1
|
Morales PN, Coons AN, Koopman AJ, Patel S, Chase PB, Parvatiyar MS, Pinto JR. Post-translational modifications of vertebrate striated muscle myosin heavy chains. Cytoskeleton (Hoboken) 2024; 81:832-842. [PMID: 38587113 PMCID: PMC11458826 DOI: 10.1002/cm.21857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating the function of many sarcomeric proteins, including myosin. Myosins comprise a family of motor proteins that play fundamental roles in cell motility in general and muscle contraction in particular. A myosin molecule consists of two myosin heavy chains (MyHCs) and two pairs of myosin light chains (MLCs); two MLCs are associated with the neck region of each MyHC's N-terminal head domain, while the two MyHC C-terminal tails form a coiled-coil that polymerizes with other MyHCs to form the thick filament backbone. Myosin undergoes extensive PTMs, and dysregulation of these PTMs may lead to abnormal muscle function and contribute to the development of myopathies and cardiovascular disorders. Recent studies have uncovered the significance of PTMs in regulating MyHC function and showed how these PTMs may provide additional modulation of contractile processes. Here, we discuss MyHC PTMs that have been biochemically and/or functionally studied in mammals' and rodents' striated muscle. We have identified hotspots or specific regions in three isoforms of myosin (MYH2, MYH6, and MYH7) where the prevalence of PTMs is more frequent and could potentially play a significant role in fine-tuning the activity of these proteins.
Collapse
Affiliation(s)
- Paula Nieto Morales
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| | - Arianna N. Coons
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Amelia J. Koopman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Sonu Patel
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
| | - Michelle S. Parvatiyar
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL 32306 USA
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306 USA
| |
Collapse
|
2
|
Kazmierczak K, Liang J, Maura LG, Scott NK, Szczesna-Cordary D. Phosphorylation Mimetic of Myosin Regulatory Light Chain Mitigates Cardiomyopathy-Induced Myofilament Impairment in Mouse Models of RCM and DCM. Life (Basel) 2023; 13:1463. [PMID: 37511838 PMCID: PMC10381296 DOI: 10.3390/life13071463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
This study focuses on mimicking constitutive phosphorylation in the N-terminus of the myosin regulatory light chain (S15D-RLC) as a rescue strategy for mutation-induced cardiac dysfunction in transgenic (Tg) models of restrictive (RCM) and dilated (DCM) cardiomyopathy caused by mutations in essential (ELC, MYL3 gene) or regulatory (RLC, MYL2 gene) light chains of myosin. Phosphomimetic S15D-RLC was reconstituted in left ventricular papillary muscle (LVPM) fibers from two mouse models of cardiomyopathy, RCM-E143K ELC and DCM-D94A RLC, along with their corresponding Tg-ELC and Tg-RLC wild-type (WT) mice. The beneficial effects of S15D-RLC in rescuing cardiac function were manifested by the S15D-RLC-induced destabilization of the super-relaxed (SRX) state that was observed in both models of cardiomyopathy. S15D-RLC promoted a shift from the SRX state to the disordered relaxed (DRX) state, increasing the number of heads readily available to interact with actin and produce force. Additionally, S15D-RLC reconstituted with fibers demonstrated significantly higher maximal isometric force per cross-section of muscle compared with reconstitution with WT-RLC protein. The effects of the phosphomimetic S15D-RLC were compared with those observed for Omecamtiv Mecarbil (OM), a myosin activator shown to bind to the catalytic site of cardiac myosin and increase myocardial contractility. A similar SRX↔DRX equilibrium shift was observed in OM-treated fibers as in S15D-RLC-reconstituted preparations. Additionally, treatment with OM resulted in significantly higher maximal pCa 4 force per cross-section of muscle fibers in both cardiomyopathy models. Our results suggest that both treatments with S15D-RLC and OM may improve the function of myosin motors and cardiac muscle contraction in RCM-ELC and DCM-RLC mice.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Luis G Maura
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Natissa K Scott
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, School of Medicine, University of Miami Miller, Miami, FL 33136, USA
| |
Collapse
|
3
|
Turner KL, Morris HS, Awinda PO, Fitzsimons DP, Tanner BCW. RLC phosphorylation amplifies Ca2+ sensitivity of force in myocardium from cMyBP-C knockout mice. J Gen Physiol 2023; 155:213841. [PMID: 36715675 PMCID: PMC9930131 DOI: 10.1085/jgp.202213250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the leading genetic cause of heart disease. The heart comprises several proteins that work together to properly facilitate force production and pump blood throughout the body. Cardiac myosin binding protein-C (cMyBP-C) is a thick-filament protein, and mutations in cMyBP-C are frequently linked with clinical cases of HCM. Within the sarcomere, the N-terminus of cMyBP-C likely interacts with the myosin regulatory light chain (RLC); RLC is a subunit of myosin located within the myosin neck region that modulates contractile dynamics via its phosphorylation state. Phosphorylation of RLC is thought to influence myosin head position along the thick-filament backbone, making it more favorable to bind the thin filament of actin and facilitate force production. However, little is known about how these two proteins interact. We tested the effects of RLC phosphorylation on Ca2+-regulated contractility using biomechanical assays on skinned papillary muscle strips isolated from cMyBP-C KO mice and WT mice. RLC phosphorylation increased Ca2+ sensitivity of contraction (i.e., pCa50) from 5.80 ± 0.02 to 5.95 ± 0.03 in WT strips, whereas RLC phosphorylation increased Ca2+ sensitivity of contraction from 5.86 ± 0.02 to 6.15 ± 0.03 in cMyBP-C KO strips. These data suggest that the effects of RLC phosphorylation on Ca2+ sensitivity of contraction are amplified when cMyBP-C is absent from the sarcomere. This implies that cMyBP-C and RLC act in concert to regulate contractility in healthy hearts, and mutations to these proteins that lead to HCM (or a loss of phosphorylation with disease progression) may disrupt important interactions between these thick-filament regulatory proteins.
Collapse
Affiliation(s)
- Kyrah L Turner
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Haley S Morris
- School of Molecular Biosciences & Neuroscience, Washington State University , Pullman, WA, USA
| | - Peter O Awinda
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| | - Daniel P Fitzsimons
- Department of Animal, Veterinary and Food Sciences, University of Idaho , Moscow, ID, USA
| | - Bertrand C W Tanner
- Department of Integrative Physiology & Neuroscience, Washington State University , Pullman, WA, USA
| |
Collapse
|
4
|
Kazmierczak K, Liang J, Gomez-Guevara M, Szczesna-Cordary D. Functional comparison of phosphomimetic S15D and T160D mutants of myosin regulatory light chain exchanged in cardiac muscle preparations of HCM and WT mice. Front Cardiovasc Med 2022; 9:988066. [PMID: 36204565 PMCID: PMC9530205 DOI: 10.3389/fcvm.2022.988066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 12/30/2022] Open
Abstract
In this study, we investigated the rescue potential of two phosphomimetic mutants of the myosin regulatory light chain (RLC, MYL2 gene), S15D, and T160D RLCs. S15D-RLC mimics phosphorylation of the established serine-15 site of the human cardiac RLC. T160D-RLC mimics the phosphorylation of threonine-160, identified by computational analysis as a high-score phosphorylation site of myosin RLC. Cardiac myosin and left ventricular papillary muscle (LVPM) fibers were isolated from a previously generated model of hypertrophic cardiomyopathy (HCM), Tg-R58Q, and Tg-wild-type (WT) mice. Muscle specimens were first depleted of endogenous RLC and then reconstituted with recombinant human cardiac S15D and T160D phosphomimetic RLCs. Preparations reconstituted with recombinant human cardiac WT-RLC and R58Q-RLC served as controls. Mouse myosins were then tested for the actin-activated myosin ATPase activity and LVPM fibers for the steady-state force development and Ca2+-sensitivity of force. The data showed that S15D-RLC significantly increased myosin ATPase activity compared with T160D-RLC or WT-RLC reconstituted preparations. The two S15D and T160D phosphomimetic RLCs were able to rescue Vmax of Tg-R58Q myosin reconstituted with recombinant R58Q-RLC, but the effect of S15D-RLC was more pronounced than T160D-RLC. Low tension observed for R58Q-RLC reconstituted LVPM from Tg-R58Q mice was equally rescued by both phosphomimetic RLCs. In the HCM Tg-R58Q myocardium, the S15D-RLC caused a shift from the super-relaxed (SRX) state to the disordered relaxed (DRX) state, and the number of heads readily available to interact with actin and produce force was increased. At the same time, T160D-RLC stabilized the SRX state at a level similar to R58Q-RLC reconstituted fibers. We report here on the functional superiority of the established S15 phospho-site of the human cardiac RLC vs. C-terminus T160-RLC, with S15D-RLC showing therapeutic potential in mitigating a non-canonical HCM behavior underlined by hypocontractile behavior of Tg-R58Q myocardium.
Collapse
|
5
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Pradeep R, Akram A, Proute MC, Kothur NR, Georgiou P, Serhiyenia T, Shi W, Kerolos ME, Mostafa JA. Understanding the Genetic and Molecular Basis of Familial Hypertrophic Cardiomyopathy and the Current Trends in Gene Therapy for Its Management. Cureus 2021; 13:e17548. [PMID: 34646605 PMCID: PMC8481153 DOI: 10.7759/cureus.17548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetically acquired disease of cardiac myocytes. Studies show that 70% of this disease is a result of different mutations in various sarcomere genes. This review aims to discuss several genetic mutations, epigenetic factors, and signal transduction pathways leading to the development of HCM. In addition, this article elaborates on recent advances in gene therapies and their implications for managing this condition. We start by discussing the founding mutations in HCM and their effect on power stroke generation. The less explored field of epigenetics including methylation, acetylation, and the role of different micro RNAs in the development of cardiac muscle hypertrophy has been highlighted in this article. The signal transduction pathways that lead to gene transcription, which in turn lead to increased protein synthesis of cardiac muscle fibers are elaborated. Finally, the microscopic events leading to the pathophysiologic macro events of cardiac failure, and the current experimental trials of gene therapy models, and the clustered regularly interspaced short palindromic repeats (CRISPR) type 2 system proteins, are discussed. We have concluded our discussion by emphasizing the need for more studies on epigenomics and experimental designs for gene therapy in HCM patients. This review focuses on the process of HCM from initial mutation to the development of phenotypic expression and various points of intervention in cardiac myocardial hypertrophy development.
