1
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024; 69:3444-3466. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
2
|
Gould ML, Deng X, Lyons K, Ali A. In Vivo and In Vitro Response to a Regenerative Dental Scaffold. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5384. [PMID: 39517658 PMCID: PMC11547789 DOI: 10.3390/ma17215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As dental pulp contains the stem cells necessary for regeneration, the tooth should hold the intrinsic capacity for self-repair. A triphasic hybrid dental biocomposite (3HB) composed of biocompatible biopolymers to provide strength, antibacterial properties and protein-based cell support could provide a conducive microenvironment for the regeneration of dental structures. 3HB was incorporated into Mineral Trioxide Aggregate (ProRoot MTA) to construct a malleable injectable implant. Human tooth pulp cells (hDPCs) significantly increased proliferation in the presence of 3HB+MTA compared to 3HB or MTA alone. Cell viability decreased with MTA alone but increased with 3HB and 3HB+MTA. 3HB+MTA was implanted into the residual tooth of drilled Wistar rat M2 molars for up to 45 days. Stereological analysis from micro-CT images showed the volume of the tooth remaining. Histologically, regenerative pulpal architecture was seen invading 3HB. A continuous odontoblastic profile lined a deposit of dentin-like material suggesting reparative dentinogenesis. Overall, no infection or encapsulation was seen. Immunohistochemically, odontoblasts were seen along the margins of the wounded tooth undergoing repair. Mesenchymal cells (MSCs) were seen at the base of the drilled tooth and by 21 days had translocated into the implant itself. Cells stimulating remineralization were highly expressed in the tooth undergoing repair. CD146-positive MSCs were seen in the center of the implant, possibly stimulating remineralization. In conclusion, behavior of 3HB+ in vitro and in vivo provided a promising start as 3HB+MTA may serve as a viable regenerative scaffold for pulp regeneration; however, this should be further studied before clinical use can be considered.
Collapse
Affiliation(s)
- Maree L. Gould
- Centre for Bioengineering & Nanomedicine (Dunedin), Faculty of Dentistry, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Xiaoxuan Deng
- Centre for Bioengineering & Nanomedicine (Dunedin), Faculty of Dentistry, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Karl Lyons
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Azam Ali
- Centre for Bioengineering & Nanomedicine (Dunedin), Faculty of Dentistry, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Mandatori D, D'Amico E, Romasco T, Gatto ML, Notarangelo MP, Mangano C, Furlani M, Penolazzi L. A 3D in vitro model of biphasic calcium phosphate (BCP) scaffold combined with human osteoblasts, osteoclasts, and endothelial cells as a platform to mimic the oral microenvironment for tissue regeneration. J Dent 2024; 151:105411. [PMID: 39426560 DOI: 10.1016/j.jdent.2024.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
OBJECTIVES This study aimed to develop an innovative 3D in vitro model based on the biphasic calcium phosphate (BCP) scaffold combined with human osteoblasts (hOBs), osteoclasts (hOCs), and endothelial cells to evaluate its effects on bone and vascular cells behavior. METHODS To this end, an optimized mixture of hydroxyapatite (HA) and β-tricalcium phosphate (TCP) with a weight ratio of 30/70 was employed to develop a BCP scaffold using the computer-aided design (CAD) approach. The BCP scaffold was combined with primary cultures of hOBs, hOCs and human umbilical vein endothelial cells (HUVECs). RESULTS Morphometric analyses using scanning electron microscopy (SEM) and X-ray micro-computed tomography, along with biomechanical testing, revealed that BCP scaffold exhibited a regular 3D structure with large interconnected internal pores (700 µm) and high mechanical strength. In terms of biological behavior, after 14 days of tri-culture with hOBs, hMCs and HUVECs, SEM, immunofluorescence, and histological analyses showed that all cell types were viable and adhered well to the entire surface of the scaffold. Interestingly, SEM and energy-dispersive X-ray spectroscopy analyses also revealed on the BCP scaffold the presence of mineralized matrix crystals of Ca, P, O and C within a tissue-like cell layer produced by the interaction of the three cell types. CONCLUSIONS Data confirmed the high performance of the BCP scaffold through biomechanical studies. Notably, for the first time, this study demonstrated the feasibility of combining BCP scaffold with hOBs, hOCs, and HUVEC, which remained viable and maintained their native phenotypes, creating also tissue-like cell layer. CLINICAL SIGNIFICANCE Although further investigation is needed, these results underscore the potential to develop a 3D in vitro model that mimics the oral microenvironment, which could be valuable for BTE approaches in vivo studies.
Collapse
Affiliation(s)
- Domitilla Mandatori
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology CAST, "G. d' Annunzio" University Chieti- Pescara, 66100 Chieti, Italy.
| | - Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology CAST, "G. d' Annunzio" University Chieti- Pescara, 66100 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology CAST, "G. d' Annunzio" University Chieti- Pescara, 66100 Chieti, Italy
| | - Maria Laura Gatto
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Maria Pina Notarangelo
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Mangano
- Department of Dental Sciences, University Vita Salute San Raffaele, Milan, Italy
| | - Michele Furlani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Letizia Penolazzi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
4
|
Jo Y, Majumdar U, Bose S. Vitamin D3 Release from MgO Doped 3D Printed TCP Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1676-1685. [PMID: 38386843 PMCID: PMC11186521 DOI: 10.1021/acsbiomaterials.3c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Regenerating bone tissue in critical-sized craniofacial bone defects remains challenging and requires the implementation of innovative bone implants with early stage osteogenesis and blood vessel formation. Vitamin D3 is incorporated into MgO-doped 3D-printed scaffolds for defect-specific and patient-specific implants in low load-bearing areas. This novel bone implant also promotes early stage osteogenesis and blood vessel development. Our results show that vitamin D3-loaded MgO-doped 3D-printed scaffolds enhance osteoblast cell proliferation 1.3-fold after being cultured for 7 days. Coculture studies on osteoblasts derived from human mesenchymal stem cells (hMSCs) and osteoclasts derived from monocytes show the upregulation of genes related to osteoblastogenesis and the downregulation of RANK-L, which is essential for osteoclastogenesis. Release of vitamin D3 also inhibits osteoclast differentiation by 1.9-fold after a 21-day culture. After 6 weeks, vitamin D3 release from MgO-doped 3D-printed scaffolds enhances the new bone formation, mineralization, and angiogenic potential. The multifunctional 3D-printed scaffolds can improve early stage osteogenesis and blood vessel formation in craniofacial bone defects.
Collapse
Affiliation(s)
- Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Ujjayan Majumdar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
5
|
Riva F, Bloise N, Omes C, Ceccarelli G, Fassina L, Nappi RE, Visai L. Human Ovarian Follicular Fluid Mesenchymal Stem Cells Express Osteogenic Markers When Cultured on Bioglass 58S-Coated Titanium Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103676. [PMID: 37241304 DOI: 10.3390/ma16103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Recent studies have reported that stem cells (human follicular fluid mesenchymal stem cells or hFF-MSCs) are present in ovarian follicular fluid (hFF) and that they have a proliferative and differentiative potential which is similar to that of MSCs derived from other adult tissue. These mesenchymal stem cells, isolated from human follicular fluid waste matter discarded after retrieval of oocytes during the IVF process, constitute another, as yet unutilized, source of stem cell materials. There has been little work on the compatibility of these hFF-MSCs with scaffolds useful for bone tissue engineering applications and the aim of this study was to evaluate the osteogenic capacity of hFF-MSCs seeded on bioglass 58S-coated titanium and to provide an assessment of their suitability for bone tissue engineering purposes. Following a chemical and morphological characterization with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), cell viability, morphology and expression of specific osteogenic markers were examined after 7 and 21 days of culture. The hFF-MSCs seeded on bioglass and cultured with osteogenic factors, when compared with those seeded on tissue culture plate or on uncoated titanium, exhibited enhanced cell viability and osteogenic differentiation, as reflected by increased calcium deposition and increased ALP activity with expression and production of bone-related proteins. Taken together, these results demonstrate that MSCs from human follicular fluid waste materials can be easily cultured in titanium scaffolds coated with bioglass, having osteoinductive properties. This process has significant potential for regenerative medicine applications and indicates that hFF-MSCs may be a valid alternative to hBM-MSC cells in experimental models in bone tissue engineering.
