1
|
Ugusman A, Hisam NSN, Othman NS, Anuar NNM, Hamid AA, Kumar J, Razmi MM, Aminuddin A. Pharmacological interventions for intraplaque neovascularization in atherosclerosis. Pharmacol Ther 2024; 261:108685. [PMID: 38977083 DOI: 10.1016/j.pharmthera.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia; Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Maisarah Md Razmi
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Huang H, Xie J, Wei J, Xu S, Zhang D, Zhou X. Fibroblast growth factor 8 (FGF8) up-regulates gelatinase expression in chondrocytes through nuclear factor-κB p65. J Bone Miner Metab 2023; 41:17-28. [PMID: 36512085 DOI: 10.1007/s00774-022-01388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Gelatinases, namely MMP2 and MMP9, are involved in the natural turnover of articular cartilage, as well as the loss of the cartilage matrix in osteoarthritis (OA). Studies have reported that fibroblast growth factor 8 (FGF8) promoted the degradation of cartilage in OA. In the present study, we predicted that FGF8 promoted chondrocyte expression and secretion of gelatinases by activating NF-κB p65 signaling. MATERIALS AND METHODS Primary chondrocytes from C57 mice were cultured with recombinant FGF8. RNA sequencing was employed to explore the gene expression changes of gelatinases. Gelatin zymography was used to determine the activation of gelatinases. Western blot was used to investigate the expression of the gelatinases and NF-κB p65 signaling pathways, and immunofluorescence staining and NF-κB inhibitor assays were performed to confirm the activation of NF-κB p65 signaling. RESULTS FGF8 could increase the expression and activity of gelatinases in primary chondrocytes. And FGF8-induced expression of gelatinases was regulated through activation of NF-κB signaling with acetylated p65 accumulating in the cell nucleus. We further found that the NF-κB inhibitor, BAY 11-7082, could suppress up-regulation of gelatinase induced by FGF8. CONCLUSION FGF8 enhanced the expression and activity of MMP2 and MMP9 in chondrocytes via NF-κB p65 signaling.
Collapse
Affiliation(s)
- Hongcan Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Siqun Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China.
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, Sichuan, China.
| |
Collapse
|
3
|
Niu L, Hou Y, Jiang M, Bai G. The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114524. [PMID: 34400262 DOI: 10.1016/j.jep.2021.114524] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/01/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Magnolia officinalis Cortex (M. officinalis) is a traditional herbal drug widely used in Asian countries. Depending on its multiple biological activities, M. officinalis is used to regulate gastrointestinal (GI) motility, relieve cough and asthma, prevent cardiovascular and cerebrovascular diseases, and treat depression and anxiety. AIM OF THE REVIEW We aimed to review the abundant form of pharmacodynamics activity and potential mechanisms of action of M. officinalis and the characteristics of the internal processes of the main components. The potential mechanisms of local and distance actions of M. officinalis based on GI tract was provided, and it was used to reveal the interconnections between traditional use, phytochemistry, and pharmacology. MATERIALS AND METHODS Published literatures about M. officinalis and its main components were collected from several scientific databases, including PubMed, Elsevier, ScienceDirect, Google Scholar and Web of Science etc. RESULTS: M. officinalis was shown multiple effects including effects on digestive system, respiratory system, central system, which is consistent with traditional applications, as well as some other activities such as cardiovascular system, anticancer, anti-inflammatory and antioxidant effects and so on. The mechanisms of these activities are abundant. Its chief ingredients such as magnolol and honokiol can be metabolized into active metabolites in vivo, which can increase water solubility and bioavailability and exert pharmacological activity in the whole body. In the GI tract, M. officinalis and its main ingredient can regulate GI hormones and substance metabolism, protect the intestinal barrier and affect the gut microbiota (GM). These actions are effective to improve local discomfort and some distal symptoms such as depression, asthma, or metabolic disorders. CONCLUSIONS Although M. officinalis has rich pharmacological effects, the GI tract makes great contributions to it. The GI tract is not only an important place for absorption and metabolism but also a key site to help M. officinalis exert local and distal efficacy. Pharmacodynamical studies on the efficacies of distal tissues based on the contributions of the GI tract hold great potential for understanding the benefits of M. officinalis and providing new ideas for the treatment of important diseases.
Collapse
Affiliation(s)
- Lin Niu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
4
|
Tenascin-C expression in the lymph node pre-metastatic niche in muscle-invasive bladder cancer. Br J Cancer 2021; 125:1399-1407. [PMID: 34564696 PMCID: PMC8575937 DOI: 10.1038/s41416-021-01554-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Markers of stromal activation at future metastatic sites may have prognostic value and may allow clinicians to identify and abolish the pre-metastatic niche to prevent metastasis. In this study, we evaluate tenascin-C as a marker of pre-metastatic niche formation in bladder cancer patient lymph nodes. METHODS Tenascin-C expression in benign lymph nodes was compared between metastatic (n = 20) and non-metastatic (n = 27) patients with muscle-invasive bladder cancer. Urinary extracellular vesicle (EV) cytokine levels were measured with an antibody array to examine potential correlation with lymph node inflammation. The ability of bladder cancer EVs to activate primary bladder fibroblasts was assessed in vitro. RESULTS Lymph node tenascin-C expression was elevated in metastatic patients vs. non-metastatic patients, and high expression was associated with worse survival. Urinary EVs contained four cytokines that were positively correlated with lymph node tenascin-C expression. Bladder cancer EVs induced tenascin-C expression in fibroblasts in an NF-κB-dependent manner. CONCLUSIONS Tenascin-C expression in regional lymph nodes may be a good predictor of bladder cancer metastasis and an appropriate imaging target. It may be possible to interrupt pre-metastatic niche formation by targeting EV-borne tumour cytokines or by targeting tenascin-C directly.