Collapse
Affiliation(s)
- Roshini Pradeep
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aqsa Akram
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Matthew C Proute
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nageshwar R Kothur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Petros Georgiou
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tatsiana Serhiyenia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wangpan Shi
- Pathology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mina E Kerolos
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jihan A Mostafa
- Psychiatry/Cognitive Behavioural Psychotherapy, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
7
|
Sitbon YH, Diaz F, Kazmierczak K, Liang J, Wangpaichitr M, Szczesna-Cordary D. Cardiomyopathic mutations in essential light chain reveal mechanisms regulating the super relaxed state of myosin. THE JOURNAL OF GENERAL PHYSIOLOGY 2021; 153:212172. [PMID: 34014247 PMCID: PMC8142263 DOI: 10.1085/jgp.202012801] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
In this study, we assessed the super relaxed (SRX) state of myosin and sarcomeric protein phosphorylation in two pathological models of cardiomyopathy and in a near-physiological model of cardiac hypertrophy. The cardiomyopathy models differ in disease progression and severity and express the hypertrophic (HCM-A57G) or restrictive (RCM-E143K) mutations in the human ventricular myosin essential light chain (ELC), which is encoded by the MYL3 gene. Their effects were compared with near-physiological heart remodeling, represented by the N-terminally truncated ELC (Δ43 ELC mice), and with nonmutated human ventricular WT-ELC mice. The HCM-A57G and RCM-E143K mutations had antagonistic effects on the ATP-dependent myosin energetic states, with HCM-A57G cross-bridges fostering the disordered relaxed (DRX) state and the RCM-E143K model favoring the energy-conserving SRX state. The HCM-A57G model promoted the switch from the SRX to DRX state and showed an ∼40% increase in myosin regulatory light chain (RLC) phosphorylation compared with the RLC of normal WT-ELC myocardium. On the contrary, the RCM-E143K–associated stabilization of the SRX state was accompanied by an approximately twofold lower level of myosin RLC phosphorylation compared with the RLC of WT-ELC. Upregulation of RLC phosphorylation was also observed in Δ43 versus WT-ELC hearts, and the Δ43 myosin favored the energy-saving SRX conformation. The two disease variants also differently affected the duration of force transients, with shorter (HCM-A57G) or longer (RCM-E143K) transients measured in electrically stimulated papillary muscles from these pathological models, while no changes were displayed by Δ43 fibers. We propose that the N terminus of ELC (N-ELC), which is missing in the hearts of Δ43 mice, works as an energetic switch promoting the SRX-to-DRX transition and contributing to the regulation of myosin RLC phosphorylation in full-length ELC mice by facilitating or sterically blocking RLC phosphorylation in HCM-A57G and RCM-E143K hearts, respectively.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
8
|
Sitbon YH, Yadav S, Kazmierczak K, Szczesna-Cordary D. Insights into myosin regulatory and essential light chains: a focus on their roles in cardiac and skeletal muscle function, development and disease. J Muscle Res Cell Motil 2020; 41:313-327. [PMID: 31131433 PMCID: PMC6879809 DOI: 10.1007/s10974-019-09517-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
The activity of cardiac and skeletal muscles depends upon the ATP-coupled actin-myosin interactions to execute the power stroke and muscle contraction. The goal of this review article is to provide insight into the function of myosin II, the molecular motor of the heart and skeletal muscles, with a special focus on the role of myosin II light chain (MLC) components. Specifically, we focus on the involvement of myosin regulatory (RLC) and essential (ELC) light chains in striated muscle development, isoform appearance and their function in normal and diseased muscle. We review the consequences of isoform switching and knockout of specific MLC isoforms on cardiac and skeletal muscle function in various animal models. Finally, we discuss how dysregulation of specific RLC/ELC isoforms can lead to cardiac and skeletal muscle diseases and summarize the effects of most studied mutations leading to cardiac or skeletal myopathies.
Collapse
Affiliation(s)
- Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Popa-Fotea NM, Micheu MM, Bataila V, Scafa-Udriste A, Dorobantu L, Scarlatescu AI, Zamfir D, Stoian M, Onciul S, Dorobantu M. Exploring the Continuum of Hypertrophic Cardiomyopathy-From DNA to Clinical Expression. ACTA ACUST UNITED AC 2019; 55:medicina55060299. [PMID: 31234582 PMCID: PMC6630598 DOI: 10.3390/medicina55060299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/29/2022]
Abstract
The concepts underlying hypertrophic cardiomyopathy (HCM) pathogenesis have evolved greatly over the last 60 years since the pioneering work of the British pathologist Donald Teare, presenting the autopsy findings of “asymmetric hypertrophy of the heart in young adults”. Advances in human genome analysis and cardiac imaging techniques have enriched our understanding of the complex architecture of the malady and shaped the way we perceive the illness continuum. Presently, HCM is acknowledged as “a disease of the sarcomere”, where the relationship between genotype and phenotype is not straightforward but subject to various genetic and nongenetic influences. The focus of this review is to discuss key aspects related to molecular mechanisms and imaging aspects that have prompted genotype–phenotype correlations, which will hopefully empower patient-tailored health interventions.
Collapse
Affiliation(s)
- Nicoleta Monica Popa-Fotea
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Vlad Bataila
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Alexandru Scafa-Udriste
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Lucian Dorobantu
- Cardiomyopathy Center, Monza Hospital, Tony Bulandra Street 27, 021968 Bucharest, Romania.
| | - Alina Ioana Scarlatescu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Diana Zamfir
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Monica Stoian
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
| | - Sebastian Onciul
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| | - Maria Dorobantu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, Floreasca Street 8, 014461 Bucharest, Romania.
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania.
| |
Collapse
|
10
|
Barrick SK, Clippinger SR, Greenberg L, Greenberg MJ. Computational Tool to Study Perturbations in Muscle Regulation and Its Application to Heart Disease. Biophys J 2019; 116:2246-2252. [PMID: 31126584 PMCID: PMC6588827 DOI: 10.1016/j.bpj.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022] Open
Abstract
Striated muscle contraction occurs when myosin thick filaments bind to thin filaments in the sarcomere and generate pulling forces. This process is regulated by calcium, and it can be perturbed by pathological conditions (e.g., myopathies), physiological adaptations (e.g., β-adrenergic stimulation), and pharmacological interventions. Therefore, it is important to have a methodology to robustly determine the impact of these perturbations and statistically evaluate their effects. Here, we present an approach to measure the equilibrium constants that govern muscle activation, estimate uncertainty in these parameters, and statistically test the effects of perturbations. We provide a MATLAB-based computational tool for these analyses, along with easy-to-follow tutorials that make this approach accessible. The hypothesis testing and error estimation approaches described here are broadly applicable, and the provided tools work with other types of data, including cellular measurements. To demonstrate the utility of the approach, we apply it to elucidate the biophysical mechanism of a mutation that causes familial hypertrophic cardiomyopathy. This approach is generally useful for studying muscle diseases and therapeutic interventions that target muscle contraction.
Collapse
Affiliation(s)
- Samantha K Barrick
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Yadav S, Yuan CC, Kazmierczak K, Liang J, Huang W, Takeuchi LM, Kanashiro-Takeuchi RM, Szczesna-Cordary D. Therapeutic potential of AAV9-S15D-RLC gene delivery in humanized MYL2 mouse model of HCM. J Mol Med (Berl) 2019; 97:1033-1047. [PMID: 31101927 DOI: 10.1007/s00109-019-01791-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder characterized by ventricular hypertrophy, myofibrillar disarray, and fibrosis, and is primarily caused by mutations in sarcomeric genes. With no definitive cure for HCM, there is an urgent need for the development of novel preventive and reparative therapies. This study is focused on aspartic acid-to-valine (D166V) mutation in the myosin regulatory light chain, RLC (MYL2 gene), associated with a malignant form of HCM. Since myosin RLC phosphorylation is critical for normal cardiac function, we aimed to exploit this post-translational modification via phosphomimetic-RLC gene therapy. We hypothesized that mimicking/modulating cardiac RLC phosphorylation in non-phosphorylatable D166V myocardium would improve heart function of HCM-D166V mice. Adeno-associated virus, serotype-9 (AAV9) was used to deliver phosphomimetic human RLC variant with serine-to-aspartic acid substitution at Ser15-RLC phosphorylation site (S15D-RLC) into the hearts of humanized HCM-D166V mice. Improvement of heart function was monitored by echocardiography, invasive hemodynamics (PV-loops) and muscle contractile mechanics. A significant increase in cardiac output and stroke work and a decrease in relaxation constant, Tau, shown to be prolonged in HCM mice, were observed in AAV- vs. PBS-injected HCM mice. Strain analysis showed enhanced myocardial longitudinal shortening in AAV-treated vs. control mice. In addition, increased maximal contractile force was observed in skinned papillary muscles from AAV-injected HCM hearts. Our data suggest that myosin RLC phosphorylation may have important translational implications for the treatment of RLC mutations-induced HCM and possibly play a role in other disease settings accompanied by depressed Ser15-RLC phosphorylation. KEY MESSAGES: HCM-D166V mice show decreased RLC phosphorylation and decompensated function. AAV9-S15D-RLC gene therapy in HCM-D166V mice, but not in WT-RLC, results in improved heart performance. Global longitudinal strain analysis shows enhanced contractility in AAV vs controls. Increased systolic and diastolic function is paralleled by higher contractile force. Phosphomimic S15D-RLC has a therapeutic potential for HCM.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rosemeire M Kanashiro-Takeuchi
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Yadav S, Sitbon YH, Kazmierczak K, Szczesna-Cordary D. Hereditary heart disease: pathophysiology, clinical presentation, and animal models of HCM, RCM, and DCM associated with mutations in cardiac myosin light chains. Pflugers Arch 2019; 471:683-699. [PMID: 30706179 DOI: 10.1007/s00424-019-02257-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/26/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023]
Abstract
Genetic cardiomyopathies, a group of cardiovascular disorders based on ventricular morphology and function, are among the leading causes of morbidity and mortality worldwide. Such genetically driven forms of hypertrophic (HCM), dilated (DCM), and restrictive (RCM) cardiomyopathies are chronic, debilitating diseases that result from biomechanical defects in cardiac muscle contraction and frequently progress to heart failure (HF). Locus and allelic heterogeneity, as well as clinical variability combined with genetic and phenotypic overlap between different cardiomyopathies, have challenged proper clinical prognosis and provided an incentive for identification of pathogenic variants. This review attempts to provide an overview of inherited cardiomyopathies with a focus on their genetic etiology in myosin regulatory (RLC) and essential (ELC) light chains, which are EF-hand protein family members with important structural and regulatory roles. From the clinical discovery of cardiomyopathy-linked light chain mutations in patients to an array of exploratory studies in animals, and reconstituted and recombinant systems, we have summarized the current state of knowledge on light chain mutations and how they induce physiological disease states via biochemical and biomechanical alterations at the molecular, tissue, and organ levels. Cardiac myosin RLC phosphorylation and the N-terminus ELC have been discussed as two important emerging modalities with important implications in the regulation of myosin motor function, and thus cardiac performance. A comprehensive understanding of such triggers is absolutely necessary for the development of target-specific rescue strategies to ameliorate or reverse the effects of myosin light chain-related inherited cardiomyopathies.