Collapse
Affiliation(s)
- Federica Riva
- Histology and Embryology Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Claudia Omes
- Center for Reproductive Medicine, Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, Centre for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, 27100 Pavia, Italy
| | - Rossella Elena Nappi
- Center for Reproductive Medicine, Obstetrics and Gynecology Unit 2, Woman and Child Health Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| |
Collapse
|
6
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
7
|
Kamaraj M, Roopavath UK, Giri PS, Ponnusamy NK, Rath SN. Modulation of 3D Printed Calcium-Deficient Apatite Constructs with Varying Mn Concentrations for Osteochondral Regeneration via Endochondral Differentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23245-23259. [PMID: 35544777 DOI: 10.1021/acsami.2c05110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteochondral regeneration remains a vital problem in clinical situations affecting both bone and cartilage tissues due to the low regeneration ability of cartilage tissue. Additionally, the simultaneous regeneration of bone and cartilage is difficult to attain due to their dissimilar nature. Thus, fabricating a single scaffold for both bone and cartilage regeneration remains challenging. Biomaterials are frequently employed to promote tissue restoration, but they still cannot replicate the structure of native tissue. This study aims to create a single biomaterial that could be used to regenerate both bone and cartilage. This study focuses on synthesizing calcium-deficient apatite (CDA) with the gradual addition of manganese. The phase stability and the effect of heat treatment on manganese-doped CDA were studied using X-ray diffraction (XRD) and Rietveld refinement. The obtained powders were tested for their 3-dimensional (3D) printing ability by fabricating cuboidal 3D structures. The 3D printed scaffolds were examined for external topography using field-emission scanning electron microscopy (FE-SEM) and were subjected to compression testing. In vitro biocompatibility and differentiation studies were performed to access their biocompatibility and differentiation capabilities. Reverse transcription-quantitative PCR (RT-qPCR) analysis was done to determine the gene expression of bone- and cartilage-specific markers. Mn helps in stabilizing the β-TCP phase beyond its sintering temperature without being degraded to α-TCP. Mn addition in CDA improves the compressive strength of the fabricated scaffolds while keeping them biocompatible. The concentrations of Mn in the CDA ceramic were found to influence the differentiation behavior of MSCs in the fabricated scaffolds. Mn-doped CDA is a promising candidate to be used as a substitute material for bone, cartilage, and osteochondral defects to facilitate repair and regeneration via endochondral differentiation. 3D printing can assist in the fabrication of a multifunctional single-unit scaffold with varied Mn concentrations, which might be able to generate the two tissues in situ in an osteochondral defect.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India
| | - Uday Kiran Roopavath
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India
| | - Pravin Shankar Giri
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India
| | - Nandha Kumar Ponnusamy
- Department of Mechanical Engineering, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, The Republic of Korea
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy 502284, Telangana, India
| |
Collapse
|
8
|
Kamaraj M, Sreevani G, Prabusankar G, Rath SN. Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112478. [PMID: 34857263 DOI: 10.1016/j.msec.2021.112478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
3D bioprinting technique renders a plausible solution to tissue engineering applications, mainly bone tissue regeneration, which could provide the microenvironment with desired physical, chemical, and mechanical properties. However, the mechanical and structural stability of current natural polymers is a critical issue in the fabrication of bone tissue-engineered scaffolds. To overcome these issues, we have developed 3D bioprintable semi-synthetic polymers derived from natural (sodium alginate, A) and synthetic (polyethylene glycol, PEG) biopolymers. In order to enhance the cross-linking properties and biocompatibility, we have functionalized these polymers with acrylate and methacrylate chemical moieties. These selected combination of natural and synthetic polymers improved the mechanical strength due to the synergistic effect of covalent as well as ionic bond formation in the hydrogel system, which is evident from the tested tensile data. Further, the feasibility of 3D bioprinting of acrylate and methacrylate functionalized PEG and hydrogels have been tested for the biocompatibility of the fabricated structures with human umbilical cord mesenchymal stem cells (UMSCs). Further, these bioprinted scaffolds were investigated for osteogenic differentiation of UMSCs in two types of culture conditions: namely, i) with osteoinduction media (with OIM), ii) without osteoinduction media (w/o OIM). We have examined the osteoinductivity of scaffolds with the activity of alkaline phosphatase (ALP) content, and significant changes in the ALP activity was observed with the stiffness of developed materials. The extent osteogenic differentiation was observed by alizarin red staining and reverse transcription PCR analysis. Elevated levels of ALP, RUNX2 and COL1 gene expression has been observed in without OIM samples on week 1 and week 3. Further, our study showed that the synthesized alginate methacrylate (AMA) without osteoinduction supplement with young's modulus of 0.34 MPa has a significant difference in ALP quantity and gene expression over the other reported literature. Thus, this work plays a pivotal role in the development of 3D bioprintable and photo-cross-linkable hydrogels in osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Gaddamedi Sreevani
- Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India
| | - Ganesan Prabusankar
- Organometallic Chemistry Laboratory, Department of Chemistry, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem cell Laboratory (RMS), Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Dua R, Jones H, Noble PC. Evaluation of bone formation on orthopedic implant surfaces using an ex-vivo bone bioreactor system. Sci Rep 2021; 11:22509. [PMID: 34795368 PMCID: PMC8602619 DOI: 10.1038/s41598-021-02070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022] Open
Abstract
Recent advances in materials and manufacturing processes have allowed the fabrication of intricate implant surfaces to facilitate bony attachment. However, refinement and evaluation of these new design strategies are hindered by the cost and complications of animal studies, particularly during early iterations in the development process. To address this problem, we have previously constructed and validated an ex-vivo bone bioreactor culture system that can maintain the viability of bone samples for an extended period ex-vivo. In this study, we investigated the mineralization of a titanium wire mesh scaffold under both static and dynamic culturing using our ex vivo bioreactor system. Thirty-six cancellous bone cores were harvested from bovine metatarsals at the time of slaughter and divided into five groups under the following conditions: Group 1) Isolated bone cores placed in static culture, Group 2) Unloaded bone cores placed in static culture in contact with a fiber-mesh metallic scaffold, Group 3) Bone cores placed in contact with a fiber-mesh metallic scaffold under the constant pressure of 150 kPa, Group 4) Bone core placed in contact with a fiber-mesh metallic scaffold and exposed to cyclic loading with continuous perfusion flow of media within the ex-vivo culture system and Group 5) Bone core evaluated on Day 0 to serve as a positive control for comparison with all other groups at weeks 4 and 7. Bone samples within Groups 1-4 were incubated for 4 and 7 weeks and then evaluated using histological examination (H&E) and the Live-Dead assay (Life Technologies). Matrix deposits on the metallic scaffolds were examined with scanning electron microscopy (SEM), while the chemical composition of the matrix was measured using energy-dispersive x-ray spectroscopy (EDX). We found that the viability of bone cores was maintained after seven weeks of loading in our ex vivo system. In addition, SEM images revealed crystallite-like structures on the dynamically loaded metal coupons (Group 4), corresponding to the initial stages of mineralization. EDX results further confirmed the presence of carbon at the interface and calcium phosphates in the matrix. We conclude that a bone bioreactor can be used as an alternate tool for in-vivo bone ingrowth studies of new implant surfaces or coatings.
Collapse
Affiliation(s)
- Rupak Dua
- Department of Chemical Engineering, School of Engineering and Technology, Hampton University, Hampton, VA, USA.
| | - Hugh Jones
- Center for Orthopaedic Research, Innovation and Training, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Philip C Noble
- Center for Orthopaedic Research, Innovation and Training, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
10
|
Shi F, Xiao D, Zhang C, Zhi W, Liu Y, Weng J. The effect of macropore size of hydroxyapatite scaffold on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture. Regen Biomater 2021; 8:rbab050. [PMID: 34567788 PMCID: PMC8457200 DOI: 10.1093/rb/rbab050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Previous studies have proved that dynamic culture could facilitate nutrients transport and apply mechanical stimulation to the cells within three-dimensional scaffolds, thus enhancing the differentiation of stem cells towards the osteogenic phenotype. However, the effects of macropore size on osteogenic differentiation of stem cells under dynamic condition are still unclear. Therefore, the objective of this study was to investigate the effects of macropore size of hydroxyapatite (HAp) scaffolds on osteogenic differentiation of bone mesenchymal stem cells under static and perfusion culture conditions. In vitro cell culture results showed that cell proliferation, alkaline phosphate (ALP) activity, mRNA expression of ALP, collagen-I (Col-I), osteocalcin (OCN) and osteopontin (OPN) were enhanced when cultured under perfusion condition in comparison to static culture. Under perfusion culture condition, the ALP activity and the gene expression of ALP, Col-I, OCN and OPN were enhanced with the macropore size decreasing from 1300 to 800 µm. However, with the further decrease in macropore size from 800 to 500 µm, the osteogenic related gene expression and protein secretion were reduced. Computational fluid dynamics analysis showed that the distribution areas of medium- and high-speed flow increased with the decrease in macropore size, accompanied by the increase of the fluid shear stress within the scaffolds. These results confirm the effects of macropore size on fluid flow stimuli and cell differentiation, and also help optimize the macropore size of HAp scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Feng Shi
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China.,Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China.,College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China
| | - Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China.,College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Wei Zhi
- College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Yumei Liu
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China.,College of Environmental Science and Engineering, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China
| | - Jie Weng
- College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| |
Collapse
|
11
|
Role of Fzd6 in Regulating the Osteogenic Differentiation of Adipose-derived Stem Cells in Osteoporotic Mice. Stem Cell Rev Rep 2021; 17:1889-1904. [PMID: 34041696 DOI: 10.1007/s12015-021-10182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Although it has been demonstrated that adipose-derived stem cells (ASCs) from osteoporotic mice (OP-ASCs) exhibited impaired osteogenic differentiation potential, the molecular mechanism has not yet been elucidated. We found that Fzd6 was decreased in OP-ASCs compared with ASCs. This study investigates effects and underlying mechanisms of Fzd6 in the osteogenic potential of OP-ASCs, and explores methods to enhance osteogenic capacity of OP-ASCs. METHODS Fzd6 overexpression and silencing lentiviruses were used to evaluate the role of Fzd6 in the osteogenic differentiation of OP-ASCs. Real-time PCR (qPCR) and western blotting (WB) was performed to detect the expression of Fzd6 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Alizarin red staining and Alkaline phosphatase (ALP) staining were performed following osteogenic induction. Microscopic CT (Micro-CT), hematoxylin and eosin staining (HE) staining, and Masson staining were used to assess the role of Fzd6 in osteogenic differentiation of osteoporosis (OP) mice in vivo. RESULTS Expression of Fzd6 was decreased significantly in OP-ASCs. Fzd6 silencing down-regulated the osteogenic ability of OP-ASCs in vitro. Overexpression of Fzd6 rescued the impaired osteogenic capacity in OP-ASCs in vitro. We obtained similar results in vivo. CONCLUSIONS Fzd6 plays an important role in regulating the osteogenic ability of OP-ASCs both in vivo and in vitro. Overexpression of Fzd6 promotes the osteogenic ability of OP-ASCs, which provides new insights for the prevention and treatment of OP mice.
