- Faculty of Veterinary Medicine, Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - E Stock
- Faculty of Veterinary Medicine, Department of Medical Imaging of Domestic Animals, Ghent University, Merelbeke, Belgium
| | - L Van Brantegem
- Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - H de Rooster
- Small Animal Hospital, Faculty of Veterinary Medicine, Department of Medicine and Clinical Biology of Small Animals, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - N N Sanders
- Faculty of Veterinary Medicine, Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
11
|
Cicchelero L, Denies S, Devriendt B, de Rooster H, Sanders NN. Can dendritic cells improve whole cancer cell vaccines based on immunogenically killed cancer cells? Oncoimmunology 2015; 4:e1048413. [PMID: 26587315 DOI: 10.1080/2162402x.2015.1048413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/23/2022] Open
Abstract
Immunogenic cell death (ICD) offers interesting opportunities in cancer cell (CC) vaccine manufacture, as it increases the immunogenicity of the dead CC. Furthermore, fusion of CCs with dendritic cells (DCs) is considered a superior method for generating whole CC vaccines. Therefore, in this work, we determined in naive mice whether immunogenically killed CCs per se (CC vaccine) elicit an antitumoral immune response different from the response observed when immunogenically killed CCs are associated with DCs through fusion (fusion vaccine) or through co-incubation (co-incubation vaccine). After tumor inoculation, the type of immune response in the prophylactically vaccinated mice differed between the groups. In more detail, fusion vaccines elicited a humoral anticancer response, whereas the co-incubation and CC vaccine mainly induced a cellular response. Despite these differences, all three approaches offered a prophylactic protection against tumor development in the murine mammary carcinoma model. In summary, it can be concluded that whole CC vaccines based on immunogenically killed CCs may not necessarily require association with DCs to elicit a protective anticancer immune response. If this finding can be endorsed in other cancer models, the manufacture of CC vaccines would greatly benefit from this new insight, as production of DC-based vaccines is laborious, time-consuming and expensive.
Collapse
Affiliation(s)
- Laetitia Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology; Faculty of Veterinary Medicine; Ghent University ; Merelbeke, Belgium
| | - Sofie Denies
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology; Faculty of Veterinary Medicine; Ghent University ; Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology; Faculty of Veterinary Medicine; Ghent University , Merelbeke, Belgium
| | - Hilde de Rooster
- Small Animal Hospital, Department of Medicine and Clinical Biology of Small Animals; Faculty of Veterinary Medicine; Ghent University , Merelbeke, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology; Faculty of Veterinary Medicine; Ghent University ; Merelbeke, Belgium
| |
Collapse
|
12
|
Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14:783-95. [PMID: 25421700 DOI: 10.1038/nri3766] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interleukin-20 (IL-20) subfamily of cytokines comprises IL-19, IL-20, IL-22, IL-24 and IL-26. These cytokines are all members of the larger IL-10 family, but have been grouped together to form the IL-20 subfamily based on their usage of common receptor subunits and similarities in their target-cell profiles and biological functions. Members of the IL-20 subfamily facilitate the communication between leukocytes and epithelial cells, thereby enhancing innate defence mechanisms and tissue repair processes at epithelial surfaces. In this Review, we describe the cellular sources and targets of the IL-20 subfamily cytokines, and we detail how their expression is regulated. Much of our understanding of the unique biology of this group of cytokines is still based on IL-22, which is the most studied member of the IL-20 subfamily. Nevertheless, we attempt a broader discussion of the emerging functions of IL-20 subfamily cytokines in host defence, inflammatory diseases, cancer and metabolism.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Xiaoting Wang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| | - Wenjun Ouyang
- Department of Immunology, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
13
|
Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Wienecke-Baldacchino A, Nashan D, Behrmann I, Kreis S. Interferon-γ-induced activation of Signal Transducer and Activator of Transcription 1 (STAT1) up-regulates the tumor suppressing microRNA-29 family in melanoma cells. Cell Commun Signal 2012; 10:41. [PMID: 23245396 PMCID: PMC3541122 DOI: 10.1186/1478-811x-10-41] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/27/2012] [Indexed: 12/21/2022] Open
Abstract
Background The type-II-cytokine IFN-γ is a pivotal player in innate immune responses but also assumes functions in controlling tumor cell growth by orchestrating cellular responses against neoplastic cells. The role of IFN-γ in melanoma is not fully understood: it is a well-known growth inhibitor of melanoma cells in vitro. On the other hand, IFN-γ may also facilitate melanoma progression. While interferon-regulated genes encoding proteins have been intensively studied since decades, the contribution of miRNAs to effects mediated by interferons is an emerging area of research. We recently described a distinct and dynamic regulation of a whole panel of microRNAs (miRNAs) after IFN-γ-stimulation. The aim of this study was to analyze the transcriptional regulation of miR-29 family members in detail, identify potential interesting target genes and thus further elucidate a potential signaling pathway IFN-γ → Jak→ P-STAT1 → miR-29 → miR-29 target genes and its implication for melanoma growth. Results Here we show that IFN-γ induces STAT1-dependently a profound up-regulation of the miR-29 primary cluster pri-29a~b-1 in melanoma cell lines. Furthermore, expression levels of pri-29a~b-1 and mature miR-29a and miR-29b were elevated while the pri-29b-2~c cluster was almost undetectable. We observed an inverse correlation between miR-29a/b expression and the proliferation rate of various melanoma cell lines. This finding could be corroborated in cells transfected with either miR-29 mimics or inhibitors. The IFN-γ-induced G1-arrest of melanoma cells involves down-regulation of CDK6, which we proved to be a direct target of miR-29 in these cells. Compared to nevi and normal skin, and metastatic melanoma samples, miR-29a and miR-29b levels were found strikingly elevated in certain patient samples derived from primary melanoma. Conclusions Our findings reveal that the miR-29a/b1 cluster is to be included in the group of IFN- and STAT-regulated genes. The up-regulated miR-29 family members may act as effectors of cytokine signalling in melanoma and other cancer cells as well as in the immune system.
Collapse
Affiliation(s)
- Martina J Schmitt
- Signal Transduction Laboratory, University of Luxembourg, 162A Avenue de la Faïencerie, Luxembourg, L-1511, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu XR, Cai Y, Cao X, Wei RC, Li HL, Zhou XM, Zhang KJ, Wu S, Qian QJ, Cheng B, Huang K, Liu XY. A new oncolytic adenoviral vector carrying dual tumour suppressor genes shows potent anti-tumour effect. J Cell Mol Med 2012; 16:1298-309. [PMID: 21794078 PMCID: PMC3823082 DOI: 10.1111/j.1582-4934.2011.01396.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cancer Targeting Gene-Viro-Therapy (CTGVT) is a promising cancer therapeutical strategy that strengthens the anti-tumour effect of oncolytic virus by expressing inserted foreign anti-tumour genes. In this work, we constructed a novel adenoviral vector controlled by the tumour-specific survivin promoter on the basis of the ZD55 vector, which is an E1B55KD gene deleted vector we previously constructed. Compared with the original ZD55 vector, this new adenoviral vector (ZD55SP/E1A) showed much better ability of replication and reporter gene expression. We then combined anti-tumour gene interleukine-24 (IL-24) with an RNA polymerase III-dependent U6 promoter driving short hairpin RNA (shRNA) that targets M-phase phosphoprotein 1 (MPHOSPH1, a newly identified oncogene) by inserting the IL-24 and the shRNA of MPHOSPH1 (shMPP1) expression cassettes into the new ZD55SP/E1A vector. Our results demonstrated excellent anti-tumour effect of ZD55SP/E1A-IL-24-shMPP1 in vitro on multiple cancer cell lines such as lung cancer, liver cancer and ovarian caner. At high multiplicity-of-infection (MOI), ZD55SP/E1A-IL-24-shMPP1 triggered post-mitotic apoptosis in cancer cells by inducing prolonged mitotic arrest; while at low MOI, senescence was induced. More importantly, ZD55SP/E1A-IL-24-shMPP1 also showed excellent anti-tumour effects in vivo on SW620 xenograft nude mice. In conclusion, our strategy of constructing an IL-24 and shMPP1 dual gene expressing oncolytic adenoviral vector, which is regulated by the survivin promoter and E1B55KD deletion, could be a promising method of cancer gene therapy.