Collapse
|
5
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying unidirectional laminar shear stress-mediated Nrf2 activation in endothelial cells: Amplification of low shear stress signaling by primary cilia. Redox Biol 2021; 46:102103. [PMID: 34425388 PMCID: PMC8379703 DOI: 10.1016/j.redox.2021.102103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells are sensitive to mechanical stress and respond differently to oscillatory flow versus unidirectional flow. This review highlights the mechanisms by which a wide range of unidirectional laminar shear stress induces activation of the redox sensitive antioxidant transcription factor nuclear factor-E2-related factor 2 (Nrf2) in cultured endothelial cells. We propose that fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor (BDNF) and 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) are potential Nrf2 activators induced by laminar shear stress. Shear stress-dependent secretion of FGF-2 and its receptor-mediated signaling is tightly controlled, requiring neutrophil elastase released by shear stress, αvβ3 integrin and the cell surface glycocalyx. We speculate that primary cilia respond to low laminar shear stress (<10 dyn/cm2), resulting in secretion of insulin-like growth factor 1 (IGF-1), which facilitates αvβ3 integrin-dependent FGF-2 secretion. Shear stress induces generation of heparan-binding epidermal growth factor-like growth factor (HB-EGF), which contributes to FGF-2 secretion and gene expression. Furthermore, HB-EGF signaling modulates FGF-2-mediated NADPH oxidase 1 activation that favors casein kinase 2 (CK2)-mediated phosphorylation/activation of Nrf2 associated with caveolin 1 in caveolae. Higher shear stress (>15 dyn/cm2) induces vesicular exocytosis of BDNF from endothelial cells, and we propose that BDNF via the p75NTR receptor could induce CK2-mediated Nrf2 activation. Unidirectional laminar shear stress upregulates gene expression of FGF-2 and BDNF and generation of 15d-PGJ2, which cooperate in sustaining Nrf2 activation to protect endothelial cells against oxidative damage.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
6
|
Li J, Wang H, Dong C, Huang J, Ma W. The underlying mechanisms of FGF2 in carotid atherosclerotic plaque development revealed by bioinformatics analysis. Arch Med Sci 2021; 20:1209-1219. [PMID: 39439688 PMCID: PMC11493040 DOI: 10.5114/aoms/128387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 10/12/2020] [Indexed: 10/25/2024] Open
Abstract
Introduction The purpose of this study was to explore the regulatory mechanisms of FGF2 in carotid atherosclerotic plaque development using bioinformatics analysis. Material and methods Expression profiles of 32 atheroma plaque (AP) and 32 paired distant macroscopically intact (DMI) tissues samples in the GSE43292 dataset were downloaded from the Gene Expression Omnibus database. Following identification of differential expression genes (DEGs), correlation analysis of fibroblast growth factor 2 (FGF2) and DEGs was conducted. Subsequently, functional enrichment analysis and the protein-protein interaction network for FGF2 significantly correlated DEGs were constructed. Then, microRNAs (miRNAs) that regulated FGF2 and regulatory pairs of long noncoding RNA (lncRNA)-miRNA were predicted to construct the lncRNA-miRNA-FGF2 network. Results A total of 101 DEGs between AP and DMI samples were identified, and 31 DEGs were analyzed to have coexpression relationships with FGF2, including 23 positively correlated and 8 negatively correlated DEGs. VAV3 had the lowest r value among all FGF2 negatively correlated DEGs. FGF2 positively correlated DEGs were closely related to "regulation of smooth muscle contraction" (e.g., calponin 1 (CNN1)), while FGF2 negatively correlated DEGs were significantly associated with "platelet activation" (e.g., Vav guanine nucleotide exchange factor 3 (VAV3)). In addition, a total of 12 miRNAs that regulated FGF2 were predicted, and hsa-miR-15a-5p and hsa-miR-16-5p were highlighted in the lncRNA-miRNA-FGF2 regulatory network. Conclusions CNN1 might cooperate with FGF2 to regulate smooth muscle contractility during CAP formation. VAV3 might cooperate with FGF2 to be responsible for the development of CAP through participating in platelet activation. Hsa-miR-15a-5p and hsa-miR-16-5p might participate in the development of CAP via regulating FGF2.
Collapse
Affiliation(s)
- Jian Li
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| | - Haifeng Wang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| | - Chenjie Dong
- Jiading District Nanxiang Town Community Health Service Center, Affiliated to Tongji University Medical School, Shanghai, China
| | - Junling Huang
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| | - Wenlin Ma
- Department of Geriatrics, Tongji Hospital Affiliated to Tongji University Medical School, Shanghai, China
| |
Collapse
|
7
|
Kowara M, Cudnoch-Jedrzejewska A. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. Int J Mol Sci 2021; 22:ijms22094354. [PMID: 33919446 PMCID: PMC8122261 DOI: 10.3390/ijms22094354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications—myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches—towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.
Collapse
|
8
|
Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel) 2021; 10:antiox10040516. [PMID: 33810295 PMCID: PMC8066740 DOI: 10.3390/antiox10040516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
Collapse
Affiliation(s)
- Justine Bonetti
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
| | - Lucie Lerouge
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2218-537
| | - Caroline Gaucher
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| |
Collapse
|
9
|
Ameri P, Tini G, Spallarossa P, Mercurio V, Tocchetti CG, Porto I. Cardiovascular safety of the tyrosine kinase inhibitor nintedanib. Br J Clin Pharmacol 2021; 87:3690-3698. [PMID: 33620103 DOI: 10.1111/bcp.14793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/12/2021] [Accepted: 02/12/2021] [Indexed: 01/07/2023] Open
Abstract
The intracellular tyrosine kinase inhibitor nintedanib has shown great efficacy for the treatment of idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases. However, the incidence rate of myocardial infarction (MI) among participants in landmark IPF trials was remarkable, peaking at 3/100 patient-years. Although subjects with IPF often have a high cardiovascular (CV) risk profile, the occurrence of MI in nintedanib-treated patients may not be fully explained by clustering of CV risk factors. Nintedanib inhibits the vascular endothelial growth factor, platelet-derived growth factor and fibroblast growth factor pathways, which play important roles in the biology of the atherosclerotic plaque and in the response of the heart to ischaemia. Hence, unwanted CV effects may partly account for nintedanib-related MI. We review the evidence supporting this hypothesis and discuss possible actions for a safe implementation of nintedanib in clinical practice, building on the experience with tyrosine kinase inhibitors acquired in cardio-oncology.