Collapse
|
12
|
Influence of Titanium Alloy Scaffolds on Enzymatic Defense against Oxidative Stress and Bone Marrow Cell Differentiation. Int J Biomater 2020; 2020:1708214. [PMID: 32802064 PMCID: PMC7411454 DOI: 10.1155/2020/1708214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/30/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
Studies have been directed towards the production of new titanium alloys, aiming for the replacement of Ti-6 Aluminium-4 Vanadium (TiAlV) alloy in the future. Many mechanisms related to biocompatibility and chemical characteristics have been studied in the field of implantology, but enzymatic defenses against oxidative stress remain underexplored. Bone marrow stromal cells have been explored as source of cells, which have the potential to differentiate into osteoblasts and therefore could be used as cells-based therapy. The objective of this study was to evaluate the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in porous scaffolds of Ti-6 Aluminium-4 Vanadium (TiAlV), Ti-35 Niobium (TiNb), and Ti-35 Niobium-7 Zirconium-5 Tantalum (TiNbZrTa) on mouse bone marrow stromal cells. Porous titanium alloy scaffolds were prepared by powder metallurgy. After 24 hours, cells plated on the scaffolds were analyzed by scanning electron microscopy (SEM). The antioxidant enzyme activity was measured 72 hours after cell plating. Quantitative real time PCR (qRT-PCR) was performed after 3, 7, and 14 days, and Runx2 (Runt-related transcription factor2) expression was evaluated. The SEM images showed the presence of interconnected pores and growth, adhesion, and cell spreading in the 3 scaffolds. Although differences were noted for SOD and CAT activity for all scaffolds analyzed, no statistical differences were observed (p > 0.05). The osteogenic gene Runx2 presented high expression levels for TiNbZrTa at day 7, compared to the control group (TiAlV day 3). At day 14, all scaffolds had more than 2-fold induction for Runx2 mRNA levels, with statistically significant differences compared to the control group. Even though we were not able to confirm statistically significant differences to justify the replacement of TiAlV regarding antioxidant enzymes, TiNbZrTa was able to induce faster bone formation at early time points, making it a good choice for biomedical and tissue bioengineering applications.
Collapse
|
13
|
Kumari N, Bhargava A, Rath SN. T-type calcium channel antagonist, TTA-A2 exhibits anti-cancer properties in 3D spheroids of A549, a lung adenocarcinoma cell line. Life Sci 2020; 260:118291. [PMID: 32810510 DOI: 10.1016/j.lfs.2020.118291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
AIMS Despite the advanced cancer treatments, there is increased resistance to chemotherapy and subsequent mortality. In lack of reliable data in monolayer cultures and animal models, researchers are shifting to 3D cancer spheroids, which represents the in vivo robust tumour morphology. Calcium is essential in cell signalling and proliferation. It is found that T-type calcium channels (TTCCs) are overexpressed in various cancer cells, supporting their increased proliferation. Many of the TTCCs blockers available could target other channels besides TTCCs, which can cause adverse effects. Therefore, we hypothesise that TTA-A2, a highly selective blocker towards TTCCs, can inhibit the growth of cancer spheroids, and provide an anti-cancer and an adjuvant role in cancer therapy. METHODS We studied TTA-A2 and paclitaxel (PTX-control drug) in lung adenocarcinoma cell line- A549, cancer cells and human embryonic kidney cell line- HEK 293, control cell, in their monolayer and spheroids forms for viability, proliferation, morphology change, migration, and invasion-after 48-96 h of treatment. KEY FINDINGS Though the results varied between the monolayer and spheroids studies, we found both anti-cancer as well as adjuvant effect of TTA-A2 in both the studies. TTA-A2 was able to inhibit the growth, viability, and metastasis of the cancer cells and spheroids. Differences in the results of two modes might explain that why drugs tested successfully in monolayer culture fail in clinical trials. SIGNIFICANCE This study establishes the role of TTA-A2, a potent TTCC blocker as an anti-cancer and adjuvant drug in reducing the viability and metastasis of the cancer cells.
Collapse
Affiliation(s)
- Neema Kumari
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, India
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana, India.
| |
Collapse
|
14
|
Qayoom I, Teotia AK, Meena M, Singh P, Mishra A, Singh S, Kumar A. Enhanced bone mineralization using hydroxyapatite-based ceramic bone substitute incorporating Withania somnifera extracts. Biomed Mater 2020; 15:055015. [DOI: 10.1088/1748-605x/ab8835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Parfenov VA, Mironov VA, Koudan EV, Nezhurina EK, Karalkin PA, Pereira FDAS, Petrov SV, Krokhmal AA, Aydemir T, Vakhrushev IV, Zobkov YV, Smirnov IV, Fedotov AY, Demirci U, Khesuani YD, Komlev VS. Fabrication of calcium phosphate 3D scaffolds for bone repair using magnetic levitational assembly. Sci Rep 2020; 10:4013. [PMID: 32132636 PMCID: PMC7055252 DOI: 10.1038/s41598-020-61066-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/18/2020] [Indexed: 01/16/2023] Open
Abstract
The calcium phosphate particles can be used as building blocks for fabrication of 3D scaffolds intended for bone tissue engineering. This work presents for the first time a rapid creation of 3D scaffolds using magnetic levitation of calcium phosphate particles. Namely, tricalcium phosphate particles of equal size and certain porosity are used, which undergo the process of recrystallization after magnetic levitational assembly of the scaffold to ensure stitching of the scaffold. Label-free levitational assembly is achieved by using a custom-designed magnetic system in the presence of gadolinium salts, which allows the levitation of calcium phosphate particles. Chemical transformation of tricalcium- to octacalcium phosphate under the condition of magnetic levitation in non-homogeneous magnetic field is also demonstrated. This approach allows obtaining rapidly the octacalcium phosphate phase in the final 3D product, which is biocompatible.
Collapse
Affiliation(s)
- Vladislav A Parfenov
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia. .,A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, Russia.
| | - Vladimir A Mironov
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Elizaveta V Koudan
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Elizaveta K Nezhurina
- P.A. Hertsen Moscow Oncology Research Center - branch of National Medical Research Radiological Center, Moscow, Russia
| | - Pavel A Karalkin
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia.,P.A. Hertsen Moscow Oncology Research Center - branch of National Medical Research Radiological Center, Moscow, Russia
| | | | - Stanislav V Petrov
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Alisa A Krokhmal
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Timur Aydemir
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Igor V Vakhrushev
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia.,V.N. Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Yury V Zobkov
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, Russia
| | - Igor V Smirnov
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Yu Fedotov
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, Russia
| | - Utkan Demirci
- Stanford University, Department of Radiology, Stanford, CA, USA
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Vladimir S Komlev
- A.A. Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
16
|
Bone Tissue Engineering in the Growing Calvaria Using Dipyridamole-Coated, Three-Dimensionally-Printed Bioceramic Scaffolds: Construct Optimization and Effects on Cranial Suture Patency. Plast Reconstr Surg 2020; 145:337e-347e. [PMID: 31985634 DOI: 10.1097/prs.0000000000006483] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Three-dimensionally-printed bioceramic scaffolds composed of β-tricalcium phosphate delivering the osteogenic agent dipyridamole can heal critically sized calvarial defects in skeletally mature translational models. However, this construct has yet to be applied to growing craniofacial models. In this study, the authors implanted three-dimensionally-printed bioceramic/dipyridamole scaffolds in a growing calvaria animal model and evaluated bone growth as a function of geometric scaffold design and dipyridamole concentration. Potential adverse effects on the growing suture were also evaluated. METHODS Bilateral calvarial defects (10 mm) were created in 5-week-old (approximately 1.1 kg) New Zealand White rabbits (n = 16 analyzed). Three-dimensionally-printed bioceramic scaffolds were constructed in quadrant form composed of varying pore dimensions (220, 330, and 500 μm). Each scaffold was coated with collagen and soaked in varying concentrations of dipyridamole (100, 1000, and 10,000 μM). Controls consisted of empty defects. Animals were killed 8 weeks postoperatively. Calvariae were analyzed using micro-computed tomography, three-dimensional reconstruction, and nondecalcified histologic sectioning. RESULTS Scaffold-induced bone growth was statistically greater than bone growth in empty defects (p = 0.02). Large scaffold pores, 500 μm, coated in 1000 μM dipyridamole yielded the most bone growth and lowest degree of scaffold presence within the defect. Histology showed vascularized woven and lamellar bone along with initial formation of vascular canals within the scaffold lattice. Micro-computed tomographic and histologic analysis revealed patent calvarial sutures without evidence of ectopic bone formation across all dipyridamole concentrations. CONCLUSION The authors present an effective pediatric bone tissue-engineering scaffold design and dipyridamole concentration that is effective in augmentation of calvarial bone generation while preserving cranial suture patency.