Collapse
MESH Headings
- Animals
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Restrictive/etiology
- Cardiomyopathy, Restrictive/genetics
- Cardiomyopathy, Restrictive/pathology
- Disease Models, Animal
- Humans
- Mutation
- Myosin Light Chains/genetics
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL, 33136, USA.
| |
Collapse
|
13
|
Yadav S, Kazmierczak K, Liang J, Sitbon YH, Szczesna-Cordary D. Phosphomimetic-mediated in vitro rescue of hypertrophic cardiomyopathy linked to R58Q mutation in myosin regulatory light chain. FEBS J 2018; 286:151-168. [PMID: 30430732 DOI: 10.1111/febs.14702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/03/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022]
Abstract
Myosin regulatory light chain (RLC) phosphorylation is important for cardiac muscle mechanics/function as well as for the Ca2+ -troponin/tropomyosin regulation of muscle contraction. This study focuses on the arginine to glutamine (R58Q) substitution in the human ventricular RLC (MYL2 gene), linked to malignant hypertrophic cardiomyopathy in humans and causing severe functional abnormalities in transgenic (Tg) R58Q mice, including inhibition of cardiac RLC phosphorylation. Using a phosphomimic recombinant RLC variant where Ser-15 at the phosphorylation site was substituted with aspartic acid (S15D) and placed in the background of R58Q, we aimed to assess whether we could rescue/mitigate R58Q-induced structural/functional abnormalities in vitro. We show rescue of several R58Q-exerted adverse phenotypes in S15D-R58Q-reconstituted porcine cardiac muscle preparations. A low level of maximal isometric force observed for R58Q- versus WT-reconstituted fibers was restored by S15D-R58Q. Significant beneficial effects were also observed on the Vmax of actin-activated myosin ATPase activity in S15D-R58Q versus R58Q-reconstituted myosin, along with its binding to fluorescently labeled actin. We also report that R58Q promotes the OFF state of myosin, both in reconstituted porcine fibers and in Tg mouse papillary muscles, thereby stabilizing the super-relaxed state (SRX) of myosin, characterized by a very low ATP turnover rate. Experiments in S15D-R58Q-reconstituted porcine fibers showed a mild destabilization of the SRX state, suggesting an S15D-mediated shift in disordered-relaxed (DRX)↔SRX equilibrium toward the DRX state of myosin. Our study shows that S15D-phosphomimic can be used as a potential rescue strategy to abrogate/alleviate the RLC mutation-induced phenotypes and is a likely candidate for therapeutic intervention in HCM patients.
Collapse
Affiliation(s)
- Sunil Yadav
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Yoel H Sitbon
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
14
|
Renaudin P, Janin A, Millat G, Chevalier P. A Novel Missense Mutation p.Gly162Glu of the Gene MYL2 Involved in Hypertrophic Cardiomyopathy: A Pedigree Analysis of a Proband. Mol Diagn Ther 2018; 22:219-223. [PMID: 29549657 DOI: 10.1007/s40291-018-0324-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM), a common and clinically heterogeneous disease characterized by unexplained ventricular myocardial hypertrophy, is mostly caused by mutations in sarcomeric genes. Identifying the genetic cause is important for management, therapy, and genetic counseling. METHODS A molecular diagnosis was performed on a 51-year-old woman diagnosed with HCM using a next-generation sequencing workflow based on a panel designed for sequencing the most prevalent cardiomyopathy-causing genes. Segregation analysis was performed on the woman's family. RESULTS A novel myosin regulatory light chain (MYL2) missense variant, NM_000432.3:c485G>A, p.Gly162Glu, was identified and firstly considered as a putative pathogenic mutation. Among the 27 family members tested, 16 were carriers for the MYL2-p.Gly162Glu mutation, of whom 12 with the phenotype were positive. None of the 11 family members without mutation had cardiomyopathy. CONCLUSIONS Genetic analysis combined with a segregation study allowed us to classify this novel MYL2 variation, p.Gly162Glu, as a novel pathogenic mutation leading to a familial form of HCM. Due to absence of fast in vitro approaches to evaluate the functional impact of missense variants on HCM-causing genes, segregation studies remain, when possible, the easiest approach to evaluate the putative pathogenicity of novel gene variants, more particularly missense ones.
Collapse
Affiliation(s)
- Pauline Renaudin
- Service de Rythmologie, Hôpital Cardiologique Louis-Pradel, 28, avenue du Doyen Jean Lépine, 69677, Bron, France.,Université Lyon 1, 69003, Lyon, France
| | - Alexandre Janin
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,Université Lyon 1, 69003, Lyon, France
| | - Gilles Millat
- Laboratoire de Cardiogénétique Moléculaire, Centre de Biologie et Pathologie Est, Hospices Civils de Lyon, Lyon, France.,Université Lyon 1, 69003, Lyon, France
| | - Philippe Chevalier
- Service de Rythmologie, Hôpital Cardiologique Louis-Pradel, 28, avenue du Doyen Jean Lépine, 69677, Bron, France. .,Université Lyon 1, 69003, Lyon, France.
| |
Collapse
|
15
|
Jiang H, Bai W, Wang W, Wang K, Jia J, Zhang J, Diao H, Qin L. Proteomics in plasma of ovariectomized rats and those exposed to estradiol valerate. J Steroid Biochem Mol Biol 2018; 178:1-12. [PMID: 29054504 DOI: 10.1016/j.jsbmb.2017.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/19/2017] [Accepted: 10/12/2017] [Indexed: 01/29/2023]
Abstract
The menopausal period, an inevitable physiological process for women, is frequently associated with physiological and psychological dysfunction attributable to substantial fluctuation and gradual decrease in female hormones induced by ovarian failure, leading to corresponding symptoms and diseases that impact multiple systems in the body to varying degrees. As prior studies have focused primarily on menopausal syndrome-related pathophysiological changes and hormone replacement therapy effects, here we approached menopausal disease incidence risk and pathogenesis through systemic plasma proteomics analysis. Female Sprague-Dawley rats were randomly divided into sham, ovariectomized, and estrogen treatment after ovariectomy groups (n=9 per group). Tandem Mass Tag quantitative proteomics analysis of their plasma identified over 900 proteins by MS. Between group fold change of >1.2 and p<0.05 (Student's t-test) identified 121 (including 36 up-regulated and 85 down-regulated), 117 (69 up-regulated and 48 down-regulated), and 109 (41 up-regulated and 68 down-regulated) differentially expressed proteins between groups, respectively. Of these, 5 (GHR, LIFR, apoA IV, RTN, and Lin28b) were verified by parallel reaction monitoring to be reliable. Further application of optimized screening criteria and performance of a series of bioinformatics analyses allowed the selection of 35 optimal differentially expressed proteins. Gene ontology annotation results suggested that the differentially expressed proteins are mainly annotated as protein binding, cell, and single organism process in terms of molecular function, cell composition, and biological process, respectively. KEGG pathway analysis indicated that the PI3-Akt pathway has the highest aggregation degree of differentially expressed proteins. Protein-protein interaction analysis noted GLUT4 as an important node protein. This research is the first to comprehensively analyze plasma protein changes, together with estrogen efficacy, in ovariectomized rats. The findings facilitate our understanding of the molecular mechanism of systemic menopausal changes and provide valuable clues for developing diagnostic biomarkers for menopausal dysfunctions and selecting clinical therapeutic strategies.
Collapse
Affiliation(s)
- Hai Jiang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing, China
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing, China
| | - Ke Wang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing, China
| | - Jing Jia
- Department of Stomatology, General Hospital of Chinese People's Armed Police Forces, Beijing, China
| | - Jing Zhang
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing, China
| | - He Diao
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lihua Qin
- Department of Anatomy and Histoembryology, School of Basic Medical Science, Peking University, Beijing, China.
| |
Collapse
|
16
|
Pseudophosphorylation of cardiac myosin regulatory light chain: a promising new tool for treatment of cardiomyopathy. Biophys Rev 2017; 9:57-64. [PMID: 28510043 DOI: 10.1007/s12551-017-0248-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Abstract
Many genetic mutations in sarcomeric proteins, including the cardiac myosin regulatory light chain (RLC) encoded by the MYL2 gene, have been implicated in familial cardiomyopathies. Yet, the molecular mechanisms by which these mutant proteins regulate cardiac muscle mechanics in health and disease remain poorly understood. Evidence has been accumulating that RLC phosphorylation has an influential role in striated muscle contraction and, in addition to the conventional modulation via Ca2+ binding to troponin C, it can regulate cardiac muscle function. In this review, we focus on RLC mutations that have been reported to cause cardiomyopathy phenotypes via compromised RLC phosphorylation and elaborate on pseudo-phosphorylation rescue mechanisms. This new methodology has been discussed as an emerging exploratory tool to understand the role of phosphorylation as well as a genetic modality to prevent/rescue cardiomyopathy phenotypes. Finally, we summarize structural effects post-phosphorylation, a phenomenon that leads to an ordered shift in the myosin S1 and RLC conformational equilibrium between two distinct states.