Collapse
Affiliation(s)
- Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genoa, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Giacomo Tini
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genoa, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Paolo Spallarossa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genoa, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy.,Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Italo Porto
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiology Network, Genoa, Italy.,Department of Internal Medicine, University of Genova, Genoa, Italy
| |
Collapse
|
10
|
Matrix metalloproteinase 9 a potential major player connecting atherosclerosis and osteoporosis in high fat diet fed rats. PLoS One 2021; 16:e0244650. [PMID: 33571214 PMCID: PMC7877768 DOI: 10.1371/journal.pone.0244650] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 12/14/2020] [Indexed: 01/19/2023] Open
Abstract
Background Cardiovascular diseases (CVD) represent one of the major sequelae of obesity. On the other hand, the relationship between bone diseases and obesity remains unclear. An increasing number of biological and epidemiological studies suggest the presence of a link between atherosclerosis and osteoporosis, however, the precise molecular pathways underlying this close association remain poorly understood. The present work thus aimed to study Matrix Metalloproteinase 9 (MMP-9), as a proposed link between atherosclerosis and osteoporosis in high fat diet fed rats. Methods and findings 40 rats were randomly divided into 4 groups: control, untreated atherosclerosis group, atherosclerotic rats treated with carvedilol (10mg/kg/d) and atherosclerotic rats treated with alendronate sodium (10mg/kg/d). After 8 weeks, blood samples were collected for estimation of Lipid profile (Total cholesterol, HDL, TGs), inflammatory markers (IL-6, TNF-α, CRP and NO) and Bone turnover markers (BTMs) (Alkaline phosphatase, osteocalcin and pyridinoline). Rats were then euthanized and the aortas and tibias were dissected for histological examination and estimation of MMP-9, N-terminal propeptide of type I procollagen (PINP), C-terminal telopeptide of type I collagen (CTX) and NF-kB expression. Induction of atherosclerosis via high fat diet and chronic stress induced a significant increase in BTMs, inflammatory markers and resulted in a state of dyslipidaemia. MMP-9 has also shown to be significantly increased in the untreated atherosclerosis rats and showed a significant correlation with all measured parameters. Interestingly, Carvedilol and bisphosphonate had almost equal effects restoring the measured parameters back to normal, partially or completely. Conclusion MMP-9 is a pivotal molecule that impact the atherogenic environment of the vessel wall. A strong cross talk exists between MMP-9, cytokine production and macrophage function. It also plays an important regulatory role in osteoclastogenesis. So, it may be a key molecule in charge for coupling CVD and bone diseases in high fat diet fed rats. Therefore, we suggest MMP-9 as a worthy molecule to be targeted pharmacologically in order to control both conditions simultaneously. Further studies are needed to support, to invest and to translate this hypothesis into clinical studies and guidelines.
Collapse
|
11
|
Parma L, Peters HAB, Sluiter TJ, Simons KH, Lazzari P, de Vries MR, Quax PHA. bFGF blockade reduces intraplaque angiogenesis and macrophage infiltration in atherosclerotic vein graft lesions in ApoE3*Leiden mice. Sci Rep 2020; 10:15968. [PMID: 32994514 PMCID: PMC7525538 DOI: 10.1038/s41598-020-72992-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Intraplaque angiogenesis increases the chance of unstable atherosclerotic plaque rupture and thrombus formation leading to myocardial infarction. Basic Fibroblast Growth Factor (bFGF) plays a key role in angiogenesis and inflammation and is involved in the pathogenesis of atherosclerosis. Therefore, we aim to test K5, a small molecule bFGF-inhibitor, on remodelling of accelerated atherosclerotic vein grafts lesions in ApoE3*Leiden mice. K5-mediated bFGF-signalling blockade strongly decreased intraplaque angiogenesis and intraplaque hemorrhage. Moreover, it reduced macrophage infiltration in the lesions by modulating CCL2 and VCAM1 expression. Therefore, K5 increases plaque stability. To study the isolated effect of K5 on angiogenesis and SMCs-mediated intimal hyperplasia formation, we used an in vivo Matrigel-plug mouse model that reveals the effects on in vivo angiogenesis and femoral artery cuff model to exclusively looks at SMCs. K5 drastically reduced in vivo angiogenesis in the matrigel plug model while no effect on SMCs migration nor proliferation could be seen in the femoral artery cuff model. Moreover, in vitro K5 impaired endothelial cells functions, decreasing migration, proliferation and tube formation. Our data show that K5-mediated bFGF signalling blockade in hypercholesterolemic ApoE3*Leiden mice reduces intraplaque angiogenesis, haemorrhage and inflammation. Therefore, K5 is a promising candidate to stabilize advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Laura Parma
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrika A B Peters
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Thijs J Sluiter
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Karin H Simons
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Paolo Lazzari
- KemoTech SrL, Build 3, Loc. Piscinamanna, 09010, Pula, Italy
| | - Margreet R de Vries
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H A Quax
- Department of Vascular Surgery, D6-33, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Han J, Du Y, Wang L, Chen X, Jiang L, Xu J. Acid fibroblast growth factor facilitates the progression of atherosclerotic plaques regardless of alterations in serum lipid expression levels in HFD‑fed ApoE‑/‑ mice. Mol Med Rep 2018; 18:1025-1030. [PMID: 29845277 DOI: 10.3892/mmr.2018.9060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Atherosclerosis is recognized at present as a chronic metabolic disease of the arteries that leads to multifocal plaque development. Previous studies have reported that acid fibroblast growth factor (aFGF) is a critical therapeutic regulator in numerous chronic metabolic disorders. However, there is currently no direct evidence indicating whether aFGF serves a therapeutic role in atherosclerosis. In the present study, the role of aFGF in atherosclerotic lesion development was investigated by examining high‑fat diet (HFD)‑fed apolipoprotein E (ApoE)‑/‑ mice and parenteral administration of aFGF. Increased expression of aFGF and peroxisome proliferator‑activated receptor α (PPARα) was observed during atherosclerotic lesion development. The parenteral delivery of aFGF facilitated the progression of atherosclerosis without altering serum lipid expression levels in HFD‑fed ApoE‑/‑ mice. Furthermore, it was demonstrated that aFGF increased the expression of PPARα and inflammatory cytokines. The present results provided evidence that aFGF accelerates the progression of atherosclerosis and suggested that aFGF may be a potential therapeutic target for the prevention of atherosclerosis development.