Collapse
|
17
|
Ur Rahman MS, Tahir MA, Noreen S, Yasir M, Ahmad I, Khan MB, Ali KW, Shoaib M, Bahadur A, Iqbal S. Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery. RSC Adv 2020; 10:21413-21419. [PMID: 35518733 PMCID: PMC9054387 DOI: 10.1039/c9ra09349d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/25/2020] [Accepted: 05/20/2020] [Indexed: 11/21/2022] Open
Abstract
A combination of chemotherapy with hyperthermia can produce remarkable success in treating advanced cancers. For this purpose, magnetite (Fe3O4)-doped mesoporous bioactive glass nanoparticles (Fe3O4-MBG NPs) were synthesized by the sol–gel method. Fe3O4-MBG NPs were found to possess spherical morphology with a size of approximately 50 ± 10 nm and a uniform pore size of 9 nm. The surface area (309 m2 g−1) was sufficient for high drug loading capacity and mitomycin C (Mc), an anticancer drug, was entrapped in the Fe3O4-MBG NPs. A variable rate of drug release was observed at different pH values (6.4, 7.4 & 8.4) of the release media. No significant death of normal human fibroblast (NHFB) cells was observed during in vitro analysis and for Mc-Fe3O4-MBG NPs considerable inhibitory effects on the viability of cancer cells (MG-63) were observed. When Fe3O4-MBG NPs were immersed in simulated body fluid (SBF), hydroxycarbonate apatite (HCA) was formed, as confirmed by XRD and FTIR spectra. A negligible value of coercivity and zero remanence confirms that Fe3O4-MBG NPs are superparamagnetic. Fe3O4-MBG NPs showed a hyperthermia effect in an alternating magnetic field (AMF), and a rise of 11.5 °C in temperature during the first 6 min, making it suitable for hyperthermia applications. Fe3O4-MBG NPs expressed excellent biocompatibility and low cytotoxicity, therefore, they are a safe biomaterial for bone tissue regeneration, drug delivery, and hyperthermia treatment. A combination of chemotherapy with hyperthermia can produce remarkable success in treating advanced cancers.![]()
Collapse
Affiliation(s)
- Muhammad Saif Ur Rahman
- Zhejiang University-University of Edinburgh Institute
- Zhejiang University
- Haining
- People's Republic of China
- Clinical Research Center
| | | | - Saima Noreen
- Department of Chemistry
- University of Agriculture
- Faisalabad 38000
- Pakistan
| | - Muhammad Yasir
- Department of Chemistry
- University of Lahore
- Lahore
- Pakistan
| | - Ijaz Ahmad
- Department of Chemistry
- Government Postgraduate College Samanabad Faisalabad
- Pakistan
| | | | | | - Muhammad Shoaib
- Department of Chemistry
- Government Postgraduate College Samanabad Faisalabad
- Pakistan
| | - Ali Bahadur
- Department of Transdisciplinary Studies
- Graduate School of Convergence Science and Technology
- Seoul National University
- Seoul
- South Korea
| | - Shahid Iqbal
- School of Chemistry and Materials Engineering
- Huizhou University
- Huizhou 516007
- China
| |
Collapse
|
18
|
Westhauser F, Widholz B, Nawaz Q, Tsitlakidis S, Hagmann S, Moghaddam A, Boccaccini AR. Favorable angiogenic properties of the borosilicate bioactive glass 0106-B1 result in enhanced in vivo osteoid formation compared to 45S5 Bioglass. Biomater Sci 2019; 7:5161-5176. [PMID: 31584047 DOI: 10.1039/c9bm01220f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 45S5-bioactive glass (BG) composition is the most commonly investigated amongst BG-based bone substitutes. By changing BG compositions and by addition of therapeutically active ions such as boron, the biological features of BGs can be tailored towards specific needs and possible drawbacks can be overcome. The borosilicate glass 0106-B1 (composition in wt%: 37.5 SiO2, 22.6 CaO, 5.9 Na2O, 4.0 P2O5, 12.0 K2O, 5.5 MgO, 12.5 B2O3) has demonstrated pro-angiogenic properties. However, the osteogenic performance of the 0106-B1-BG and its influence on cell viability and proliferation in vitro as well as its osteogenic and angiogenic properties in vivo have not been investigated. Therefore, in this study, the impact of 0106-B1-BG and 45S5-BG on osteogenic differentiation, viability and proliferation on human mesenchymal stromal cells (MSCs) was assessed in vitro. Furthermore, MSC-seeded scaffolds made from both BG types were implanted subcutaneously in immunodeficient mice for 10 weeks. Osteoid formation was quantified by histomorphometry, vascularization was visualized by immunohistological staining. Additionally, the in vivo expression patterns of genes correlating with osteogenesis and angiogenesis were analyzed. In vitro, the impact of 45S5-BG and 0106-B1-BG on the proliferation, viability and osteogenic differentiation of MSCs was comparable. In vivo, scaffolds made from 0106-B1-BG significantly outperformed the 45S5-BG-based scaffolds regarding the amount and maturation of the osteoid. Furthermore, 0106-B1-BG-based scaffolds showed significantly increased angiogenic gene expression patterns. In conclusion, the beneficial angiogenic properties of 0106-B1-BG result in improved osteogenic properties in vivo, making the 0106-B1-BG a promising candidate for further investigation, e.g. in a bone defect model.
Collapse
Affiliation(s)
- F Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - B Widholz
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Q Nawaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - S Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - S Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - A Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany. and ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| | - A R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| |
Collapse
|
19
|
Westhauser F, Essers C, Karadjian M, Reible B, Schmidmaier G, Hagmann S, Moghaddam A. Supplementation with 45S5 Bioactive Glass Reduces In Vivo Resorption of the β-Tricalcium-Phosphate-Based Bone Substitute Material Vitoss. Int J Mol Sci 2019; 20:ijms20174253. [PMID: 31480285 PMCID: PMC6747147 DOI: 10.3390/ijms20174253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022] Open
Abstract
Compared to other materials such as 45S5 bioactive glass (BG), β-tricalcium phosphate (β-TCP)-based bone substitutes such as Vitoss show limited material-driven stimulation of osteogenesis and/or angiogenesis. The unfavorable degradation kinetics of β-TCP-based bone substitutes may result in an imbalance between resorption and osseous regeneration. Composite materials like Vitoss BA (Vitoss supplemented with 20 wt % 45S5-BG particles) might help to overcome these limitations. However, the influence of BG particles in Vitoss BA compared to unsupplemented Vitoss on osteogenesis, resorption behavior, and angiogenesis is not yet described. In this study, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stromal cells before subcutaneous implantation in immunodeficient mice for 10 weeks. Scaffold resorption was monitored by micro-computed tomography, while osteoid formation and vascularization were assessed by histomorphometry and gene expression analysis. Whilst slightly more osteoid and improved angiogenesis were found in Vitoss BA, maturation of the osteoid was more advanced in Vitoss scaffolds. The volume of Vitoss implants decreased significantly, combined with a significantly increased presence of resorbing cells, whilst the volume remained stable in Vitoss BA scaffolds. Future studies should evaluate the interaction of 45S5-BG with resorbing cells and bone precursor cells in greater detail to improve the understanding and application of β-TCP/45S5-BG composite bone substitute materials.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Maria Karadjian
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Bruno Reible
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstraße 200a, 69118 Heidelberg, Germany
- ATORG-Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany
| |
Collapse
|
20
|
Liao W, Xu L, Wangrao K, Du Y, Xiong Q, Yao Y. Three-dimensional printing with biomaterials in craniofacial and dental tissue engineering. PeerJ 2019; 7:e7271. [PMID: 31328038 PMCID: PMC6622164 DOI: 10.7717/peerj.7271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
With the development of technology, tissue engineering (TE) has been widely applied in the medical field. In recent years, due to its accuracy and the demands of solid freeform fabrication in TE, three-dimensional printing, also known as additive manufacturing (AM), has been applied for biological scaffold fabrication in craniofacial and dental regeneration. In this review, we have compared several types of AM techniques and summarized their advantages and limitations. The range of printable materials used in craniofacial and dental tissue includes all the biomaterials. Thus, basic and clinical studies were discussed in this review to present the application of AM techniques in craniofacial and dental tissue and their advances during these years, which might provide information for further AM studies in craniofacial and dental TE.