Collapse
|
17
|
Ryba DM, Li J, Cowan CL, Russell B, Wolska BM, Solaro RJ. Long-Term Biased β-Arrestin Signaling Improves Cardiac Structure and Function in Dilated Cardiomyopathy. Circulation 2017; 135:1056-1070. [PMID: 28104714 DOI: 10.1161/circulationaha.116.024482] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Biased agonism of the angiotensin II receptor is known to promote cardiac contractility. Our laboratory indicated that these effects may be attributable to changes at the level of the myofilaments. However, these signaling mechanisms remain unknown. Because a common finding in dilated cardiomyopathy is a reduction in the myofilament-Ca2+ response, we hypothesized that β-arrestin signaling would increase myofilament-Ca2+ responsiveness in a model of familial dilated cardiomyopathy and improve cardiac function and morphology. METHODS We treated a dilated cardiomyopathy-linked mouse model expressing a mutant tropomyosin (Tm-E54K) for 3 months with either TRV120067, a β-arrestin 2-biased ligand of the angiotensin II receptor, or losartan, an angiotensin II receptor blocker. At the end of the treatment protocol, we assessed cardiac function using echocardiography, the myofilament-Ca2+ response of detergent-extracted fiber bundles, and used proteomic approaches to understand changes in posttranslational modifications of proteins that may explain functional changes. We also assessed signaling pathways altered in vivo and by using isolated myocytes. RESULTS TRV120067- treated Tm-E54K mice showed improved cardiac structure and function, whereas losartan-treated mice had no improvement. Myofilaments of TRV120067-treated Tm-E54K mice had significantly improved myofilament-Ca2+ responsiveness, which was depressed in untreated Tm-E54K mice. We attributed these changes to increased MLC2v and MYPT1/2 phosphorylation seen only in TRV120067-treated mice. We found that the functional changes were attributable to an activation of ERK1/2-RSK3 signaling, mediated through β-arrestin, which may have a novel role in increasing MLC2v phosphorylation through a previously unrecognized interaction of β-arrestin localized to the sarcomere. CONCLUSIONS Long-term β-arrestin 2-biased agonism of the angiotensin II receptor may be a viable approach to the treatment of dilated cardiomyopathy by not only preventing maladaptive signaling, but also improving cardiac function by altering the myofilament-Ca2+ response via β-arrestin signaling pathways.
Collapse
Affiliation(s)
- David M Ryba
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Jieli Li
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Conrad L Cowan
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Brenda Russell
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - Beata M Wolska
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.)
| | - R John Solaro
- From Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago (D.M.R., J.L., B.R., B.M.W., R.J.S.); Department of Medicine, Division of Cardiology, University of Illinois at Chicago (B.M.W.); and Trevena, Inc. King of Prussia, PA (B.M.W.).
| |
Collapse
|
18
|
Toepfer CN, Sikkel MB, Caorsi V, Vydyanath A, Torre I, Copeland O, Lyon AR, Marston SB, Luther PK, Macleod KT, West TG, Ferenczi MA. A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation. Am J Physiol Heart Circ Physiol 2016; 311:H465-75. [PMID: 27233767 PMCID: PMC5005282 DOI: 10.1152/ajpheart.00899.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/24/2016] [Indexed: 01/25/2023]
Abstract
Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae.
Collapse
Affiliation(s)
- Christopher N Toepfer
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Laboratory of Molecular Physiology, National Heart and Lung Institute, National Institutes of Health, Bethesda, Maryland;
| | - Markus B Sikkel
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Valentina Caorsi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Laboratoire Physico-Chimie, UMR168, Institute Curie, Paris, France
| | - Anupama Vydyanath
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Iratxe Torre
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - O'Neal Copeland
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexander R Lyon
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Nationa Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Steven B Marston
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kenneth T Macleod
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Timothy G West
- Royal Veterinary College London, Structure & Motion Laboratory, North Mymms, United Kingdom; and
| | - Michael A Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Toepfer CN, West TG, Ferenczi MA. Revisiting Frank-Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr ) in a length-dependent fashion. J Physiol 2016; 594:5237-54. [PMID: 27291932 PMCID: PMC5023691 DOI: 10.1113/jp272441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022] Open
Abstract
Key points Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Abstract Force and power in cardiac muscle have a known dependence on phosphorylation of the myosin‐associated regulatory light chain (RLC). We explore the effect of RLC phosphorylation on the ability of cardiac preparations to redevelop force (ktr) in maximally activating [Ca2+]. Activation was achieved by rapidly increasing the temperature (temperature‐jump of 0.5–20ºC) of permeabilized trabeculae over a physiological range of sarcomere lengths (1.85–1.94 μm). The trabeculae were subjected to shortening ramps over a range of velocities and the extent of RLC phosphorylation was varied. The latter was achieved using an RLC‐exchange technique, which avoids changes in the phosphorylation level of other proteins. The results show that increasing RLC phosphorylation by 50% accelerates ktr by ∼50%, irrespective of the sarcomere length, whereas decreasing phosphorylation by 30% slows ktr by ∼50%, relative to the ktr obtained for in vivo phosphorylation. Clearly, phosphorylation affects the magnitude of ktr following step shortening or ramp shortening. Using a two‐state model, we explore the effect of RLC phosphorylation on the kinetics of force development, which proposes that phosphorylation affects the kinetics of both attachment and detachment of cross‐bridges. In summary, RLC phosphorylation affects the rate and extent of force redevelopment. These findings were obtained in maximally activated muscle at saturating [Ca2+] and are not explained by changes in the Ca2+‐sensitivity of acto‐myosin interactions. The length‐dependence of the rate of force redevelopment, together with the modulation by the state of RLC phosphorylation, suggests that these effects play a role in the Frank–Starling law of the heart. Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment (ktr) at submaximal [Ca2+]. Increasing RLC phosphorylation ∼50% from the in vivo level in maximally [Ca2+]‐activated cardiac trabecula accelerates ktr. Decreasing RLC phosphorylation to ∼70% of the in vivo control level slows ktr and reduces force generation. ktr is dependent on sarcomere length in the physiological range 1.85–1.94 μm and RLC phosphorylation modulates this response. We demonstrate that Frank–Starling is evident at maximal [Ca2+] activation and therefore does not necessarily require length‐dependent change in [Ca2+]‐sensitivity of thin filament activation. The stretch response is modulated by changes in RLC phosphorylation, pinpointing RLC phosphorylation as a modulator of the Frank–Starling law in the heart. These data provide an explanation for slowed systolic function in the intact heart in response to RLC phosphorylation reduction.
Collapse
Affiliation(s)
- Christopher N Toepfer
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK. .,Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, MD, USA.
| | - Timothy G West
- Structure & Motion Laboratory, Royal Veterinary College London, North Mymms, UK
| | - Michael A Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
20
|
Huang W, Kazmierczak K, Zhou Z, Aguiar-Pulido V, Narasimhan G, Szczesna-Cordary D. Gene expression patterns in transgenic mouse models of hypertrophic cardiomyopathy caused by mutations in myosin regulatory light chain. Arch Biochem Biophys 2016; 601:121-32. [PMID: 26906074 PMCID: PMC5370580 DOI: 10.1016/j.abb.2016.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 12/23/2022]
Abstract
Using microarray and bioinformatics, we examined the gene expression profiles in transgenic mouse hearts expressing mutations in the myosin regulatory light chain shown to cause hypertrophic cardiomyopathy (HCM). We focused on two malignant RLC-mutations, Arginine 58→Glutamine (R58Q) and Aspartic Acid 166 → Valine (D166V), and one benign, Lysine 104 → Glutamic Acid (K104E)-mutation. Datasets of differentially expressed genes for each of three mutants were compared to those observed in wild-type (WT) hearts. The changes in the mutant vs. WT samples were shown as fold-change (FC), with stringency FC ≥ 2. Based on the gene profiles, we have identified the major signaling pathways that underlie the R58Q-, D166V- and K104E-HCM phenotypes. The correlations between different genotypes were also studied using network-based algorithms. Genes with strong correlations were clustered into one group and the central gene networks were identified for each HCM mutant. The overall gene expression patterns in all mutants were distinct from the WT profiles. Both malignant mutations shared certain classes of genes that were up or downregulated, but most similarities were noted between D166V and K104E mice, with R58Q hearts showing a distinct gene expression pattern. Our data suggest that all three HCM mice lead to cardiomyopathy in a mutation-specific manner and thus develop HCM through diverse mechanisms.
Collapse
Affiliation(s)
- Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vanessa Aguiar-Pulido
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), School of Computing and Information Sciences, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
21
|
Zhou Z, Huang W, Liang J, Szczesna-Cordary D. Molecular and Functional Effects of a Splice Site Mutation in the MYL2 Gene Associated with Cardioskeletal Myopathy and Early Cardiac Death in Infants. Front Physiol 2016; 7:240. [PMID: 27378946 PMCID: PMC4911367 DOI: 10.3389/fphys.2016.00240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/03/2016] [Indexed: 12/26/2022] Open
Abstract
The homozygous appearance of the intronic mutation (IVS6-1) in the MYL2 gene encoding for myosin ventricular/slow-twitch skeletal regulatory light chain (RLC) was recently linked to the development of slow skeletal muscle fiber type I hypotrophy and early cardiac death. The IVS6-1 (c403-1G>C) mutation resulted from a cryptic splice site in MYL2 causing a frameshift and replacement of the last 32 codons by 19 different amino acids in the RLC mutant protein. Infants who were IVS6-1+∕+-positive died between 4 and 6 months of age due to cardiomyopathy and heart failure. In this report we have investigated the molecular mechanism and functional consequences associated with the IVS6-1 mutation using recombinant human cardiac IVS6-1 and wild-type (WT) RLC proteins. Recombinant proteins were reconstituted into RLC-depleted porcine cardiac muscle preparations and subjected to enzymatic and functional assays. IVS6-1-RLC showed decreased binding to the myosin heavy chain (MHC) compared with WT, and IVS6-1-reconstituted myosin displayed reduced binding to actin in rigor. The IVS6-1 myosin demonstrated a significantly lower Vmax of the actin-activated myosin ATPase activity compared with WT. In stopped-flow experiments, IVS6-1 myosin showed slower kinetics of the ATP induced dissociation of the acto-myosin complex and a significantly reduced slope of the kobs-[MgATP] relationship compared to WT. In skinned porcine cardiac muscles, RLC-depleted and IVS6-1 reconstituted muscle strips displayed a significant decrease in maximal contractile force and a significantly increased Ca2+ sensitivity, both hallmarks of hypertrophic cardiomyopathy-associated mutations in MYL2. Our results showed that the amino-acid changes in IVS6-1 were sufficient to impose significant conformational alterations in the RLC protein and trigger a series of abnormal protein-protein interactions in the cardiac muscle sarcomere. Notably, the mutation disrupted the RLC-MHC interaction and the steady-state and kinetics of the acto-myosin interaction. Specifically, slower myosin cross-bridge turnover rates and slower second-order MgATP binding rates of acto-myosin interactions were observed in IVS6-1 vs. WT reconstituted cardiac preparations. Our in vitro results suggest that when placed in vivo, IVS6-1 may lead to cardiomyopathy and early death of homozygous infants by severely compromising the ability of myosin to develop contractile force and maintain normal systolic and diastolic cardiac function.