Collapse
Affiliation(s)
- Jibo Han
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Yao Du
- Medication Department, Nanjing Drum Tower Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Lintao Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiong Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Liqin Jiang
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| | - Jianjiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, P.R. China
| |
Collapse
|
13
|
Bozic M, Betriu A, Bermudez-Lopez M, Ortiz A, Fernandez E, Valdivielso JM. Association of FGF-2 Concentrations with Atheroma Progression in Chronic Kidney Disease Patients. Clin J Am Soc Nephrol 2018; 13:577-584. [PMID: 29519952 PMCID: PMC5969461 DOI: 10.2215/cjn.07980717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Atherosclerosis is highly prevalent in CKD. The rate of progression of atherosclerosis is associated with cardiovascular events. Fibroblast growth factor 2 (FGF-2) is a member of the FGF family with potentially both protective and deleterious effects in the development of atherosclerosis. The role of circulating FGF-2 levels in the progression of atherosclerosis in CKD is unknown. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We used a multicenter, prospective, observational cohorts study of 481 patients with CKD. We determined the presence of atheroma plaque in ten arterial territories by carotid and femoral ultrasounds. Progression of atheromatosis was defined as an increase in the number of territories with plaque after 24 months. Plasma levels of FGF-2 were measured by multiplex analysis. A multivariable logistic regression analysis was performed to determine whether plasma FGF-2 levels were associated with atheromatosis progression. RESULTS Average age of the population was 61 years. The percentage of patients in each CKD stage was 51% in stage 3, 41% in stages 4-5, and 8% in dialysis. A total of 335 patients (70%) showed plaque at baseline. Atheromatosis progressed in 289 patients (67%). FGF-2 levels were similar between patients with or without plaque at baseline (79 versus 88 pg/ml), but lower in patients with atheromatosis progression after 2 years (78 versus 98 pg/ml; P<0.01). In adjusted analyses, higher plasma FGF-2 was associated with lower risk of atheromatosis progression (odds ratio [OR], 0.86; 95% confidence interval [95% CI], 0.76 to 0.96; per 50 pg/ml increment). Analysis of FGF-2 in tertiles showed that atheroma progression was observed for 102 participants in the lowest tertile of FGF-2 (reference group), 86 participants in the middle tertile of FGF-2 (adjusted OR, 0.70; 95% CI, 0.40 to 1.20), and 74 participants in the lowest tertile of FGF-2 (adjusted OR, 0.48; 95% CI, 0.28 to 0.82). CONCLUSIONS Low FGF-2 levels are independently associated with atheromatosis progression in CKD.
Collapse
Affiliation(s)
- Milica Bozic
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, Lleida, Spain; and
| | - Angels Betriu
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, Lleida, Spain; and
| | - Marcelino Bermudez-Lopez
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, Lleida, Spain; and
| | - Alberto Ortiz
- Instituto de Investigacion Sanitaria Fundación Jiménez Díaz, Autonomous University of Madrid, Red de Investigación Renal del Instituto de Salud Carlos III, Madrid, Spain
| | - Elvira Fernandez
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, Lleida, Spain; and
| | - Jose M. Valdivielso
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, Lleida, Spain; and
| | - on behalf of the NEFRONA investigators
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, Lleida, Spain; and
- Instituto de Investigacion Sanitaria Fundación Jiménez Díaz, Autonomous University of Madrid, Red de Investigación Renal del Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Zhang Y, Liu Z, Zhou M, Liu C. Therapeutic effects of fibroblast growth factor‑21 against atherosclerosis via the NF‑κB pathway. Mol Med Rep 2018; 17:1453-1460. [PMID: 29257234 PMCID: PMC5780083 DOI: 10.3892/mmr.2017.8100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 04/19/2017] [Indexed: 12/21/2022] Open
Abstract
Fibroblast growth factor‑21 (FGF‑21) is a pleiotropic protein predominantly secreted in the liver, adipose tissue and pancreas. It has been reported that the metabolic hormone effects of FGF‑21 on energy metabolism are essential for human vascular endothelial cells. The aim of the present study was to investigate the therapeutic effects and the underlying primary mechanism of FGF‑21 on atherosclerosis in a rat model induced by vitamin D3 and a high fat diet. The rats with atherosclerosis were randomly divided into vehicle (PBS; negative control), FGF‑21 (6 mg/kg/d) and atorvastatin (6 mg/kg/d; positive control) groups (n=40 in each group). The rats with atherosclerosis received continuous drug or PBS administration via intravenous injection for a treatment period of 30 days, following which all animals were sacrificed. The expression levels of FGF‑21 were determined prior to and following treatment with the drug or PBS. Alterations in ultrastructure and histopathology in vascular endothelial cells were examined, and the expression of nuclear transcription factor kappa B (NF‑κB) and levels of blood lipids in the thoracic aorta tissues were also determined. The results showed that typical atheromatous plaques formed, and the mRNA and protein expression levels of FGF‑21 were lower in the vascular endothelial cells of the rats with atherosclerosis, compared with the normal rats. FGF‑21 significantly reduced blood lipids and glucose in the rats with atherosclerosis, compared with those in the PBS and atorvastatin groups (P<0.01). The expression levels of Rho kinase and NF‑κB were significantly lower in the FGF‑21 group, compared with the normal control group (P<0.01). Statistically significant differences were found in atheromatous plaques and inflammatory factors in the FGF‑21 group, compared with the PBS and atorvastatin groups (P<0.01). In conclusion, FGF‑21 significantly downregulated the levels of blood lipids, Rho kinase and NF‑κB, which contributed to atherosclerosis therapy in the model rats and indicated the potential mechanisms against atherosclerosis in the model rats.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhao Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Changjian Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
15
|
Shoeibi S, Mozdziak P, Mohammadi S. Important signals regulating coronary artery angiogenesis. Microvasc Res 2017; 117:1-9. [PMID: 29247718 DOI: 10.1016/j.mvr.2017.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Abstract
Angiogenesis is a complex process of budding, the formation of new blood vessels from pre-existing microvessels, via migration, proliferation and survival. Vascular angiogenesis factors include different classes of molecules that have a fundamental role in blood vessel formation. Numerous inducers of angiogenesis, such as the members of the vascular endothelial growth factor (VEGF) family, basic fibroblast growth factor (bFGF), angiopoietin (Ang), hepatocyte growth factor (HGF), and hypoxia inducible factor-1 (HIF-1), have an important role in angiogenesis. However, VEGF, platelet-derived growth factor (PDGF), and transforming growth factor β (TGF-β) expression appear to be important in intraplaque angiogenesis. Interaction and combined effects between growth factors is essential in endothelial cell migration, proliferation, differentiation, and endothelial cell-cell communication that ultimately lead to the microvessel formation. Since VEGF has a key role during angiogenesis; it may be considered as a good therapeutic target in the clinic. The essential function of several angiogenic factors involved in coronary angiogenesis and intraplaque angiogenesis in atherosclerosis are carefully considered along with the use of angiogenic factors in clinical practice.
Collapse
Affiliation(s)
- Sara Shoeibi
- Cellular and Molecular research Center, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Graduate Physiology Program, North Carolina State University, Raleigh, NC
| | - Shabnam Mohammadi
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
16
|
Lee M, Rey K, Besler K, Wang C, Choy J. Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. Results Probl Cell Differ 2017; 62:181-207. [PMID: 28455710 DOI: 10.1007/978-3-319-54090-0_8] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.