Collapse
Affiliation(s)
- Wen Liao
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Eswaramoorthy SD, Dhiman N, Korra G, Oranges CM, Schaefer DJ, Rath SN, Madduri S. Isogenic-induced endothelial cells enhance osteogenic differentiation of mesenchymal stem cells on silk fibroin scaffold. Regen Med 2019; 14:647-661. [DOI: 10.2217/rme-2018-0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: We investigated the role of induced endothelial cells (iECs) in mesenchymal stem cells (MSCs)/iECs co-culture and assessed their osteogenic ability on silk fibroin nanofiber scaffolds. Methods: The osteogenic differentiation was assessed by the ALP assay, calcium assay and gene expression studies. Results: The osteogenic differentiation of the iECs co-cultures was found to be higher than the MSCs group and proximal to endothelial cells (ECs) co-cultures. Furthermore, the usage of isogenic iECs for co-culture increased the osteogenic and endothelial gene expression. Conclusion: These findings suggest that iECs mimic endothelial cells when co-cultured with MSCs and that one MSCs source can be used to give rise to both MSCs and iECs. The isogenic MSCs/iECs co-culture provides a new option for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India
| | - Nandini Dhiman
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India
| | - Gayathri Korra
- Sri Sai Krishna Multi Specialty Hospital, Department of Obstetrics and Gynecology, Sangareddy 502001, Medak, Telangana, India
| | - Carlo M Oranges
- Department of Plastic, Reconstructive, Aesthetic & Hand Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic & Hand Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India
| | - Srinivas Madduri
- Department of Plastic, Reconstructive, Aesthetic & Hand Surgery, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, CH-4031 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland
| |
Collapse
|
22
|
Lee PS, Hess R, Friedrichs J, Haenchen V, Eckert H, Cuniberti G, Rancourt D, Krawetz R, Hintze V, Gelinsky M, Scharnweber D. Recapitulating bone development events in a customised bioreactor through interplay of oxygen tension, medium pH, and systematic differentiation approaches. J Tissue Eng Regen Med 2019; 13:1672-1684. [PMID: 31250556 DOI: 10.1002/term.2921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/12/2018] [Accepted: 02/13/2019] [Indexed: 11/08/2022]
Abstract
Bone development and homeostasis are intricate processes that require co-existence and dynamic interactions among multiple cell types. However, controlled dynamic niches that derive and support stable propagation of these cells from single stem cell source is not sustainable in conventional culturing vessels. In bioreactor cultures that support dynamic niches, the limited source and stability of growth factors are often a major limiting factor for long-term in vitro cultures. Hence, alternative growth factor-free differentiation approaches are designed and their efficacy to achieve different osteochondral cell types is investigated. Briefly, a dynamic niche is achieved by varying medium pH, oxygen tension (pO2 ) distribution in bioreactor, initiating chondrogenic differentiation with chondroitin sulphate A (CSA), and implementing systematic differentiation regimes. In this study, we demonstrated that CSA is a potent chondrogenic inducer, specifically in combination with acidic medium and low pO2 . Further, endochondral ossification is recapitulated through a systematic chondrogenic-osteogenic (ch-os) differentiation regime, and multiple osteochondral cell types are derived. Chondrogenic hypertrophy was also enhanced specifically in high pO2 regions. Consequently, mineralised constructs with higher structural integrity, volume, and tailored dimensions are achieved. In contrast, a continuous osteogenic differentiation regime (os-os) has derived compact and dense constructs, whereas a continuous chondrogenic differentiation regime (ch-ch) has attenuated construct mineralisation and impaired development. In conclusion, a growth factor-free differentiation approach is achieved through interplay of pO2 , medium pH, and systematic differentiation regimes. The controlled dynamic niches have recapitulated endochondral ossification and can potentially be exploited to derive larger bone constructs with near physiological properties.
Collapse
Affiliation(s)
- Poh Soo Lee
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Ricarda Hess
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden e. V., Dresden, Germany
| | - Vanessa Haenchen
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hagen Eckert
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany.,Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, Germany
| | - Derrick Rancourt
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vera Hintze
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Dresden, Germany
| | - Dieter Scharnweber
- Institute for Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
23
|
Eswaramoorthy SD, Ramakrishna S, Rath SN. Recent advances in three-dimensional bioprinting of stem cells. J Tissue Eng Regen Med 2019; 13:908-924. [PMID: 30866145 DOI: 10.1002/term.2839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 12/29/2022]
Abstract
In spite of being a new field, three-dimensional (3D) bioprinting has undergone rapid growth in the recent years. Bioprinting methods offer a unique opportunity for stem cell distribution, positioning, and differentiation at the microscale to make the differentiated architecture of any tissue while maintaining precision and control over the cellular microenvironment. Bioprinting introduces a wide array of approaches to modify stem cell fate. This review discusses these methodologies of 3D bioprinting stem cells. Fabricating a fully operational tissue or organ construct with a long life will be the most significant challenge of 3D bioprinting. Once this is achieved, a whole human organ can be fabricated for the defect place at the site of surgery.
Collapse
Affiliation(s)
- Sindhuja D Eswaramoorthy
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| | - Seeram Ramakrishna
- Centre for Nanofibers & Nanotechnology, NUS Nanoscience & Nanotechnology Initiative, Singapore
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad (IITH), Sangareddy, Telangana, India
| |
Collapse
|
24
|
Perfusion Bioreactor Culture of Bone Marrow Stromal Cells Enhances Cranial Defect Regeneration. Plast Reconstr Surg 2019; 143:993e-1002e. [DOI: 10.1097/prs.0000000000005529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Advances in additive manufacturing for bone tissue engineering scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:631-644. [PMID: 30948100 DOI: 10.1016/j.msec.2019.03.037] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023]
Abstract
This article reviews the current state of the art of additive manufacturing techniques for the production of bone tissue engineering (BTE) scaffolds. The most well-known of these techniques include: stereolithography, selective laser sintering, fused deposition modelling and three-dimensional printing. This review analyses in detail the basic physical principles and main applications of these techniques and presents a list of biomaterials for BTE applications, including commercial trademarks. It also describes and compares the main advantages and disadvantages and explains the highlights of each additive manufacturing technique and their evolution. Finally, is discusses both their capabilities and limitations and proposes potential strategies to improve this field.
Collapse
|
26
|
Westhauser F, Karadjian M, Essers C, Senger AS, Hagmann S, Schmidmaier G, Moghaddam A. Osteogenic differentiation of mesenchymal stem cells is enhanced in a 45S5-supplemented β-TCP composite scaffold: an in-vitro comparison of Vitoss and Vitoss BA. PLoS One 2019; 14:e0212799. [PMID: 30811492 PMCID: PMC6392320 DOI: 10.1371/journal.pone.0212799] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022] Open
Abstract
Since the amount of autologous bone for the treatment of bone defects is limited and harvesting might cause complications, synthetic bone substitutes such as the popular β-tricalcium phosphate (β-TCP) based Vitoss have been developed as an alternative grafting material. β-TCPs exhibit osteoconductive properties, however material-initiated stimulation of osteogenic differentiation is limited. These limitations might be overcome by addition of 45S5 bioactive glass (BG) particles. This study aims to analyze the influence of BG particles in Vitoss BA (20 wt% BG particles with a size of 90–150 μm) on osteogenic properties, cell vitality and cell proliferation in direct comparison to Vitoss by evaluation of the underlying cellular mechanisms. For that purpose, Vitoss and Vitoss BA scaffolds were seeded with human mesenchymal stem cells (MSC) and underwent osteogenic differentiation in-vitro for up to 42 days. Cell vitality, proliferation, and osteogenic differentiation were monitored by quantitative gene expression analysis, determination of alkaline phosphatase activity, PrestoBlue cell viability assay, dsDNA quantification, and a fluorescence-microscopy-based live/dead-assay. It was demonstrated that BG particles decrease cell proliferation but do not have a negative impact on cell vitality. Especially the early stages of osteogenic differentiation were significantly improved in the presence of BG particles, resulting in earlier maturation of the MSC towards osteoblasts. Since most of the stimulatory effects induced by BG particles took place initially, particles exhibiting another surface-area-to-volume ratio should be considered in order to provide long-lasting stimulation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- * E-mail:
| | - Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne-Sophie Senger
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Hagmann
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Schmidmaier
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Heidelberg, Germany
- ATORG—Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Aschaffenburg, Germany
| |
Collapse
|
27
|
Karadjian M, Essers C, Tsitlakidis S, Reible B, Moghaddam A, Boccaccini AR, Westhauser F. Biological Properties of Calcium Phosphate Bioactive Glass Composite Bone Substitutes: Current Experimental Evidence. Int J Mol Sci 2019; 20:ijms20020305. [PMID: 30646516 PMCID: PMC6359412 DOI: 10.3390/ijms20020305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/19/2022] Open
Abstract
Standard treatment for bone defects is the biological reconstruction using autologous bone—a therapeutical approach that suffers from limitations such as the restricted amount of bone available for harvesting and the necessity for an additional intervention that is potentially followed by donor-site complications. Therefore, synthetic bone substitutes have been developed in order to reduce or even replace the usage of autologous bone as grafting material. This structured review focuses on the question whether calcium phosphates (CaPs) and bioactive glasses (BGs), both established bone substitute materials, show improved properties when combined in CaP/BG composites. It therefore summarizes the most recent experimental data in order to provide a better understanding of the biological properties in general and the osteogenic properties in particular of CaP/BG composite bone substitute materials. As a result, BGs seem to be beneficial for the osteogenic differentiation of precursor cell populations in-vitro when added to CaPs. Furthermore, the presence of BG supports integration of CaP/BG composites into bone in-vivo and enhances bone formation under certain circumstances.