Collapse
Affiliation(s)
- Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| |
Collapse
|
22
|
Lai S, Collins BC, Colson BA, Kararigas G, Lowe DA. Estradiol modulates myosin regulatory light chain phosphorylation and contractility in skeletal muscle of female mice. Am J Physiol Endocrinol Metab 2016; 310:E724-33. [PMID: 26956186 PMCID: PMC4867308 DOI: 10.1152/ajpendo.00439.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/02/2016] [Indexed: 11/22/2022]
Abstract
Impairment of skeletal muscle function has been associated with changes in ovarian hormones, especially estradiol. To elucidate mechanisms of estradiol on skeletal muscle strength, the hormone's effects on phosphorylation of the myosin regulatory light chain (pRLC) and muscle contractility were investigated, hypothesizing an estradiol-specific beneficial impact. In a skeletal muscle cell line, C2C12, pRLC was increased by 17β-estradiol (E2) in a concentration-dependent manner. In skeletal muscles of C57BL/6 mice that were E2 deficient via ovariectomy (OVX), pRLC was lower than that from ovary-intact, sham-operated mice (Sham). The reduced pRLC in OVX muscle was reversed by in vivo E2 treatment. Posttetanic potentiation (PTP) of muscle from OVX mice was low compared with that from Sham mice, and this decrement was reversed by acute E2 treatment, demonstrating physiological consequence. Western blot of those muscles revealed that low PTP corresponded with low pRLC and higher PTP with greater pRLC. We aimed to elucidate signaling pathways affecting E2-mediated pRLC using a kinase inhibitor library and C2C12 cells as well as a specific myosin light chain kinase inhibitor in muscles. PI3K/Akt, MAPK, and CamKII were identified as candidate kinases sensitive to E2 in terms of phosphorylating RLC. Applying siRNA strategy in C2C12 cells, pRLC triggered by E2 was found to be mediated by estrogen receptor-β and the G protein-coupled estrogen receptor. Together, these results provide evidence that E2 modulates myosin pRLC in skeletal muscle and is one mechanism by which this hormone can affect muscle contractility in females.
Collapse
Affiliation(s)
- Shaojuan Lai
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota; College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China; and
| | - Brittany C Collins
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Brett A Colson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Georgios Kararigas
- Institute of Gender in Medicine, Charite University Hospital, and German Centre for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
| | - Dawn A Lowe
- Programs in Rehabilitation Sciences and Physical Therapy, Department of Physical Medicine and Rehabilitation, Medical School, University of Minnesota, Minneapolis, Minnesota;
| |
Collapse
|
23
|
Yu H, Chakravorty S, Song W, Ferenczi MA. Phosphorylation of the regulatory light chain of myosin in striated muscle: methodological perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:779-805. [PMID: 27084718 PMCID: PMC5101276 DOI: 10.1007/s00249-016-1128-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022]
Abstract
Phosphorylation of the regulatory light chain (RLC) of myosin modulates cellular functions such as muscle contraction, mitosis, and cytokinesis. Phosphorylation defects are implicated in a number of diseases. Here we focus on striated muscle where changes in RLC phosphorylation relate to diseases such as hypertrophic cardiomyopathy and muscular dystrophy, or age-related changes. RLC phosphorylation in smooth muscle and non-muscle cells are covered briefly where relevant. There is much scientific interest in controlling the phosphorylation levels of RLC in vivo and in vitro in order to understand its physiological function in striated muscles. A summary of available and emerging in vivo and in vitro methods is presented. The physiological role of RLC phosphorylation and novel pathways are discussed to highlight the differences between muscle types and to gain insights into disease processes.
Collapse
Affiliation(s)
- Haiyang Yu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Samya Chakravorty
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Weihua Song
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Michael A Ferenczi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Level 3, 59 Nanyang Drive, Singapore, 636921, Singapore.
| |
Collapse
|
24
|
Pedersen BA, Yazdi PG, Taylor JF, Khattab OS, Chen YH, Chen Y, Wang PH. Novel remodeling of the mouse heart mitochondrial proteome in response to acute insulin stimulation. Nutr Metab Cardiovasc Dis 2015; 25:1152-1158. [PMID: 26610654 PMCID: PMC4684478 DOI: 10.1016/j.numecd.2015.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIM Mitochondrial dysfunction contributes to the pathophysiology of diabetic cardiomyopathy. The aim of this study was to investigate the acute changes in the mitochondrial proteome in response to insulin stimulation. METHODS AND RESULTS Cardiac mitochondria from C57BL/6 mice after insulin stimulation were analyzed using two-dimensional fluorescence difference gel electrophoresis. MALDI-TOF MS/MS was utilized to identify differences. Two enzymes involved in metabolism and four structural proteins were identified. Succinyl-CoA ligase [ADP forming] subunit beta was identified as one of the differentially regulated proteins. Upon insulin stimulation, a relatively more acidic isoform of this protein was increased by 53% and its functional activity was decreased by ∼32%. CONCLUSIONS This proteomic remodeling in response to insulin stimulation may play an important role in the normal and diabetic heart.
Collapse
Affiliation(s)
- B A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - P G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA; Systomic Health LLC, Los Angeles, CA 90039, USA
| | - J F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - O S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Y-H Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Y Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - P H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA; Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA; Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
25
|
Karabina A, Kazmierczak K, Szczesna-Cordary D, Moore JR. Myosin regulatory light chain phosphorylation enhances cardiac β-myosin in vitro motility under load. Arch Biochem Biophys 2015; 580:14-21. [PMID: 26116789 PMCID: PMC4790447 DOI: 10.1016/j.abb.2015.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/27/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and myofibrillar disarray, and often results in sudden cardiac death. Two HCM mutations, N47K and R58Q, are located in the myosin regulatory light chain (RLC). The RLC mechanically stabilizes the myosin lever arm, which is crucial to myosin's ability to transmit contractile force. The N47K and R58Q mutations have previously been shown to reduce actin filament velocity under load, stemming from a more compliant lever arm (Greenberg, 2010). In contrast, RLC phosphorylation was shown to impart stiffness to the myosin lever arm (Greenberg, 2009). We hypothesized that phosphorylation of the mutant HCM-RLC may mitigate distinct mutation-induced structural and functional abnormalities. In vitro motility assays were utilized to investigate the effects of RLC phosphorylation on the HCM-RLC mutant phenotype in the presence of an α-actinin frictional load. Porcine cardiac β-myosin was depleted of its native RLC and reconstituted with mutant or wild-type human RLC in phosphorylated or non-phosphorylated form. Consistent with previous findings, in the presence of load, myosin bearing the HCM mutations reduced actin sliding velocity compared to WT resulting in 31-41% reductions in force production. Myosin containing phosphorylated RLC (WT or mutant) increased sliding velocity and also restored mutant myosin force production to near WT unphosphorylated values. These results point to RLC phosphorylation as a general mechanism to increase force production of the individual myosin motor and as a potential target to ameliorate the HCM-induced phenotype at the molecular level.
Collapse
Affiliation(s)
- Anastasia Karabina
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci U S A 2015; 112:E4138-46. [PMID: 26124132 DOI: 10.1073/pnas.1505819112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Myosin light chain kinase (MLCK)-dependent phosphorylation of the regulatory light chain (RLC) of cardiac myosin is known to play a beneficial role in heart disease, but the idea of a phosphorylation-mediated reversal of a hypertrophic cardiomyopathy (HCM) phenotype is novel. Our previous studies on transgenic (Tg) HCM-RLC mice revealed that the D166V (Aspartate166 → Valine) mutation-induced changes in heart morphology and function coincided with largely reduced RLC phosphorylation in situ. We hypothesized that the introduction of a constitutively phosphorylated Serine15 (S15D) into the hearts of D166V mice would prevent the development of a deleterious HCM phenotype. In support of this notion, MLCK-induced phosphorylation of D166V-mutated hearts was found to rescue some of their abnormal contractile properties. Tg-S15D-D166V mice were generated with the human cardiac RLC-S15D-D166V construct substituted for mouse cardiac RLC and were subjected to functional, structural, and morphological assessments. The results were compared with Tg-WT and Tg-D166V mice expressing the human ventricular RLC-WT or its D166V mutant, respectively. Echocardiography and invasive hemodynamic studies demonstrated significant improvements of intact heart function in S15D-D166V mice compared with D166V, with the systolic and diastolic indices reaching those monitored in WT mice. A largely reduced maximal tension and abnormally high myofilament Ca(2+) sensitivity observed in D166V-mutated hearts were reversed in S15D-D166V mice. Low-angle X-ray diffraction study revealed that altered myofilament structures present in HCM-D166V mice were mitigated in S15D-D166V rescue mice. Our collective results suggest that expression of pseudophosphorylated RLC in the hearts of HCM mice is sufficient to prevent the development of the pathological HCM phenotype.