Collapse
Affiliation(s)
- Martin Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Christine Wang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
17
|
Osadnik T, Strzelczyk JK, Lekston A, Reguła R, Bujak K, Fronczek M, Gawlita M, Gonera M, Wasilewski J, Szyguła-Jurkiewicz B, Gierlotka M, Gąsior M. The association of functional polymorphisms in genes encoding growth factors for endothelial cells and smooth muscle cells with the severity of coronary artery disease. BMC Cardiovasc Disord 2016; 16:218. [PMID: 27835972 PMCID: PMC5106826 DOI: 10.1186/s12872-016-0402-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 11/08/2016] [Indexed: 12/18/2022] Open
Abstract
Background Despite the important roles of vascular smooth muscle cells and endothelial cells in atherosclerotic lesion formation, data regarding the associations of functional polymorphisms in the genes encoding growth factors with the severity of coronary artery disease (CAD) are lacking. The aim of the present study is to analyze the relationships between functional polymorphisms in genes encoding basic fibroblast growth factor (bFGF, FGF2), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1), platelet derived growth factor-B (PDGFB), transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor A (VEGF-A) and the severity of coronary atherosclerosis in patients with stable CAD undergoing their first coronary angiography. Methods In total, 319 patients with stable CAD who underwent their first coronary angiography at the Silesian Centre for Heart Diseases in Zabrze, Poland were included in the analysis. CAD burden was assessed using the Gensini score. The TaqMan method was used for genotyping of selected functional polymorphisms in the FGF2, PDGFB, TGFB1, IGF1 and VEGFA genes, while rs4444903 in the EGF gene was genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The associations between the selected polymorphisms and the Gensini were calculated both for the whole cohort and for a subgroup of patients without previous myocardial infarction (MI). Results There were no differences in the distribution of the Gensini score between the genotypes of the analyzed polymorphisms in FGF2, EGF, IGF1, PDFGB, and TGFB1 in the whole cohort and in the subgroup of patients without previous MI. The Gensini score for VEGFA rs699947 single-nucleotide polymorphism (SNP) in patients without previous myocardial infarction, after correction for multiple testing, was highest in patients with the A/A genotype, lower in heterozygotes and lowest in patients with the C/C genotype, (p value for trend = 0.013, false discovery rate (FDR) = 0.02). After adjustment for clinical variables, and correction for multiple comparisons the association between the VEGFA genotype and Gensini score remained only nominally significant (p = 0.04, FDR = 0.19) under the dominant genetic model in patients without previous MI. Conclusions We were unable to find strong association between analyzed polymorphisms in growth factors and the severity of coronary artery disease, although there was a trend toward association between rs699947 and the severity of CAD in patients without previous MI. Electronic supplementary material The online version of this article (doi:10.1186/s12872-016-0402-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tadeusz Osadnik
- 2nd Department of Cardiology and Angiology, Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland. .,Genomics Laboratory, Kardio-Med Silesia Science and Technology Park, Marii Curie-Skłodowskiej Street 10C, 41-800, Zabrze, Poland.
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Jordana Street 19, 41-808, Zabrze, Poland
| | - Andrzej Lekston
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Rafał Reguła
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Kamil Bujak
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Martyna Fronczek
- Genomics Laboratory, Kardio-Med Silesia Science and Technology Park, Marii Curie-Skłodowskiej Street 10C, 41-800, Zabrze, Poland.,Silesian Center for Heart Diseases, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Marcin Gawlita
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Małgorzata Gonera
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Jarosław Wasilewski
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Bożena Szyguła-Jurkiewicz
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Marek Gierlotka
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| | - Mariusz Gąsior
- 3rd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Marii Curie-Skłodowskiej Street 9, 41-800, Zabrze, Poland
| |
Collapse
|
18
|
Chan SH, Chu PM, Kao CL, Cheng YH, Hung CH, Tsai KL. Oleic acid activates MMPs up-regulation through SIRT1/PPAR-γ inhibition: a probable linkage between obesity and coronary arterial disease. J Biochem 2016; 160:217-225. [PMID: 27072559 DOI: 10.1093/jb/mvw028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 03/09/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity is positively related to the growing prevalence of coronary arterial disease (CAD). It is well established in terms of the plasma concentrations of free fatty acid (FFA) that are up-regulated in cases associating with obesity. Oleic acid (OA) is known as the most abundant monounsaturated fatty acid in the human circulatory system. Several pro-atherosclerotic responses of OA have been established. Sirtuin 1 (SIRT1) acts as a key role in regulating the normal physical function in smooth muscle cells (SMCs). SIRT1 activation is developed as a novel approach to delay the progression of atherosclerotic injuries. However, the mechanism is still unclear as to whether OA affects SIRT1 expression and its activity in SMCs. We confirmed that OA treatment represses SIRT1 and peroxisome proliferator-activated receptors-γ levels in SMCs. Moreover, OA enhances by transforming the growth factor-β1 (TGF-β1) release via activation of NF-κB. OA causes NO production by inducing the inducible nitric oxide synthase overexpression, thereby promoting the secretions of matrix metalloproteinases-1 (MMP-1) and MMP-3. Overall, we suggested that OA enhances MMPs activation through SIRT1 down-regulation. Therefore, our findings might provide a novel route for developing new therapeutic treatments for FFAs-related CADs.
Collapse
Affiliation(s)
- Shih-Hung Chan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chung-Lan Kao
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Alkaloid rich fraction from Nelumbo nucifera targets VSMC proliferation and migration to suppress restenosis in balloon-injured rat carotid artery. Atherosclerosis 2016; 248:179-89. [PMID: 27018542 DOI: 10.1016/j.atherosclerosis.2016.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
AIMS Restenosis- an adverse consequence following angioplasty, and atherosclerosis are characterized by abnormal vascular smooth muscle cell (VSMC) proliferation and migration leading to neo-intima formation. In the present study, we investigated the inhibitory effects of alkaloid rich fraction (ARF) from Nelumbo nucifera and isolated compound neferine on platelet-derived growth factor (PDGF-BB) induced VSMC proliferation and migration in vitro and neo-intima formation in a rat carotid artery injury model. METHODS PDGF-BB induced VSMC proliferation and migration was assessed using colorimetric assay and modified Boyden chamber method respectively. Gene expression of cell cycle associated molecules was determined by reverse transcription-polymerase chain reaction (RT-PCR). The signaling molecules such as PDGF-Rβ, extracellular regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK), P38, metalloproteinase (MMP)-9 and nuclear factor-kappa B (NF-κB) were determined by western blot analysis. Stress fiber formation was evaluated using immunofluorescence microscopy. The rat carotid artery balloon injury model was performed to assess the effect of ARF on neo-intima formation. RESULTS ARF possessed the strongest anti-oxidant activities. The anti-proliferative activity of both ARF and neferine was due to suppression of cyclin D1, cyclin E and cyclin-dependent kinase (Cdk) gene expression. Moreover, ARF and neferine inhibited PDGF-Rβ, ERK1/2, JNK and P38 activations and NF-κB translocation. Also, ARF and neferine inhibited VSMC migration by inhibiting MMP-9 activity without affecting cytoskeleton remodeling. In a rat carotid artery injury model, ARF inhibited neo-intima formation. CONCLUSION Our results indicate that ARF targets VSMC proliferation and migration to attenuate neo-intima formation by inhibition of PDGF-Rβ mediated signaling.