Collapse
Affiliation(s)
- Xin-Ran Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hofmann S, Rösen-Wolff A, Tsokos G, Hedrich C. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol 2012; 143:116-27. [DOI: 10.1016/j.clim.2012.02.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 12/16/2022]
|
16
|
Sahoo A, Im SH. Molecular Mechanisms Governing IL-24 Gene Expression. Immune Netw 2012; 12:1-7. [PMID: 22536164 PMCID: PMC3329598 DOI: 10.4110/in.2012.12.1.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/05/2012] [Accepted: 01/10/2012] [Indexed: 12/23/2022] Open
Abstract
Interleukin-24 (IL-24) belongs to the IL-10 family of cytokines and is well known for its tumor suppressor activity. This cytokine is released by both immune and nonimmune cells and acts on non-hematopoietic tissues such as skin, lung and reproductive tissues. Apart from its ubiquitous tumor suppressor function, IL-24 is also known to be involved in the immunopathology of autoimmune diseases like psoriasis and rheumatoid arthritis. Although the cellular sources and functions of IL-24 are being increasingly investigated, the molecular mechanisms of IL-24 gene expression at the levels of signal transduction, epigenetics and transcription factor binding are still unclear. Understanding the specific molecular events that regulate the production of IL-24 will help to answer the remaining questions that are important for the design of new strategies of immune intervention involving IL-24. Herein, we briefly review the signaling pathways and transcription factors that facilitate, induce, or repress production of this cytokine along with the cellular sources and functions of IL-24.
Collapse
Affiliation(s)
- Anupama Sahoo
- School of Life Sciences and Immune Synapse Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea
| | | |
Collapse
|
17
|
Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 2011; 29:71-109. [PMID: 21166540 DOI: 10.1146/annurev-immunol-031210-101312] [Citation(s) in RCA: 1321] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The IL-10 family of cytokines consists of nine members: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and the more distantly related IL-28A, IL-28B, and IL-29. Evolutionarily, IL-10 family cytokines emerged before the adaptive immune response. These cytokines elicit diverse host defense mechanisms, especially from epithelial cells, during various infections. IL-10 family cytokines are essential for maintaining the integrity and homeostasis of tissue epithelial layers. Members of this family can promote innate immune responses from tissue epithelia to limit the damage caused by viral and bacterial infections. These cytokines can also facilitate the tissue-healing process in injuries caused by infection or inflammation. Finally, IL-10 itself can repress proinflammatory responses and limit unnecessary tissue disruptions caused by inflammation. Thus, IL-10 family cytokines have indispensable functions in many infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Wenjun Ouyang
- Department of Immunology, Genentech, Inc., South San Francisco, California 94080, USA.
| | | | | | | | | |
Collapse
|
18
|
Sahoo A, Lee CG, Jash A, Son JS, Kim G, Kwon HK, So JS, Im SH. Stat6 and c-Jun Mediate Th2 Cell-Specific IL-24 Gene Expression. THE JOURNAL OF IMMUNOLOGY 2011; 186:4098-109. [DOI: 10.4049/jimmunol.1002620] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Leng RX, Pan HF, Tao JH, Ye DQ. IL-19, IL-20 and IL-24: potential therapeutic targets for autoimmune diseases. Expert Opin Ther Targets 2010; 15:119-26. [DOI: 10.1517/14728222.2011.534461] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Trivella DBB, Ferreira-Júnior JR, Dumoutier L, Renauld JC, Polikarpov I. Structure and function of interleukin-22 and other members of the interleukin-10 family. Cell Mol Life Sci 2010; 67:2909-35. [PMID: 20454917 PMCID: PMC11115847 DOI: 10.1007/s00018-010-0380-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 12/30/2022]
Abstract
The IL-10 family of cytokines is comprised of IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and IFN-lambdas (IL-28A, IL-28B, and IL-29). The IL-10 family members bind to shared class II cytokine receptor chains that associate in various combinations in heterodimeric complexes. Upon interleukin/receptor complex formation, these proteins switch on the Jak/STAT pathway and elicit pleiotropic biological responses whose variety sharply contrasts with their structural similarities. IL-10 family members are involved in several human diseases and health conditions and hence their structural analyses may provide valuable information to design specific therapeutic strategies. In this review, we describe the human interleukin-10 family of cytokines, focusing on their structures and functions, with particular attention given to IL-22 and IL-10. We report on the recently published structures of IL-10 cytokine family members and their complexes with cognate transmembrane and soluble receptors as well as on interleukin physiology and physiopathology.