Collapse
Affiliation(s)
- Maria Karadjian
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Christopher Essers
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Stefanos Tsitlakidis
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Bruno Reible
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| | - Arash Moghaddam
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
- ATORG-Aschaffenburg Trauma and Orthopedics Research Group, Center for Trauma Surgery, Orthopedics, and Sports Medicine, Klinikum Aschaffenburg-Alzenau, Am Hasenkopf 1, 63739 Aschaffenburg, Germany.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany.
| | - Fabian Westhauser
- Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital, Schlierbacher Landstr. 200a, 69118 Heidelberg, Germany.
| |
Collapse
|
28
|
Roopavath UK, Soni R, Mahanta U, Deshpande AS, Rath SN. 3D printable SiO2 nanoparticle ink for patient specific bone regeneration. RSC Adv 2019; 9:23832-23842. [PMID: 35530605 PMCID: PMC9069463 DOI: 10.1039/c9ra03641e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/17/2019] [Indexed: 01/12/2023] Open
Abstract
3D printing of a complex and irregular virtual defect using SiO2 nanoparticle and hydrogel composite ink for patient specific defect fabrication.
Collapse
Affiliation(s)
- Uday Kiran Roopavath
- Regenerative Medicine and Stem Cell (RMS) Lab
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad (IITH)
- India
| | - Raghav Soni
- Regenerative Medicine and Stem Cell (RMS) Lab
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad (IITH)
- India
| | - Urbashi Mahanta
- Department of Material Science and Metallurgical Engineering
- Indian Institute of Technology Hyderabad
- India
| | - Atul Suresh Deshpande
- Department of Material Science and Metallurgical Engineering
- Indian Institute of Technology Hyderabad
- India
| | - Subha Narayan Rath
- Regenerative Medicine and Stem Cell (RMS) Lab
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad (IITH)
- India
| |
Collapse
|
29
|
Sankar S, Kakunuri M, D. Eswaramoorthy S, Sharma CS, Rath SN. Effect of patterned electrospun hierarchical structures on alignment and differentiation of mesenchymal stem cells: Biomimicking bone. J Tissue Eng Regen Med 2018; 12:e2073-e2084. [DOI: 10.1002/term.2640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/30/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Sharanya Sankar
- Department of Biomedical EngineeringIndian Institute of Technology Hyderabad Telangana India
| | - Manohar Kakunuri
- Department of Material Science and engineeringIndian Institute of Technology Hyderabad Telangana India
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical EngineeringIndian Institute of Technology Hyderabad Telangana India
| | | | - Chandra S. Sharma
- Creative & Advanced Research Based On Nanomaterials (CARBON) Laboratory, Department of Chemical EngineeringIndian Institute of Technology Hyderabad Telangana India
| | - Subha N. Rath
- Department of Biomedical EngineeringIndian Institute of Technology Hyderabad Telangana India
| |
Collapse
|
30
|
Eswaramoorthy SD, Bethapudi S, Almelkar SI, Rath SN. Regional Differentiation of Adipose-Derived Stem Cells Proves the Role of Constant Electric Potential in Enhancing Bone Healing. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0373-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Gu BK, Choi DJ, Park SJ, Kim YJ, Kim CH. 3D Bioprinting Technologies for Tissue Engineering Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:15-28. [PMID: 30357616 DOI: 10.1007/978-981-13-0950-2_2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Three-dimensional (3D) printing (rapid prototyping or additive manufacturing) technologies have received significant attention in various fields over the past several decades. Tissue engineering applications of 3D bioprinting, in particular, have attracted the attention of many researchers. 3D scaffolds produced by the 3D bioprinting of biomaterials (bio-inks) enable the regeneration and restoration of various tissues and organs. These 3D bioprinting techniques are useful for fabricating scaffolds for biomedical and regenerative medicine and tissue engineering applications, permitting rapid manufacture with high-precision and control over size, porosity, and shape. In this review, we introduce a variety of tissue engineering applications to create bones, vascular, skin, cartilage, and neural structures using a variety of 3D bioprinting techniques.
Collapse
Affiliation(s)
- Bon Kang Gu
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Dong Jin Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, Gyeongsan, South Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea.
| |
Collapse
|
32
|
Rh Owen G, Dard M, Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J Biomed Mater Res B Appl Biomater 2017; 106:2493-2512. [PMID: 29266701 DOI: 10.1002/jbm.b.34049] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
Bone is a composite material composed of collagen and calcium phosphate (CaP) mineral. The collagen gives bone its flexibility while the inorganic material gives bone its resilience. The CaP in bone is similar in composition and structure to the mineral hydroxyapatite (HA) and is bioactive, osteoinductive and osteoconductive. Therefore synthetic versions of bone apatite (BA) have been developed to address the demand for autologous bone graft substitutes. Synthetic HA (s-HA) are stiff and strong, but brittle. These lack of physical attributes limit the use of synthetic apatites in situations where no physical loading of the apatite occurs. s-HA chemical properties differ from BA and thus change the physical and mechanical properties of the material. Consequently, s-HA is more chemically stable than BA and thus its resorption rate is slower than the rate of bone regeneration. One solution to this problem is to introduce a faster resorbing CaP, such as β-tricalcium phosphate (β-TCP), when synthesizing the material creating a biphasic (s-HA and β-TCP) formulation of calcium phosphate (BCP). The focus of this review is to introduce the major differences between BCP and biological apatites and how material scientists have overcome the inadequacies of the synthetic counterparts. Examples of BCP performance in vitro and in vivo following structural and chemical modifications are provided as well as novel ultrastructural data. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2493-2512, 2018.
Collapse
Affiliation(s)
- Gethin Rh Owen
- Department of Oral, Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Michel Dard
- College of Dentistry, New York University, New York, New York
| | - Hannu Larjava
- Department of Oral, Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver V6T 1Z3, Canada
| |
Collapse
|
33
|
Mahmood SK, Razak ISA, Ghaji MS, Yusof LM, Mahmood ZK, Rameli MABP, Zakaria ZAB. In vivo evaluation of a novel nanocomposite porous 3D scaffold in a rabbit model: histological analysis. Int J Nanomedicine 2017; 12:8587-8598. [PMID: 29238193 PMCID: PMC5716328 DOI: 10.2147/ijn.s145663] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The healing of load-bearing segmental defects in long bones is a challenge due to the complex nature of the weight that affects the bone part and due to bending, shearing, axial, and torsional forces. An innovative porous 3D scaffolds implant of CaCO3 aragonite nanocomposite derived from cockle shell was advanced for substitute bone solely for load-bearing cases. The biomechanical characteristics of such materials were designed to withstand cortical bone strength. In promoting bone growth to the implant material, an ideal surface permeability was formed by means of freeze drying and by adding copolymers to the materials. The properties of coating and copolymers supplement were also assessed for bone-implant connection resolutions. To examine the properties of the material in advanced biological system, an experimental trial in an animal model was carried out. Critical sized defect of bone was created in rabbit's radial bone to assess the material for a load-bearing application with a short and extended period assessment with histological evaluation of the incorporated implanted material to the bone of the host. Trials in animal models proved that the material has the capability of enduring load-bearing conditions for long-term use devoid of breaking or generating stress that affects the host bone. Histological examination further confirmed the improved integration of the implanted materials to the host bone with profound bone development into and also above the implanted scaffold, which was attained with negligible reaction of the tissues to a foreign implanted material.
Collapse
Affiliation(s)
- Saffanah Khuder Mahmood
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Mosul, Mosul, Iraq
| | - Intan-Shameha Abdul Razak
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Mustafa Saddam Ghaji
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Basrah, Basrah, Iraq
| | - Loqman Mohamed Yusof
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine
| | | | - Mohd Adha Bin P Rameli
- Laboratory of Molecular Biomedicine, Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Zuki Abu Bakar Zakaria
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia.,Laboratory of Molecular Biomedicine, Institute of Biosciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
34
|
Li Y, Jiang T, Zheng L, Zhao J. Osteogenic differentiation of mesenchymal stem cells (MSCs) induced by three calcium phosphate ceramic (CaP) powders: A comparative study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:296-300. [PMID: 28866168 DOI: 10.1016/j.msec.2017.05.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Calcium phosphate ceramics (CaPs) appear to be suitable alternatives for bone grafts because of their similarity to bone. Tricalcium phosphate (TCP), hydroxyapatite (HA) and biphasic calcium phosphates (BCP) are most commonly used CaPs. In this study, we studied and compared the osteoinductive ability of the powders of the three CaPs including HA, TCP and BCP (HA/β-TCP weight ratio of 60/40) by using bone marrow derived mesenchymal stem cells (MSCs). Osteoblastic formation, mineralization and gene expression of osteogenesis markers were measured in MSCs after 7, 14, 21days of culture. Results showed a positive osteogenic differentiation effect of CaPs powders on MSCs as evidenced by an increased alkaline phosphatase (ALP) activity, positive ALP and Alizarin Red S staining, and upregulated osteoblastic gene expression compared with control. For the three CaPs, BCP powders showed the most prominent effect on osteoinduction. Next to BCP is TCP. Thus, this study supported that BCP may have better application prospects for repairing of bone defects in clinic.