Collapse
|
20
|
Pateras I, Giaginis C, Tsigris C, Patsouris E, Theocharis S. NF-κB signaling at the crossroads of inflammation and atherogenesis: searching for new therapeutic links. Expert Opin Ther Targets 2014; 18:1089-101. [DOI: 10.1517/14728222.2014.938051] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Freudenberger T, Deenen R, Kretschmer I, Zimmermann A, Seiler LF, Mayer P, Heim HK, Köhrer K, Fischer JW. Synthetic gestagens exert differential effects on arterial thrombosis and aortic gene expression in ovariectomized apolipoprotein E-deficient mice. Br J Pharmacol 2014; 171:5032-48. [PMID: 24923668 DOI: 10.1111/bph.12814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 05/29/2014] [Accepted: 06/07/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Combined hormone replacement therapy with oestrogens plus the synthetic progestin medroxyprogesterone acetate (MPA) is associated with an increased risk of thrombosis. However, the mechanisms of this pro-thrombotic effect are largely unknown. The purpose of this study was to: (i) compare the pro-thrombotic effect of MPA with another synthetic progestin, norethisterone acetate (NET-A), (ii) determine if MPA's pro-thrombotic effect can be antagonized by the progesterone and glucocorticoid receptor antagonist mifepristone and (iii) elucidate underlying mechanisms by comparing aortic gene expression after chronic MPA with that after NET-A treatment. EXPERIMENTAL APPROACH Female apolipoprotein E-deficient mice were ovariectomized and treated with placebo, MPA, a combination of MPA + mifepristone or NET-A for 90 days on a Western-type diet. Arterial thrombosis was measured in vivo in a photothrombosis model. Aortic gene expression was analysed using microarrays; GeneOntology and KEGG pathway analyses were conducted. KEY RESULTS MPA's pro-thrombotic effects were prevented by mifepristone, while NET-A did not affect arterial thrombosis. Aortic gene expression analysis showed, for the first time, that gestagens induce similar effects on a set of genes potentially promoting thrombosis. However, in NET-A-treated mice other genes with potentially anti-thrombotic effects were also affected, which might counterbalance the effects of the pro-thrombotic genes. CONCLUSIONS AND IMPLICATIONS The pro-thrombotic effects of synthetic progestins appear to be compound-specific, rather than representing a class effect of gestagens. Furthermore, the different thrombotic responses elicited by MPA and NET-A might be attributed to a more balanced, 'homeostatic' gene expression induced in NET-A- as compared with MPA-treated mice.
Collapse
Affiliation(s)
- T Freudenberger
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
García-Hernández S, Potashner SJ, Morest DK. Role of fibroblast growth factor 8 in neurite outgrowth from spiral ganglion neurons in vitro. Brain Res 2013; 1529:39-45. [PMID: 23891716 PMCID: PMC5217747 DOI: 10.1016/j.brainres.2013.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 12/12/2022]
Abstract
Many neurons degenerate after injuries resulting from overstimulation, drugs, genetic mutations, and aging. Although several growth factors and neurotrophins delay degeneration and promote regrowth of neural processes, the role of fibroblast growth factor 8 (FGF8) in mammalian spiral ganglion neurons (SGN) neurite outgrowth has not been examined. This study develops and uses SGN cell cultures suitable for experimental analysis, it investigates whether FGF8a and FGF8b isoforms affect the neurite outgrowth from SGN cultured in vitro. We found that both FGF8a and FGF8b promoted the outgrowth of neurites from cultured SGN. This response is mediated by FGF receptors and involves the activation of IκBα-mediated NFκB signaling pathway. These findings suggest that, besides its morphogenetic role during development, FGF8 may have trophic functions in the adult which are relevant to regeneration.
Collapse
Affiliation(s)
- Sofía García-Hernández
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | |
Collapse
|
23
|
Karki R, Ho OM, Kim DW. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim Biophys Acta Gen Subj 2013; 1830:2619-28. [PMID: 23274740 DOI: 10.1016/j.bbagen.2012.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/19/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. METHODS Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. RESULTS Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. CONCLUSION Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. GENERAL SIGNIFICANCE Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, USA
| | | | | |
Collapse
|
24
|
Supra-additive expression of interleukin-6, interleukin-8 and basic fibroblast growth factor in vascular smooth muscle cells following coinfection with Chlamydia pneumoniae and cytomegalovirus as a novel link between infection and atherosclerosis. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2013; 23:e26-30. [PMID: 23730316 DOI: 10.1155/2012/987476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Chlamydia pneumoniae and human cytomegalovirus (HCMV) may be involved in the pathogenesis of atherosclerosis. Prospective studies indicate an increased risk for cardiovascular events in patients with evidence of multiple infections. OBJECTIVE To determine whether there is a synergistic effect of coinfection with C pneumoniae and HCMV on expression of selected growth factors and cytokines. METHODS The production of interleukin (IL)-6, IL-8, basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF), and 'regulated on activation normal T-cell expressed and secreted' (RANTES) was measured in coinfected aortic smooth muscle cells (AoSMC). RESULTS Using reverse transcription polymerase chain reaction and immunoassays, it was demonstrated that the expression of IL-6, IL-8, RANTES and bFGF was stimulated in a dose- and time-dependent fashion in C pneumoniae and also in HCMV-infected cultures. In contrast, the expression of PDGF-AA was only stimulated following HCMV infection. Coinfection with C pneumoniae and HCMV resulted in a supra-additive stimulation of IL-6 (30% increased expression, P≤0.05) at 48 h, IL-8 (137% increased expression, P≤0.001) at 24 h and bFGF (209% increased expression, P≤0.01) at 48 h following infection. CONCLUSIONS The findings of the present study show that C pneumoniae and HCMV are able to act in synergy in coinfected AoSMC. The supra-additive induction of AoSMC growth factors and cytokines indicates a novel molecular link between infection and vascular disease development.