Collapse
|
27
|
Functions of myosin light chain-2 (MYL2) in cardiac muscle and disease. Gene 2015; 569:14-20. [PMID: 26074085 DOI: 10.1016/j.gene.2015.06.027] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/08/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022]
Abstract
Myosin light chain-2 (MYL2, also called MLC-2) is an ~19kDa sarcomeric protein that belongs to the EF-hand calcium binding protein superfamily and exists as three major isoforms encoded by three distinct genes in mammalian striated muscle. Each of the three different MLC-2 genes (MLC-2f; fast twitch skeletal isoform, MLC-2v; cardiac ventricular and slow twitch skeletal isoform, MLC-2a; cardiac atrial isoform) has a distinct developmental expression pattern in mammals. Genetic loss-of-function studies in mice demonstrated an essential role for cardiac isoforms of MLC-2, MLC-2v and MLC-2a, in cardiac contractile function during early embryogenesis. In the adult heart, MLC-2v function is regulated by phosphorylation, which displays a specific 1`expression pattern (high in epicardium and low in endocardium) across the heart. These data along with new data from computational models, genetic mouse models, and human studies have revealed a direct role for MLC-2v phosphorylation in cross-bridge cycling kinetics, calcium-dependent cardiac muscle contraction, cardiac torsion, cardiac function and various cardiac diseases. This review focuses on the regulatory functions of MLC-2 in the embryonic and adult heart, with an emphasis on phosphorylation-driven actions of MLC-2v in adult cardiac muscle, which provide new insights into mechanisms regulating myosin cycling kinetics and human cardiac diseases.
Collapse
|
28
|
Huang W, Liang J, Yuan CC, Kazmierczak K, Zhou Z, Morales A, McBride KL, Fitzgerald-Butt SM, Hershberger RE, Szczesna-Cordary D. Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain. FEBS J 2015; 282:2379-93. [PMID: 25825243 DOI: 10.1111/febs.13286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/27/2015] [Accepted: 03/26/2015] [Indexed: 01/16/2023]
Abstract
Dilated cardiomyopathy (DCM) is a disease of the myocardium characterized by left ventricular dilatation and diminished contractile function. Here we describe a novel DCM mutation in the myosin regulatory light chain (RLC), in which aspartic acid at position 94 is replaced by alanine (D94A). The mutation was identified by exome sequencing of three adult first-degree relatives who met formal criteria for idiopathic DCM. To obtain insight into the functional significance of this pathogenic MYL2 variant, we cloned and purified the human ventricular RLC wild-type (WT) and D94A mutant proteins, and performed in vitro experiments using RLC-mutant or WT-reconstituted porcine cardiac preparations. The mutation induced a reduction in the α-helical content of the RLC, and imposed intra-molecular rearrangements. The phosphorylation of RLC by Ca²⁺/calmodulin-activated myosin light chain kinase was not affected by D94A. The mutation was seen to impair binding of RLC to the myosin heavy chain, and its incorporation into RLC-depleted porcine myosin. The actin-activated ATPase activity of mutant-reconstituted porcine cardiac myosin was significantly higher compared with ATPase of wild-type. No changes in the myofibrillar ATPase-pCa relationship were observed in wild-type- or D94A-reconstituted preparations. Measurements of contractile force showed a slightly reduced maximal tension per cross-section of muscle, with no change in the calcium sensitivity of force in D94A-reconstituted skinned porcine papillary muscle strips compared with wild-type. Our data indicate that subtle structural rearrangements in the RLC molecule, followed by its impaired interaction with the myosin heavy chain, may trigger functional abnormalities contributing to the DCM phenotype.
Collapse
Affiliation(s)
- Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiqun Zhou
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ana Morales
- Division of Human Genetics, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics Ohio State University, Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Sara M Fitzgerald-Butt
- Department of Pediatrics Ohio State University, Center for Cardiovascular and Pulmonary Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Ray E Hershberger
- Division of Human Genetics, Department of Internal Medicine, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
29
|
The R21C Mutation in Cardiac Troponin I Imposes Differences in Contractile Force Generation between the Left and Right Ventricles of Knock-In Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:742536. [PMID: 25961037 PMCID: PMC4415466 DOI: 10.1155/2015/742536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 01/20/2023]
Abstract
We investigated the effect of the hypertrophic cardiomyopathy-linked R21C (arginine to cysteine) mutation in human cardiac troponin I (cTnI) on the contractile properties and myofilament protein phosphorylation in papillary muscle preparations from left (LV) and right (RV) ventricles of homozygous R21C(+/+) knock-in mice. The maximal steady-state force was significantly reduced in skinned papillary muscle strips from the LV compared to RV, with the latter displaying the level of force observed in LV or RV from wild-type (WT) mice. There were no differences in the Ca(2+) sensitivity between the RV and LV of R21C(+/+) mice; however, the Ca(2+) sensitivity of force was higher in RV-R21C(+/+) compared with RV-WT and lower in LV- R21C(+/+) compared with LV-WT. We also observed partial loss of Ca(2+) regulation at low [Ca(2+)]. In addition, R21C(+/+)-KI hearts showed no Ser23/24-cTnI phosphorylation compared to LV or RV of WT mice. However, phosphorylation of the myosin regulatory light chain (RLC) was significantly higher in the RV versus LV of R21C(+/+) mice and versus LV and RV of WT mice. The difference in RLC phosphorylation between the ventricles of R21C(+/+) mice likely contributes to observed differences in contractile force and the lower tension monitored in the LV of HCM mice.
Collapse
|
30
|
Colson BA, Petersen KJ, Collins BC, Lowe DA, Thomas DD. The myosin super-relaxed state is disrupted by estradiol deficiency. Biochem Biophys Res Commun 2015; 456:151-5. [PMID: 25446114 PMCID: PMC4276479 DOI: 10.1016/j.bbrc.2014.11.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/14/2014] [Indexed: 12/23/2022]
Abstract
We have used quantitative epifluorescence microscopy of fluorescent ATP to measure single-nucleotide turnover in skinned skeletal muscle fibers from mouse models of female aging and hormone treatment. Aging causes declines in muscle strength, often leading to frailty, disability, and loss of independence for the elderly. Female muscle is additionally affected by age due to reduction of ovarian hormone production with menopause. Estradiol (E2) is the key hormonal signal to skeletal muscle in females, and strength loss is attenuated by E2 treatment. To investigate E2 mechanisms on skeletal muscle, single fibers were isolated from sham-operated or ovariectomized (OVX) mice, with or without E2 treatment, and were incubated with 2'-(or-3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (mantATP). We measured decay of mantATP fluorescence in an ATP-chase experiment, as pioneered by Cooke and coworkers, who unveiled a novel regulated state of muscle myosin characterized by slow nucleotide turnover on the order of minutes, termed the super-relaxed state (SRX). We detected a slow phase of nucleotide turnover in a portion of the myosin heads from sham fibers, consistent with SRX. Turnover was substantially faster in OVX fibers, with a turnover time constant for the slow phase of 65 ± 8s as compared to 102 ± 7s for sham fibers. 60-days E2 treatment in OVX mice substantially reversed this effect on SRX, while acute exposure of isolated muscles from OVX mice to E2 had no effect. We conclude that E2-mediated signaling reversibly regulates slow ATP turnover by myosin. Age- and hormone-related muscle functional losses may be targetable at the level of myosin structure/function for strategies to offset weakness and metabolic changes that occur with age.
Collapse
Affiliation(s)
- Brett A Colson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Karl J Petersen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Brittany C Collins
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Dawn A Lowe
- Programs in Rehabilitation Science and Physical Therapy, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
31
|
Farman GP, Muthu P, Kazmierczak K, Szczesna-Cordary D, Moore JR. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on β-myosin cross-bridge mechanics. J Appl Physiol (1985) 2014; 117:1471-7. [PMID: 25324513 DOI: 10.1152/japplphysiol.00798.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of β-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant β-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM.
Collapse
Affiliation(s)
- Gerrie P Farman
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida
| | | | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; and
| |
Collapse
|
32
|
Kazmierczak K, Yuan CC, Liang J, Huang W, Rojas AI, Szczesna-Cordary D. Remodeling of the heart in hypertrophy in animal models with myosin essential light chain mutations. Front Physiol 2014; 5:353. [PMID: 25295008 PMCID: PMC4170140 DOI: 10.3389/fphys.2014.00353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/29/2014] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy represents one of the most important cardiovascular problems yet the mechanisms responsible for hypertrophic remodeling of the heart are poorly understood. In this report we aimed to explore the molecular pathways leading to two different phenotypes of cardiac hypertrophy in transgenic mice carrying mutations in the human ventricular myosin essential light chain (ELC). Mutation-induced alterations in the heart structure and function were studied in two transgenic (Tg) mouse models carrying the A57G (alanine to glycine) substitution or lacking the N-terminal 43 amino acid residues (Δ43) from the ELC sequence. The first model represents an HCM disease as the A57G mutation was shown to cause malignant HCM outcomes in humans. The second mouse model is lacking the region of the ELC that was shown to be important for a direct interaction between the ELC and actin during muscle contraction. Our earlier studies demonstrated that >7 month old Tg-Δ43 mice developed substantial cardiac hypertrophy with no signs of histopathology or fibrosis. Tg mice did not show abnormal cardiac function compared to Tg-WT expressing the full length human ventricular ELC. Previously reported pathological morphology in Tg-A57G mice included extensive disorganization of myocytes and interstitial fibrosis with no abnormal increase in heart mass observed in >6 month-old animals. In this report we show that strenuous exercise can trigger hypertrophy and pathologic cardiac remodeling in Tg-A57G mice as early as 3 months of age. In contrast, no exercise-induced changes were noted for Tg-Δ43 hearts and the mice maintained a non-pathological cardiac phenotype. Based on our results, we suggest that exercise-elicited heart remodeling in Tg-A57G mice follows the pathological pathway leading to HCM, while it induces no abnormal response in Tg-Δ43 mice.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Chen-Ching Yuan
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Ana I Rojas
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
33
|
Huang W, Liang J, Kazmierczak K, Muthu P, Duggal D, Farman GP, Sorensen L, Pozios I, Abraham TP, Moore JR, Borejdo J, Szczesna-Cordary D. Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice. J Mol Cell Cardiol 2014; 74:318-29. [PMID: 24992035 PMCID: PMC4115013 DOI: 10.1016/j.yjmcc.2014.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 12/20/2022]
Abstract
We have examined, for the first time, the effects of the familial hypertrophic cardiomyopathy (HCM)-associated Lys104Glu mutation in the myosin regulatory light chain (RLC). Transgenic mice expressing the Lys104Glu substitution (Tg-MUT) were generated and the results were compared to Tg-WT (wild-type human ventricular RLC) mice. Echocardiography with pulse wave Doppler in 6month-old Tg-MUT showed early signs of diastolic disturbance with significantly reduced E/A transmitral velocities ratio. Invasive hemodynamics in 6month-old Tg-MUT mice also demonstrated a borderline significant prolonged isovolumic relaxation time (Tau) and a tendency for slower rate of pressure decline, suggesting alterations in diastolic function in Tg-MUT. Six month-old mutant animals had no LV hypertrophy; however, at >13months they displayed significant hypertrophy and fibrosis. In skinned papillary muscles from 5 to 6month-old mice a mutation induced reduction in maximal tension and slower muscle relaxation rates were observed. Mutated cross-bridges showed increased rates of binding to the thin filaments and a faster rate of the power stroke. In addition, ~2-fold lower level of RLC phosphorylation was observed in the mutant compared to Tg-WT. In line with the higher mitochondrial content seen in Tg-MUT hearts, the MUT-myosin ATPase activity was significantly higher than WT-myosin, indicating increased energy consumption. In the in vitro motility assay, MUT-myosin produced higher actin sliding velocity under zero load, but the velocity drastically decreased with applied load in the MUT vs. WT myosin. Our results suggest that diastolic disturbance (impaired muscle relaxation, lower E/A) and inefficiency of energy use (reduced contractile force and faster ATP consumption) may underlie the Lys104Glu-mediated HCM phenotype.