Collapse
Affiliation(s)
- Daniela Barretto Barbosa Trivella
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 Brazil
| | - José Ribamar Ferreira-Júnior
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Avenida Arlindo Béttio, 1000, Ermelino Matarazzo, São Paulo, SP CEP 03828-000 Brazil
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- Experimental Medicine Unit, Christian de Duve Institute, Universite’ Catholique de Louvain, Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
- Experimental Medicine Unit, Christian de Duve Institute, Universite’ Catholique de Louvain, Brussels, Belgium
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 Brazil
| |
Collapse
|
21
|
Li J, Shi L, Zhang X, Kang X, Wen Y, Qian H, Zhou Y, Xu W, Zhang Y, Wu M, Yin Z. Recombinant adenovirus IL-24-Bax promotes apoptosis of hepatocellular carcinoma cells in vitro and in vivo. Cancer Gene Ther 2010; 17:771-9. [PMID: 20596089 PMCID: PMC2963730 DOI: 10.1038/cgt.2010.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gene therapy promises to become an alternative choice for the treatment of hepatic cancer. In many cancers, the delivery of chimeric proteins by adenovirus vector has been reported to induce apoptosis. This study was performed to evaluate whether the recombinant adenovirus interleukin (IL)-24-Bax can induce apoptosis in hepatocellular carcinoma cells in vitro and in vivo. Several recombinant adenoviruses were constructed, and the expression of their encoded proteins was measured. The effects of the recombinant adenovirus on hepatocellular carcinoma cells and the normal hepatocyte cell line were investigated through cell viability and apoptosis assays after the cells were treated with Ad.Luc, Ad.IL-24, Ad.Bax or Ad.IL-24-Bax. The mechanism involved was also explored. A tumor-bearing mouse model was used to evaluate the effects of the adenovirus on tumor volume and cell apoptosis in vivo. Ad.IL-24-Bax selectively suppressed growth of hepatocellular carcinoma cells and induced apoptosis, but it had little influence on the normal hepatocytes. The mechanism of this response may include the effect of the 10HRE/VEGF385 promoter and the synergistic effect of IL-24 and Bax. Ad.IL-24-Bax also suppressed tumor growth in nude mice and induced apoptosis. Ad.IL-24-Bax may be a useful tool for gene therapy of hepatic cancer.
Collapse
Affiliation(s)
- J Li
- Molecular Oncology Laboratory, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
He M, Liang P. IL-24 transgenic mice: in vivo evidence of overlapping functions for IL-20, IL-22, and IL-24 in the epidermis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:1793-8. [PMID: 20061404 DOI: 10.4049/jimmunol.0901829] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
IL-20 and IL-24 share two different heterodimeric receptors consisting of either IL-20R1 or IL-22R1 and a common IL-20R2 subunit, whereas IL-22 signals through IL-22R1/IL-10R2. However, until now, only IL-20 and IL-22 have been proven to play important roles in vivo in the epidermis where all four receptor subunits are expressed. In this study, we show that IL-24 transgenic mice manifest many similar phenotypes to that of IL-20 and IL-22, including neonatal lethality, epidermal hyperplasia, and abnormality in keratinocyte differentiation. These results support a largely redundant role in epidermal functions for IL-20, IL-22, and IL-24, which seem to be IL-22R1 dependent. Moreover, we show that IL-24 transgenic mice exhibit infiltrating macrophages in the dermis with concomitant increases in MCP-1 production from both keratinocytes in the epidermis and immune infiltrates in the adjacent dermal layer below. Furthermore, we demonstrate that the homodimeric IL-20R2 soluble receptor is a potent blocker for IL-24 and can be used to further dissect the crosstalk among the IL-20 family of cytokines in normal development as well as in autoimmune diseases.
Collapse
Affiliation(s)
- Miao He
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
23
|
Wang T, Díaz-Rosales P, Martin SAM, Secombes CJ. Cloning of a novel interleukin (IL)-20-like gene in rainbow trout Oncorhynchus mykiss gives an insight into the evolution of the IL-10 family. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:158-167. [PMID: 19755128 DOI: 10.1016/j.dci.2009.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
A novel IL-20-like (IL-20L) gene has been analyzed in rainbow trout. It has a six exon/five intron gene organisation and is translated into 181 amino acids (aa) with a signal peptide of 25aa and a mature peptide of 156aa. The trout IL-20L translation shares highest identities to other IL-20L molecules from fish and to IL-20 in mammals. Phylogenetic analysis showed that the fish IL-20L molecules form an independent clade but cluster with the group containing the IL-19, IL-20 and IL-24 molecules from higher vertebrates with a high bootstrap value (89%). The fish IL-20L genes are syntenically in the same location as mammalian IL-19/IL-20/IL-24. Gene organisation and multiple alignment also showed a close relationship of fish IL-20L genes to the mammalian IL-19/IL-20/IL-24 subfamily. These data suggest that the fish IL-20L molecules may have arisen from an ancestral gene that gave