Collapse
|
25
|
Liu MH, Tang ZH, Li GH, Qu SL, Zhang Y, Ren Z, Liu LS, Jiang ZS. Janus-like role of fibroblast growth factor 2 in arteriosclerotic coronary artery disease: atherogenesis and angiogenesis. Atherosclerosis 2013; 229:10-7. [PMID: 23578358 DOI: 10.1016/j.atherosclerosis.2013.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 11/25/2022]
Abstract
Angiogenic stimulation is a promising new strategy for treating patients with arteriosclerotic coronary artery disease. This strategy aims to ameliorate cardiac function by improving myocardial perfusion and lowering the risk of myocardial infarction. However, angiogenesis may contribute to the growth of atherosclerotic lesions. Atherogenesis is also a potential side effect of angiogenic therapy. Early clinical trials were performed using fibroblast growth factor 2 (FGF2) protein, which enhances the formation of new collateral vessels to reduce ischaemic symptoms. Conversely, angiogenic stimulation by FGF2 is a dilemma because it could cause negative angiogenic effects, such as atherosclerosis. Thus far, clinical trials in patients with recombinant FGF2 protein therapy have not yet yielded undisputable beneficial effects. Future trials should determine whether an improvement can be obtained in patients with coronary artery disease using a combination of FGF2 and other growth factors or a combination of the FGF2 gene and stem cell therapy. This review summarises the multiple roles of FGF2 in the progression of atherosclerosis, its effect on pro-angiogenesis and improvement of cardiac function in coronary artery disease, and the potentially unfavourable effect of angiogenesis on the prevention and treatment of atherogenesis.
Collapse
Affiliation(s)
- Mi-Hua Liu
- Institute of Cardiovascular Disease and Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City, Hunan Province 421001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang R, Zhou SJ, Li CJ, Wang XN, Tang YZ, Chen R, Lv L, Zhao Q, Xing QL, Yu DM, Yu P. C-reactive protein/oxidised low-density lipoprotein/β2-glycoprotein I complex promotes atherosclerosis in diabetic BALB/c mice via p38mitogen-activated protein kinase signal pathway. Lipids Health Dis 2013; 12:42. [PMID: 23531147 PMCID: PMC3643870 DOI: 10.1186/1476-511x-12-42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/10/2013] [Indexed: 01/18/2023] Open
Abstract
Background The aim of this study was to investigate the effect of C-reactive protein/oxidised low-density lipoprotein/β2-glycoprotein I (CRP/oxLDL/β2GPI) complex on atherosclerosis (AS) in diabetic BALB/c mice. Methods BALB/c mice were fed high-fat and normal diet. Eight weeks later, the mice fed with high-fat diet were injected with streptozotocin (STZ) to induce diabetes. The diabetic mice were respectively injected twice monthly with 20 μg oxLDL, 20 μg β2GPI, 40 μg oxLDL/β2GPI complex, 44 μg CRP/oxLDL/β2GPI complex, and PBS. Aortas were stained with Sudan IV to investigate lipid plaque formation. The infiltration condition of smooth muscle cells (SMCs), macrophages, and T cells in the aortas were determined by immunohistochemistry (IH). The mRNA expressions of receptors associated with lipid metabolism were quantified by real-time PCR. The phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and MKK3/6 in aorta tissues were assessed by Western blot. The expression of inflammation cytokines was evaluated by protein chip. Results The lipid plaques were more extensive, the lumen area was obviously narrower, the ratio of intima and media thickness were increased, and the normal internal elastic lamia structure and endothelial cell disappeared (P < 0.05) in the oxLDL and CRP/oxLDL/β2GPI groups (P < 0.05). CRP/oxLDL/β2GPI complex dramatically promoted infiltration of SMCs, macrophages, and T cells, improved the mRNA expression of ABCA1 and ABCG1, but reduced the mRNA expression of SR-BI and CD36 and increased the phosphorylation of p38MAPK and MKK3/6 (all P < 0.05). The highest expression levels of IL-1, IL-9, PF-4, bFGF, and IGF-II were detected in the CRP/oxLDL/β2GPI group (P < 0.05). Conclusions CRP/oxLDL/β2GPI complex aggravated AS in diabetic BALB/c mice by increasing lipid uptake, the mechanism of which may be mediated by the p38MAPK signal pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital & Tianjin Institute of Endocrinology Tianjin Medical University, Tongan Street, Tianjin, Heping District 300070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gungor O, Kismali E, Sisman AR, Kircelli F, Carrero JJ, Tatar E, Asci G, Toz H. The relationships between serum sTWEAK, FGF-23 levels, and carotid atherosclerosis in renal transplant patients. Ren Fail 2012; 35:77-81. [PMID: 23101788 DOI: 10.3109/0886022x.2012.734890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cardiovascular disease is the main cause of mortality after renal transplantation. Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and fibroblast growth factor-23 (FGF-23) are two novel molecules that have been associated with atherosclerosis in different populations. In this cross-sectional study, we investigated the associations between sTWEAK, FGF-23, and carotid artery intima-media thickness (CA-IMT) in renal transplant patients. METHODS A total of 117 renal transplant patients were studied. CA-IMT was determined by B-mode Doppler ultrasonography. Serum sTWEAK and FGF-23 were measured by a commercially available enzyme-linked immunosorbent assay (ELISA). RESULTS Mean age was 39.6 ± 9.6 years and 51% of the patients were male. Mean sTWEAK level was 595 ± 225 pg/mL (158-1140), FGF-23 level was 92 ± 123 RU/mL (9.6-1006), and CA-IMT level was 0.62 ± 0.11 mm (0.40-0.98). sTWEAK level was positively correlated with CA-IMT. There was no association between sTWEAK and FGF-23 levels. FGF-23 was also associated with CA-IMT. In adjusted models using linear regression analysis, only age and serum TWEAK levels were predictors for CA-IMT. CONCLUSION There is a positive correlation between CA-IMT and sTWEAK, but not with FGF-23 levels in renal transplant patients.