Collapse
Affiliation(s)
- Yuquan Li
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China; Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China; Collaborative Innovation Center of Guangxi Biological Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China; Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, 530021 Nanning, China.
| |
Collapse
|
35
|
Sankar S, Sharma CS, Rath SN, Ramakrishna S. Electrospun Fibers for Recruitment and Differentiation of Stem Cells in Regenerative Medicine. Biotechnol J 2017; 12. [PMID: 28980771 DOI: 10.1002/biot.201700263] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/12/2017] [Indexed: 11/11/2022]
Abstract
Electrospinning is a popular technique used to mimic the natural sub-micron features of the native tissue. The ultra-fine fibers provide a favorable extracellular matrix-like environment for regulation of cellular functions. This article summarizes and reviews the current advances in electrospun fiber application and focuses on the novel strategies applied for tissue regeneration and repair. It explores the different factors affecting the attachment and proliferation of mesenchymal stem cells (MSCs) on the electrospun substrates. The influence of different features of electrospun fibers in the differentiation of MSCs into specific lineages (bone, cartilage, tendon/ligament, and nerves) has been elaborated. In addition, the different techniques to mimic the hierarchical features of tissues and its effect on cellular functions are reviewed. Additionally, the new developments like three-dimensional (3D) electrospinning, 3D spheroid double strategy and the comparative analysis of dynamic and static culture on electrospun scaffolds are discussed. With the intricate understanding of the interaction between the cells and the electrospun fiber matrix we can aim to combine the newer strategies to overcome the existing challenges and improve the potential application of electrospun fibers in the field of tissue regeneration and repair.
Collapse
Affiliation(s)
- Sharanya Sankar
- Department of Biomedical Engineering, Indian Institute of Technology, Telangana-502285, Hyderabad, India
| | - Chandra S Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Telangana-502285, Hyderabad, India
| | - Subha N Rath
- Department of Biomedical Engineering, Indian Institute of Technology, Telangana-502285, Hyderabad, India
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, National University of Singapore, 110077, Singapore
| |
Collapse
|
36
|
Talò G, Turrisi C, Arrigoni C, Recordati C, Gerges I, Tamplenizza M, Cappelluti A, Riboldi S, Moretti M. Industrialization of a perfusion bioreactor: Prime example of a non‐straightforward process. J Tissue Eng Regen Med 2017; 12:405-415. [DOI: 10.1002/term.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 01/17/2023]
Affiliation(s)
- G. Talò
- Cell and Tissue Engineering LaboratoryIRCCS Istituto Ortopedico Galeazzi Milan Italy
| | - C. Turrisi
- Dipartimento di Elettronica, Informazione e BioingegneriaPolitecnico di Milano Milan Italy
| | - C. Arrigoni
- Cell and Tissue Engineering LaboratoryIRCCS Istituto Ortopedico Galeazzi Milan Italy
| | | | | | | | - A. Cappelluti
- Fondazione Filarete Milan Italy
- SEMM European School of Molecular Medicine Milano Italy
| | | | - M. Moretti
- Cell and Tissue Engineering LaboratoryIRCCS Istituto Ortopedico Galeazzi Milan Italy
- Regenerative Medicine Technologies LaboratoryEnte Ospedaliero Cantonale (EOC) Lugano Switzerland
- Swiss Institute of Regenerative Medicine (SIRM) Torricella‐Taverne Switzerland
| |
Collapse
|
37
|
Reible B, Schmidmaier G, Prokscha M, Moghaddam A, Westhauser F. Continuous stimulation with differentiation factors is necessary to enhance osteogenic differentiation of human mesenchymal stem cells in-vitro. Growth Factors 2017; 35:179-188. [PMID: 29228886 DOI: 10.1080/08977194.2017.1401618] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Bone defect treatment belongs to the most challenging fields in orthopedic surgery and requires the well-coordinated application of mesenchymal stem cells (MSC) and differentiation factors. MSC isolated from reaming material (RMSC) and iliac crest (BMSC) in combination with bone morphogenetic protein-7 (BMP-7) and insulin-like growth factor-1 (IGF-1) have been used. The short half-life of both factors limit their applications: a burst release of the factor can probably not induce sustainable differentiation. We stimulated MSC in osteogenic differentiation medium with three different concentrations of BMP-7 or IGF-1: Group A was stimulated continuously, group B for 24 h and group C remained without any stimulation. Osteogenic differentiation was measured after seven and 14 days by alizarin red staining and alkaline phosphatase (ALP) activity. Continuous stimulation led to higher levels of osteogenic differentiation than short-term stimulation. This could lead to a reconsideration of established application forms for differentiation factors, aiming to provide a more sustained release.
Collapse
Affiliation(s)
- Bruno Reible
- a HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital , Heidelberg , Germany
| | - Gerhard Schmidmaier
- a HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital , Heidelberg , Germany
| | - Matthäus Prokscha
- a HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital , Heidelberg , Germany
| | - Arash Moghaddam
- a HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital , Heidelberg , Germany
- b ATORG - Aschaffenburg Trauma and Orthopedic Research Group, Center for Trauma Surgery, Orthopedics and Sports Medicine , Aschaffenburg , Germany
| | - Fabian Westhauser
- a HTRG - Heidelberg Trauma Research Group, Center of Orthopedics, Traumatology, and Spinal Cord Injury, Heidelberg University Hospital , Heidelberg , Germany
| |
Collapse
|
38
|
Sangkert S, Kamonmattayakul S, Chai WL, Meesane J. Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect. J Biomed Mater Res A 2017; 105:1624-1636. [PMID: 28000362 DOI: 10.1002/jbm.a.35983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/02/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023]
Abstract
Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
Collapse
Affiliation(s)
- Supaporn Sangkert
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suttatip Kamonmattayakul
- Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wen Lin Chai
- Department of General Dental Practice and Oral and Maxillofacial Imaging, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
39
|
Kashte S, Jaiswal AK, Kadam S. Artificial Bone via Bone Tissue Engineering: Current Scenario and Challenges. Tissue Eng Regen Med 2017; 14:1-14. [PMID: 30603457 PMCID: PMC6171575 DOI: 10.1007/s13770-016-0001-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 04/11/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022] Open
Abstract
Bone provides mechanical support, and flexibility to the body as a structural frame work along with mineral storage, homeostasis, and blood pH regulation. The repair and/or replacement of injured or defective bone with healthy bone or bone substitute is a critical problem in orthopedic treatment. Recent advances in tissue engineering have shown promising results in developing bone material capable of substituting the conventional autogenic or allogenic bone transplants. In the present review, we have discussed natural and synthetic scaffold materials such as metal and metal alloys, ceramics, polymers, etc. which are widely being used along with their cellular counterparts such as stem cells in bone tissue engineering with their pros and cons.
Collapse
Affiliation(s)
- Shivaji Kashte
- Department of Biosciences and Technology, Defence Institute of Advanced Technology, Girinagar, Pune, MS 411025 India
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006 India
| | - Amit Kumar Jaiswal
- Center for Biomaterials, Cellular and Molecular Theranostics, VIT University, Vellore, 632104 India
| | - Sachin Kadam
- Center for Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006 India
| |
Collapse
|
40
|
Zhao N, Wang Y, Qin L, Guo Z, Li D. Effect of composition and macropore percentage on mechanical and in vitro cell proliferation and differentiation properties of 3D printed HA/β-TCP scaffolds. RSC Adv 2017. [DOI: 10.1039/c7ra07204j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
HA/β-TCP scaffolds were fabricated by 3D printing and exhibited desirable biocompatibilityin vitro.