Collapse
Affiliation(s)
- Wenrui Huang
- University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Jingsheng Liang
- University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | | | - Priya Muthu
- University of Miami, Miller School of Medicine, Miami, FL 33136, United States
| | - Divya Duggal
- University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Gerrie P Farman
- Boston University School of Medicine, Boston, MA 02118, United States
| | - Lars Sorensen
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Iraklis Pozios
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Theodore P Abraham
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jeffrey R Moore
- Boston University School of Medicine, Boston, MA 02118, United States
| | - Julian Borejdo
- University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | | |
Collapse
|
34
|
Wang Y, Ajtai K, Burghardt TP. Analytical comparison of natural and pharmaceutical ventricular myosin activators. Biochemistry 2014; 53:5298-306. [PMID: 25068717 PMCID: PMC4139156 DOI: 10.1021/bi500730t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Ventricular myosin (βMys) is
the motor protein in cardiac
muscle generating force using ATP hydrolysis free energy to translate
actin. In the cardiac muscle sarcomere, myosin and actin filaments
interact cyclically and undergo rapid relative translation facilitated
by the low duty cycle motor. It contrasts with high duty cycle processive
myosins for which persistent actin association is the priority. The
only pharmaceutical βMys activator, omecamtive mecarbil (OM),
upregulates cardiac contractility in vivo and is
undergoing testing for heart failure therapy. In vitro βMys step-size, motility velocity, and actin-activated myosin
ATPase were measured to determine duty cycle in the absence and presence
of OM. A new parameter, the relative step-frequency, was introduced
and measured to characterize βMys motility due to the involvement
of its three unitary step-sizes. Step-size and relative step-frequency
were measured using the Qdot assay. OM decreases motility velocity
10-fold without affecting step-size, indicating a large increase in
duty cycle converting βMys to a near processive myosin. The
OM conversion dramatically increases force and modestly increases
power over the native βMys. Contrasting motility modification
due to OM with that from the natural myosin activator, specific βMys
phosphorylation, provides insight into their respective activation
mechanisms and indicates the boilerplate screening characteristics
desired for pharmaceutical βMys activators. New analytics introduced
here for the fast and efficient Qdot motility assay create a promising
method for high-throughput screening of motor proteins and their modulators.
Collapse
Affiliation(s)
- Yihua Wang
- Department of Biochemistry and Molecular Biology and ‡Department of Physiology and Biomedical Engineering, Mayo Clinic Rochester , Rochester, Minnesota 55905, United States
| | | | | |
Collapse
|
35
|
Muthu P, Liang J, Schmidt W, Moore JR, Szczesna-Cordary D. In vitro rescue study of a malignant familial hypertrophic cardiomyopathy phenotype by pseudo-phosphorylation of myosin regulatory light chain. Arch Biochem Biophys 2014; 552-553:29-39. [PMID: 24374283 PMCID: PMC4043912 DOI: 10.1016/j.abb.2013.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/02/2013] [Accepted: 12/16/2013] [Indexed: 11/18/2022]
Abstract
Pseudo-phosphorylation of cardiac myosin regulatory light chain (RLC) has never been examined as a rescue method to alleviate a cardiomyopathy phenotype brought about by a disease causing mutation in the myosin RLC. This study focuses on the aspartic acid to valine substitution (D166V) in the myosin RLC shown to be associated with a malignant phenotype of familial hypertrophic cardiomyopathy (FHC). The mutation has also been demonstrated to cause severe functional abnormalities in transgenic mice expressing D166V in the heart. To explore this novel rescue strategy, pseudo-phosphorylation of D166V was used to determine whether the D166V-induced detrimental phenotype could be brought back to the level of wild-type (WT) RLC. The S15D substitution at the phosphorylation site of RLC was inserted into the recombinant WT and D166V mutant to mimic constitutively phosphorylated RLC proteins. Non-phosphorylatable (S15A) constructs were used as controls. A multi-faceted approach was taken to determine the effect of pseudo-phosphorylation on the ability of myosin to generate force and motion. Using mutant reconstituted porcine cardiac muscle preparations, we showed an S15D-induced rescue of both the enzymatic and binding properties of D166V-myosin to actin. A significant increase in force production capacity was noted in the in vitro motility assays for S15D-D166V vs. D166V reconstituted myosin. A similar pseudo-phosphorylation induced effect was observed on the D166V-elicited abnormal Ca(2+) sensitivity of force in porcine papillary muscle strips reconstituted with phosphomimic recombinant RLCs. Results from this study demonstrate a novel in vitro rescue strategy that could be utilized in vivo to ameliorate a malignant cardiomyopathic phenotype. We show for the first time that pseudo-RLC phosphorylation can reverse the majority of the mutation-induced phenotypes highlighting the importance of RLC phosphorylation in combating cardiac disease.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingsheng Liang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - William Schmidt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
36
|
Sheikh F, Lyon RC, Chen J. Getting the skinny on thick filament regulation in cardiac muscle biology and disease. Trends Cardiovasc Med 2014; 24:133-41. [PMID: 23968570 PMCID: PMC3877703 DOI: 10.1016/j.tcm.2013.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/03/2013] [Accepted: 07/05/2013] [Indexed: 12/21/2022]
Abstract
Thin (actin) filament accessory proteins are thought to be the regulatory force for muscle contraction in cardiac muscle; however, compelling new evidence suggests that thick (myosin) filament regulatory proteins are emerging as having independent and important roles in regulating cardiac muscle contraction. Key to these new findings is a growing body of evidence that point to an influential and, more recently, direct role for ventricular myosin light chain-2 (MLC2v) phosphorylation in regulating cardiac muscle contraction, function, and disease. This includes the discovery and characterization of a cardiac-specific myosin light chain kinase capable of phosphorylating MLC2v as well as a myosin phosphatase that dephosphorylates MLC2v in the heart, which provides added mechanistic insights on MLC2v regulation within cardiac muscle. Here, we review evidence for an emerging and critical role for MLC2v phosphorylation in regulating cardiac myosin cycling kinetics, function, and disease, based on recent studies performed in genetic mouse models and humans. We further provide new perspectives on future avenues for targeting these pathways as therapies in alleviating cardiac disease.
Collapse
Affiliation(s)
- Farah Sheikh
- Department of Medicine (Cardiology Division), University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Robert C Lyon
- Department of Medicine (Cardiology Division), University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine (Cardiology Division), University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Duggal D, Nagwekar J, Rich R, Midde K, Fudala R, Gryczynski I, Borejdo J. Phosphorylation of myosin regulatory light chain has minimal effect on kinetics and distribution of orientations of cross bridges of rabbit skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2013; 306:R222-33. [PMID: 24285364 DOI: 10.1152/ajpregu.00382.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Force production in muscle results from ATP-driven cyclic interactions of myosin with actin. A myosin cross bridge consists of a globular head domain, containing actin and ATP-binding sites, and a neck domain with the associated light chain 1 (LC1) and the regulatory light chain (RLC). The actin polymer serves as a "rail" over which myosin translates. Phosphorylation of the RLC is thought to play a significant role in the regulation of muscle relaxation by increasing the degree of skeletal cross-bridge disorder and increasing muscle ATPase activity. The effect of phosphorylation on skeletal cross-bridge kinetics and the distribution of orientations during steady-state contraction of rabbit muscle is investigated here. Because the kinetics and orientation of an assembly of cross bridges (XBs) can only be studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs was minimized to ∼20 by limiting the detection volume and concentration of fluorescent XBs. The autofluorescence and photobleaching from an ex vivo sample was reduced by choosing a dye that was excited in the red and observed in the far red. The interference from scattering was eliminated by gating the signal. These techniques decrease large uncertainties associated with determination of the effect of phosphorylation on a few molecules ex vivo with millisecond time resolution. In spite of the remaining uncertainties, we conclude that the state of phosphorylation of RLC had no effect on the rate of dissociation of cross bridges from thin filaments, on the rate of myosin head binding to thin filaments, and on the rate of power stroke. On the other hand, phosphorylation slightly increased the degree of disorder of active cross bridges.