Collapse
Affiliation(s)
- Ozkan Gungor
- Division of Nephrology, Ege University School of Medicine, Izmir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Human matrix metalloproteinases: an ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med 2011; 33:119-208. [PMID: 22100792 DOI: 10.1016/j.mam.2011.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/29/2011] [Indexed: 02/07/2023]
Abstract
Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
Collapse
|
29
|
Cheng WP, Wang BW, Chen SC, Chang H, Shyu KG. Mechanical stretch induces the apoptosis regulator PUMA in vascular smooth muscle cells. Cardiovasc Res 2011; 93:181-9. [PMID: 22021910 DOI: 10.1093/cvr/cvr280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The expression of PUMA (p53-up-regulated modulator of apoptosis), an apoptosis-regulating gene, increases during endoplasmic reticulum stress. The mechanisms by which cyclic stretch influences the regulation of PUMA in vascular smooth muscle cells (VSMCs) during apoptosis remain unclear. We hypothesized that cyclic stretch enhances PUMA expression in VSMCs undergoing apoptosis. METHODS AND RESULTS Human VSMCs grown on a Flexcell I flexible membrane base were stretched via vacuum to 20% of elongation at a frequency of 1 Hz. An in vivo model of volume overload with aorta-caval shunt and pressure overload with aortic banding in adult rats was used to study PUMA expression. Cyclic stretch markedly enhanced PUMA protein and gene expression after stretch. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125 and interferon-γ (IFN-γ) antibody 30 min before stretch inhibited PUMA expression. Gel shift assay demonstrated that stretch increased the DNA binding activity of interferon regulatory factor-1 (IRF-1). SP600125, JNK small interfering RNA, and IFN-γ antibody attenuated the DNA binding activity induced by stretch. PUMA-Mut plasmid, SP600125, and IRF-1 antibody attenuated the promoter activity. Stretch increased secretion of IFN-γ from VSMCs, and conditioned media from stretched VSMCs increased PUMA protein expression. The in vivo model of aorta-caval shunt and aortic banding also showed increased PUMA protein expression in the aorta. CONCLUSION Cyclic mechanical stretch increases PUMA expression in cultured human VSMCs. The PUMA expression induced by stretch is mediated by IFN-γ, JNK, and IRF-1 pathways. These findings suggest that PUMA is an important mediator in VSMC apoptosis induced by stretch.
Collapse
Affiliation(s)
- Wen-Pin Cheng
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Iribarren C, Phelps BH, Darbinian JA, McCluskey ER, Quesenberry CP, Hytopoulos E, Vogelman JH, Orentreich N. Circulating angiopoietins-1 and -2, angiopoietin receptor Tie-2 and vascular endothelial growth factor-A as biomarkers of acute myocardial infarction: a prospective nested case-control study. BMC Cardiovasc Disord 2011; 11:31. [PMID: 21672190 PMCID: PMC3124417 DOI: 10.1186/1471-2261-11-31] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 06/14/2011] [Indexed: 12/22/2022] Open
Abstract
Background Angiogenesis is up-regulated in myocardial ischemia. However, limited data exist assessing the value of circulating angiogenic biomarkers in predicting future incidence of acute myocardial infarction (AMI). Our aim was to examine the association between circulating levels of markers of angiogenesis with risk of incident acute myocardial infarction (AMI) in men and women. Methods We performed a case-control study (nested within a large cohort of persons receiving care within Kaiser Permanente of Northern California) including 695 AMI cases and 690 controls individually matched on age, gender and race/ethnicity. Results Median [inter-quartile range] serum concentrations of vascular endothelial growth factor-A (VEGF-A; 260 [252] vs. 235 [224] pg/mL; p = 0.01) and angiopoietin-2 (Ang-2; 1.18 [0.66] vs. 1.05 [0.58] ng/mL; p < 0.0001) were significantly higher in AMI cases than in controls. By contrast, endothelium-specific receptor tyrosine kinase (Tie-2; 14.2 [3.7] vs. 14.0 [3.1] ng/mL; p = 0.07) and angiopoietin-1 levels (Ang-1; 33.1 [13.6] vs. 32.5 [12.7] ng/mL; p = 0.52) did not differ significantly by case-control status. After adjustment for educational attainment, hypertension, diabetes, smoking, alcohol consumption, body mass index, LDL-C, HDL-C, triglycerides and C-reactive protein, each increment of 1 unit of Ang-2 as a Z score was associated with 1.17-fold (95 percent confidence interval, 1.02 to 1.35) increased odds of AMI, and the upper quartile of Ang-2, relative to the lowest quartile, was associated with 1.63-fold (95 percent confidence interval, 1.09 to 2.45) increased odds of AMI. Conclusions Our data support a role of Ang-2 as a biomarker of incident AMI independent of traditional risk factors.
Collapse
|
31
|
Balci M, Kirkpantur A, Gulbay M, Gurbuz OA. Plasma fibroblast growth factor-23 levels are independently associated with carotid artery atherosclerosis in maintenance hemodialysis patients. Hemodial Int 2011; 14:425-32. [PMID: 20955275 DOI: 10.1111/j.1542-4758.2010.00480.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Fibroblast growth factor-23 (FGF-23) has been suggested to play a role in vascular calcification in chronic kidney disease. Common carotid artery intima-media thickness (CIMT) assessment and common carotid artery (CCA) plaque identification using ultrasound are well-recognized tools for identification and monitoring of atherosclerosis. The aim of this study was to test that elevated FGF-23 levels might be associated with carotid artery atherosclerosis in maintenance hemodialysis (HD) patients. In this cross-sectional study, plasma FGF-23 concentrations were measured using a C-terminal human enzyme-linked immunosorbent assay kit. Carotid artery intima-media thickness was measured and CCA plaques were identified by B-Mode Doppler ultrasound. One hundred twenty-eight maintenance HD patients (65 women and 63 men, mean age: 55.5 ± 13 years, mean HD vintage: 52 ± 10 months, all patients are on HD thrice a week) were involved. The mean CIMT were higher with increasing tertiles of plasma FGF-23 levels (0.66 ± 0.14 vs. 0.75 ± 0.05 vs. 0.86 ± 0.20 mm, P<0.0001). Log plasma FGF-23 were higher in patients with plaques in CCA than patients free of plaques (3.0 ± 0.17 vs. 2.7 ± 0.23, P<0.0001). Significant correlation was recorded between log plasma FGF-23 and CIMT (r=0,497, P=0.0001). In multiple regression analysis, a high log FGF-23 concentration was a significant independent risk factor of an increased CIMT. Further studies are needed to clarify whether an increased plasma FGF-23 level is a marker or a potential mechanism for atherosclerosis in patients with end-stage renal disease.
Collapse
Affiliation(s)
- Mustafa Balci
- Department of Cardiology, Ministry of Health, Diskapi Training and Research Hospital, Ankara, Turkey
| | | | | | | |
Collapse
|