rise to IL-19, IL-20 and IL-24 in higher vertebrates. A high level of IL-20L expression in immune related tissues and in the brain, suggests an important role of the fish IL-20L molecule in both the fish immune system and nervous system. Although the exact cell types expressing IL-20L have yet to be defined, macrophages express IL-20L. Moreover, the IL-20L expression in the macrophage cell line RTS-11 was modulated by pro-inflammatory cytokines, signalling pathway activators, microbial mimics and the immuno-suppressor dexamethasone. These data suggest that trout IL-20L is an important player in the cytokine network. The increased expression of IL-20L was only detected at late stages (4-24h) of LPS stimulation in RTS-11 cells and in spleen 24-72h after infection with Yersinia ruckeri, and suggests that the increased expression of IL-20L by LPS and infection may be via the rapid increase of pro-inflammatory cytokines (e.g., IL-1beta) and other factors that is known to occur.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
24
|
Fuson KL, Zheng M, Craxton M, Pataer A, Ramesh R, Chada S, Sutton RB. Structural mapping of post-translational modifications in human interleukin-24: role of N-linked glycosylation and disulfide bonds in secretion and activity. J Biol Chem 2009; 284:30526-33. [PMID: 19734147 DOI: 10.1074/jbc.m109.036061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human interleukin-24 (IL-24) is unique among the IL-10 superfamily as there is considerable evidence that it possesses multiple anti-cancer properties, including direct tumor cell cytotoxicity, helper T cell (TH1) immune stimulation, and anti-angiogenic activities. The primary sequence of human IL-24 differs from homologous cytokines, because it possesses three consensus N-linked glycosylation sites and the potential for a single disulfide bond. To address the significance of these modifications in human IL-24, we analyzed the relationship between post-translational modifications and the cytokine activity of the human IL-24 protein. In contrast to related interleukins, we identified a relationship between net glycosylation, protein solubility, and cytokine activity. In addition, abrogation of the two cysteine residues by mutagenesis dramatically altered the ability of IL-24 to secrete from host cells and resulted in the concomitant loss of IL-24 activity. We conclude that, unlike other IL-10 family members, human IL-24 must be glycosylated to maintain solubility and bioavailability. Further, a single, unique disulfide bond is required for secretion and activity. These structure-function relationships show that, although IL-24 is a member of the IL-19 subfamily of IL-10-like cytokines by sequence similarity, its surface properties and its distinctive disulfide arrangement make it unique. These observations could explain the novel biological activities measured of this cytokine. Understanding the structural basis of IL-24 activity will be important in the interpretation of the function of this cytokine and in the development of scale-up strategies for biophysical and clinical applications.
Collapse
Affiliation(s)
- Kerry L Fuson
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. THE JOURNAL OF IMMUNOLOGY 2009; 183:687-95. [PMID: 19535621 DOI: 10.4049/jimmunol.0804169] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-24 is a member of the IL-10 family of cytokines. In this study, we investigated IL-24 expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD), and characterized the molecular mechanisms responsible for IL-24 expression in human colonic subepithelial myofibroblasts (SEMFs). IL-24 expression in the IBD mucosa was evaluated by immunohistochemical methods. IL-24 mRNA and protein expression was determined by real-time PCR and ELISA, respectively. AP-1 and C/EBP DNA-binding activity and IL-24 promoter activity were assessed by EMSA analysis and a reporter gene assay, respectively. IL-24 mRNA expression was significantly elevated in active lesions from patients who have ulcerative colitis and Crohn's disease. Colonic SEMFs were identified as a major source of IL-24 in the mucosa. IL-1beta, but not IL-17A, TNF-alpha, or IFN-gamma, significantly enhanced IL-24 mRNA and protein expression in isolated colonic SEMFs. The IL-1beta-induced IL-24 mRNA expression was mediated by the activation of the transcription factors, AP-1 and C/EBP-beta. Induction of IL-24 mRNA stabilization was also involved in the effects of IL-1beta. IL-24 induced JAK1/STAT-3 phosphorylation and SOCS3 expression in HT-29 colonic epithelial cells. IL-24 did not modulate the proliferation of HT-29 cells, but significantly increased the mRNA expression of membrane-bound mucins (MUC1, MUC3, and MUC4). IL-24 derived from colonic SEMFs acts on colonic epithelial cells to elicit JAK1/STAT-3 activation and the expression of SOCS3 and mucins, supporting their suppressive effects on mucosal inflammation in IBD.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Distal and proximal interleukin (IL)-10 promoter polymorphisms associated with risk of cutaneous melanoma development: a case–control study. Genes Immun 2009; 10:586-90. [DOI: 10.1038/gene.2009.40] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|