Collapse
Affiliation(s)
- Divya Duggal
- Department of Molecular Biology and Immunology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, Texas
| | | | | | | | | | | | | |
Collapse
|
38
|
Schulz EM, Wilder T, Chowdhury SAK, Sheikh HN, Wolska BM, Solaro RJ, Wieczorek DF. Decreasing tropomyosin phosphorylation rescues tropomyosin-induced familial hypertrophic cardiomyopathy. J Biol Chem 2013; 288:28925-35. [PMID: 23960072 DOI: 10.1074/jbc.m113.466466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Studies indicate that tropomyosin (Tm) phosphorylation status varies in different mouse models of cardiac disease. Investigation of basal and acute cardiac function utilizing a mouse model expressing an α-Tm protein that cannot be phosphorylated (S283A) shows a compensated hypertrophic phenotype with significant increases in SERCA2a expression and phosphorylation of phospholamban Ser-16 (Schulz, E. M., Correll, R. N., Sheikh, H. N., Lofrano-Alves, M. S., Engel, P. L., Newman, G., Schultz Jel, J., Molkentin, J. D., Wolska, B. M., Solaro, R. J., and Wieczorek, D. F. (2012) J. Biol. Chem. 287, 44478-44489). With these results, we hypothesized that decreasing α-Tm phosphorylation may be beneficial in the context of a chronic, intrinsic stressor. To test this hypothesis, we utilized the familial hypertrophic cardiomyopathy (FHC) α-Tm E180G model (Prabhakar, R., Boivin, G. P., Grupp, I. L., Hoit, B., Arteaga, G., Solaro, R. J., and Wieczorek, D. F. (2001) J. Mol. Cell. Cardiol. 33, 1815-1828). These FHC hearts are characterized by increased heart:body weight ratios, fibrosis, increased myofilament Ca(2+) sensitivity, and contractile defects. The FHC mice die by 6-8 months of age. We generated mice expressing both the E180G and S283A mutations and found that the hypertrophic phenotype was rescued in the α-Tm E180G/S283A double mutant transgenic animals; these mice exhibited no signs of cardiac hypertrophy and displayed improved cardiac function. These double mutant transgenic hearts showed increased phosphorylation of phospholamban Ser-16 and Thr-17 compared with the α-Tm E180G mice. This is the first study to demonstrate that decreasing phosphorylation of tropomyosin can rescue a hypertrophic cardiomyopathic phenotype.
Collapse
Affiliation(s)
- Emily M Schulz
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | | | | | | | | | | | | |
Collapse
|
39
|
Kazmierczak K, Paulino EC, Huang W, Muthu P, Liang J, Yuan CC, Rojas AI, Hare JM, Szczesna-Cordary D. Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2013; 305:H575-89. [PMID: 23748425 DOI: 10.1152/ajpheart.00107.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The functional consequences of the familial hypertrophic cardiomyopathy A57G (alanine-to-glycine) mutation in the myosin ventricular essential light chain (ELC) were assessed in vitro and in vivo using previously generated transgenic (Tg) mice expressing A57G-ELC mutant vs. wild-type (WT) of human cardiac ELC and in recombinant A57G- or WT-protein-exchanged porcine cardiac muscle strips. Compared with the Tg-WT, there was a significant increase in the Ca²⁺ sensitivity of force (ΔpCa₅₀ ≅ 0.1) and an ~1.3-fold decrease in maximal force per cross section of muscle observed in the mutant preparations. In addition, a significant increase in passive tension in response to stretch was monitored in Tg-A57G vs. Tg-WT strips indicating a mutation-induced myocardial stiffness. Consistently, the hearts of Tg-A57G mice demonstrated a high level of fibrosis and hypertrophy manifested by increased heart weight-to-body weight ratios and a decreased number of nuclei indicating an increase in the two-dimensional size of Tg-A57G vs. Tg-WT myocytes. Echocardiography examination showed a phenotype of eccentric hypertrophy in Tg-A57G mice, enhanced left ventricular (LV) cavity dimension without changes in LV posterior/anterior wall thickness. Invasive hemodynamics data revealed significantly increased end-systolic elastance, defined by the slope of the pressure-volume relationship, indicating a mutation-induced increase in cardiac contractility. Our results suggest that the A57G allele causes disease by means of a discrete modulation of myofilament function, increased Ca²⁺ sensitivity, and decreased maximal tension followed by compensatory hypertrophy and enhanced contractility. These and other contributing factors such as increased myocardial stiffness and fibrosis most likely activate cardiomyopathic signaling pathways leading to pathologic cardiac remodeling.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida; and
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Toepfer C, Caorsi V, Kampourakis T, Sikkel MB, West TG, Leung MC, Al-Saud SA, MacLeod KT, Lyon AR, Marston SB, Sellers JR, Ferenczi MA. Myosin regulatory light chain (RLC) phosphorylation change as a modulator of cardiac muscle contraction in disease. J Biol Chem 2013; 288:13446-54. [PMID: 23530050 PMCID: PMC3650382 DOI: 10.1074/jbc.m113.455444] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/21/2013] [Indexed: 01/26/2023] Open
Abstract
Understanding how cardiac myosin regulatory light chain (RLC) phosphorylation alters cardiac muscle mechanics is important because it is often altered in cardiac disease. The effect this protein phosphorylation has on muscle mechanics during a physiological range of shortening velocities, during which the heart generates power and performs work, has not been addressed. We have expressed and phosphorylated recombinant Rattus norvegicus left ventricular RLC. In vitro we have phosphorylated these recombinant species with cardiac myosin light chain kinase and zipper-interacting protein kinase. We compare rat permeabilized cardiac trabeculae, which have undergone exchange with differently phosphorylated RLC species. We were able to enrich trabecular RLC phosphorylation by 40% compared with controls and, in a separate series, lower RLC phosphorylation to 60% of control values. Compared with the trabeculae with a low level of RLC phosphorylation, RLC phosphorylation enrichment increased isometric force by more than 3-fold and peak power output by more than 7-fold and approximately doubled both maximum shortening speed and the shortening velocity that generated peak power. We augmented these measurements by observing increased RLC phosphorylation of human and rat HF samples from endocardial left ventricular homogenate. These results demonstrate the importance of increased RLC phosphorylation in the up-regulation of myocardial performance and suggest that reduced RLC phosphorylation is a key aspect of impaired contractile function in the diseased myocardium.
Collapse
Affiliation(s)
- Christopher Toepfer
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
- the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Valentina Caorsi
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Thomas Kampourakis
- the Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, United Kingdom
| | - Markus B. Sikkel
- the National Heart and Lung Institute, 4th Floor, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Timothy G. West
- the Structure and Motion Laboratory, Royal Veterinary College London, North Mymms AL9 7TA, United Kingdom
| | - Man-Ching Leung
- the National Heart and Lung Institute, 4th Floor, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Sara A. Al-Saud
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kenneth T. MacLeod
- the National Heart and Lung Institute, 4th Floor, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Alexander R. Lyon
- the National Heart and Lung Institute, 4th Floor, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
- the Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London SW3 6MP, United Kingdom
| | - Steven B. Marston
- the National Heart and Lung Institute, 4th Floor, Imperial Center for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - James R. Sellers
- the Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Michael A. Ferenczi
- From the Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
- the Lee Kong Chian School of Medicine, Nanyang Technological University, 637553 Singapore
| |
Collapse
|
41
|
Midde K, Rich R, Marandos P, Fudala R, Li A, Gryczynski I, Borejdo J. Comparison of orientation and rotational motion of skeletal muscle cross-bridges containing phosphorylated and dephosphorylated myosin regulatory light chain. J Biol Chem 2013; 288:7012-23. [PMID: 23319584 DOI: 10.1074/jbc.m112.434209] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Calcium binding to thin filaments is a major element controlling active force generation in striated muscles. Recent evidence suggests that processes other than Ca(2+) binding, such as phosphorylation of myosin regulatory light chain (RLC) also controls contraction of vertebrate striated muscle (Cooke, R. (2011) Biophys. Rev. 3, 33-45). Electron paramagnetic resonance (EPR) studies using nucleotide analog spin label probes showed that dephosphorylated myosin heads are highly ordered in the relaxed fibers and have very low ATPase activity. This ordered structure of myosin cross-bridges disappears with the phosphorylation of RLC (Stewart, M. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 430-435). The slower ATPase activity in the dephosporylated moiety has been defined as a new super-relaxed state (SRX). It can be observed in both skeletal and cardiac muscle fibers (Hooijman, P., Stewart, M. A., and Cooke, R. (2011) Biophys. J. 100, 1969-1976). Given the importance of the finding that suggests a novel pathway of regulation of skeletal muscle, we aim to examine the effects of phosphorylation on cross-bridge orientation and rotational motion. We find that: (i) relaxed cross-bridges, but not active ones, are statistically better ordered in muscle where the RLC is dephosporylated compared with phosphorylated RLC; (ii) relaxed phosphorylated and dephosphorylated cross-bridges rotate equally slowly; and (iii) active phosphorylated cross-bridges rotate considerably faster than dephosphorylated ones during isometric contraction but the duty cycle remained the same, suggesting that both phosphorylated and dephosphorylated muscles develop the same isometric tension at full Ca(2+) saturation. A simple theory was developed to account for this fact.
Collapse
Affiliation(s)
- Krishna Midde
- Department of Cell Biology and Anatomy, University of North Texas, Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kazmierczak K, Muthu P, Huang W, Jones M, Wang Y, Szczesna-Cordary D. Myosin regulatory light chain mutation found in hypertrophic cardiomyopathy patients increases isometric force production in transgenic mice. Biochem J 2012; 442:95-103. [PMID: 22091967 PMCID: PMC6589164 DOI: 10.1042/bj20111145] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
FHC (familial hypertrophic cardiomyopathy) is a heritable form of cardiac hypertrophy caused by mutations in genes encoding sarcomeric proteins. The present study focuses on the A13T mutation in the human ventricular myosin RLC (regulatory light chain) that is associated with a rare FHC variant defined by mid-ventricular obstruction and septal hypertrophy. We generated heart-specific Tg (transgenic) mice with ~10% of human A13T-RLC mutant replacing the endogenous mouse cardiac RLC. Histopathological examinations of longitudinal heart sections from Tg-A13T mice showed enlarged interventricular septa and profound fibrotic lesions compared with Tg-WT (wild-type), expressing the human ventricular RLC, or non-Tg mice. Functional studies revealed an abnormal A13T mutation-induced increase in isometric force production, no change in the force-pCa relationship and a decreased Vmax of the acto-myosin ATPase. In addition, a fluorescence-based assay showed a 3-fold lower binding affinity of the recombinant A13T mutant for the RLC-depleted porcine myosin compared with WT-RLC. These results suggest that the A13T mutation triggers a hypertrophic response through changes in cardiac sarcomere organization and myosin cross-bridge function leading to abnormal remodelling of the heart. The significant functional changes observed, despite a low level of A13T mutant incorporation into myofilaments, suggest a 'poison-peptide' mechanism of disease.
Collapse
Affiliation(s)
- Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Wenrui Huang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Michelle Jones
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Yingcai Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| | - Danuta Szczesna-Cordary
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, U.S.A
| |
Collapse
|