Collapse
Affiliation(s)
- Ningbo Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research
- College of Stomatology
- Xi'an Jiaotong University
- Xi'an
- People's Republic of China
| | - Yanen Wang
- The Key Lab of Contemporary Design and Integrated Manufacturing Technology of Ministry of Education
- Northwestern Polytechnical University
- Xi'an 710072
- People's Republic of China
| | - Lei Qin
- State Key Laboratory of Military Stomatology
- Department of Oral Implants
- School of Stomatology
- Fourth Military Medical University
- Xi'an 710032
| | - Zhengze Guo
- State Key Laboratory of Military Stomatology
- Department of Oral Implants
- School of Stomatology
- Fourth Military Medical University
- Xi'an 710032
| | - Dehua Li
- State Key Laboratory of Military Stomatology
- Department of Oral Implants
- School of Stomatology
- Fourth Military Medical University
- Xi'an 710032
| |
Collapse
|
41
|
Slots C, Jensen MB, Ditzel N, Hedegaard MAB, Borg SW, Albrektsen O, Thygesen T, Kassem M, Andersen MØ. Simple additive manufacturing of an osteoconductive ceramic using suspension melt extrusion. Dent Mater 2016; 33:198-208. [PMID: 27979378 DOI: 10.1016/j.dental.2016.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Craniofacial bone trauma is a leading reason for surgery at most hospitals. Large pieces of destroyed or resected bone are often replaced with non-resorbable and stock implants, and these are associated with a variety of problems. This paper explores the use of a novel fatty acid/calcium phosphate suspension melt for simple additive manufacturing of ceramic tricalcium phosphate implants. METHODS A wide variety of non-aqueous liquids were tested to determine the formulation of a storable 3D printable tricalcium phosphate suspension ink, and only fatty acid-based inks were found to work. A heated stearic acid-tricalcium phosphate suspension melt was then 3D printed, carbonized and sintered, yielding implants with controllable macroporosities. Their microstructure, compressive strength and chemical purity were analyzed with electron microscopy, mechanical testing and Raman spectroscopy, respectively. Mesenchymal stem cell culture was used to assess their osteoconductivity as defined by collagen deposition, alkaline phosphatase secretion and de-novo mineralization. RESULTS After a rapid sintering process, the implants retained their pre-sintering shape with open pores. They possessed clinically relevant mechanical strength and were chemically pure. They supported adhesion of mesenchymal stem cells, and these were able to deposit collagen onto the implants, secrete alkaline phosphatase and further mineralize the ceramic. SIGNIFICANCE The tricalcium phosphate/fatty acid ink described here and its 3D printing may be sufficiently simple and effective to enable rapid, on-demand and in-hospital fabrication of individualized ceramic implants that allow clinicians to use them for treatment of bone trauma.
Collapse
Affiliation(s)
- Casper Slots
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark.
| | - Martin Bonde Jensen
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark.
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winsløwparken 25.1, DK-5000 Odense C, Denmark.
| | - Martin A B Hedegaard
- Department of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark.
| | - Søren Wiatr Borg
- Department of Technology and Innovation, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark.
| | - Ole Albrektsen
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark.
| | - Torben Thygesen
- Department of Oral and Maxillofacial Surgery, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, DK-5000 Odense C, Denmark.
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Winsløwparken 25.1, DK-5000 Odense C, Denmark.
| | - Morten Østergaard Andersen
- The Maersk Mc-Kinney Moller Institute, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark; Department of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of Engineering, University of Southern Denmark, Campusvej 55, DK-5000 Odense M, Denmark.
| |
Collapse
|
42
|
Kanda Y, Nishimura I, Sato T, Katayama A, Arano T, Ikada Y, Yoshinari M. Dynamic cultivation with radial flow bioreactor enhances proliferation or differentiation of rat bone marrow cells by fibroblast growth factor or osteogenic differentiation factor. Regen Ther 2016; 5:17-24. [PMID: 31245496 PMCID: PMC6581843 DOI: 10.1016/j.reth.2016.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 06/06/2016] [Indexed: 11/30/2022] Open
Abstract
Dynamic cultivation using a radial flow bioreactor (RFB) has gained increasing interest as a method of achieving bone regeneration. In order to enhance bone generation in large bone defects, it is necessary to use an RFB to expand the primary cells such as bone marrow cells derived from biotissue. The present study aimed to evaluate the cell expansion and osteogenic differentiation of rat bone marrow cells (rBMC) when added to basic fibroblast growth factor containing medium (bFGFM) or osteogenic differentiation factor containing medium (ODM) under dynamic cultivation using an RFB. Cell proliferation was evaluated with a DNA-based cell count method and histological analysis. An alkaline phosphatase (ALP) activity assay and immunohistochemistry staining of osteogenic markers including BMP-2 and osteopontin were used to assess osteogenic differentiation ability. After culture for one week, rBMC cell numbers increased significantly under dynamic cultivation compared with that under static cultivation in all culture media. For different culture media in dynamic cultivation, bFGFM had the highest increase in cell numbers. ALP activity was facilitated by dynamic cultivation with ODM. Furthermore, both BMP-2 and osteopontin were detected in the dynamic cultivation with ODM. These results suggested that bFGFM promotes cell proliferation and ODM promotes osteogenic differentiation of rBMC under dynamic cultivation using an RFB.
Collapse
Affiliation(s)
- Yuuhei Kanda
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Itsurou Nishimura
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Toru Sato
- Department of Fixed Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Aiko Katayama
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Taichi Arano
- Department of Fixed Prosthodontics, Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yoshito Ikada
- Division of Life Science, Nara Medical University, Kashihara, Japan
| | - Masao Yoshinari
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
43
|
Soluble eggshell membrane: A natural protein to improve the properties of biomaterials used for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:807-821. [DOI: 10.1016/j.msec.2016.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 04/18/2016] [Accepted: 05/01/2016] [Indexed: 02/07/2023]
|
44
|
Powder-based 3D printing for bone tissue engineering. Biotechnol Adv 2016; 34:740-753. [DOI: 10.1016/j.biotechadv.2016.03.009] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/20/2016] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
|
45
|
Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. Ann Biomed Eng 2016; 45:23-44. [PMID: 27324800 DOI: 10.1007/s10439-016-1678-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/16/2023]
Abstract
Additive manufacturing, also known as 3D printing, has emerged over the past 3 decades as a disruptive technology for rapid prototyping and manufacturing. Vat polymerization, powder bed fusion, material extrusion, and binder jetting are distinct technologies of additive manufacturing, which have been used in a wide variety of fields, including biomedical research and tissue engineering. The ability to print biocompatible, patient-specific geometries with controlled macro- and micro-pores, and to incorporate cells, drugs and proteins has made 3D-printing ideal for orthopaedic applications, such as bone grafting. Herein, we performed a systematic review examining the fabrication of calcium phosphate (CaP) ceramics by 3D printing, their biocompatibility in vitro, and their bone regenerative potential in vivo, as well as their use in localized delivery of bioactive molecules or cells. Understanding the advantages and limitations of the different 3D printing approaches, CaP materials, and bioactive additives through critical evaluation of in vitro and in vivo evidence of efficacy is essential for developing new classes of bone graft substitutes that can perform as well as autografts and allografts or even surpass the performance of these clinical standards.
Collapse
Affiliation(s)
- Ryan Trombetta
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, NY, 14627, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA
| | - Jason A Inzana
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Edward M Schwarz
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, NY, 14627, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Orthopaedic Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hani A Awad
- Department of Biomedical Engineering, University of Rochester, Robert B. Goergen Hall, Rochester, NY, 14627, USA. .,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA. .,Department of Orthopedics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
46
|
Pullulan microcarriers for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:439-49. [DOI: 10.1016/j.msec.2016.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 02/02/2016] [Accepted: 03/01/2016] [Indexed: 11/21/2022]
|
47
|
Minuth WW, Denk L. Bridging the gap between traditional cell cultures and bioreactors applied in regenerative medicine: practical experiences with the MINUSHEET perfusion culture system. Cytotechnology 2016; 68:179-96. [PMID: 25894791 PMCID: PMC4754254 DOI: 10.1007/s10616-015-9873-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/27/2015] [Indexed: 12/22/2022] Open
Abstract
To meet specific requirements of developing tissues urgently needed in tissue engineering, biomaterial research and drug toxicity testing, a versatile perfusion culture system was developed. First an individual biomaterial is selected and then mounted in a MINUSHEET(®) tissue carrier. After sterilization the assembly is transferred by fine forceps to a 24 well culture plate for seeding cells or mounting tissue on it. To support spatial (3D) development a carrier can be placed in various types of perfusion culture containers. In the basic version a constant flow of culture medium provides contained tissue with always fresh nutrition and respiratory gas. For example, epithelia can be transferred to a gradient container, where they are exposed to different fluids at the luminal and basal side. To observe development of tissue under the microscope, in a different type of container a transparent lid and base are integrated. Finally, stem/progenitor cells are incubated in a container filled by an artificial interstitium to support spatial development. In the past years the described system was applied in numerous own and external investigations. To present an actual overview of resulting experimental data, the present paper was written.
Collapse
Affiliation(s)
- Will W Minuth
- Molecular and Cellular Anatomy, University of Regensburg, University Street 31, 93053, Regensburg, Germany.
| | - Lucia Denk
- Molecular and Cellular Anatomy, University of Regensburg, University Street 31, 93053, Regensburg, Germany
| |
Collapse
|
48
|
Christoph S, Kwiatoszynski J, Coradin T, Fernandes FM. Cellularized Cellular Solids via Freeze-Casting. Macromol Biosci 2015; 16:182-7. [DOI: 10.1002/mabi.201500319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/28/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Sarah Christoph
- Sorbonne Universités; UPMC Univ Paris 06; CNRS, Collège de France; Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP); 11 Place Marcelin Berthelot, F-75005 Paris France
| | - Julien Kwiatoszynski
- Sorbonne Universités; UPMC Univ Paris 06; CNRS, Collège de France; Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP); 11 Place Marcelin Berthelot, F-75005 Paris France
| | - Thibaud Coradin
- Sorbonne Universités; UPMC Univ Paris 06; CNRS, Collège de France; Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP); 11 Place Marcelin Berthelot, F-75005 Paris France
| | - Francisco M. Fernandes
- Sorbonne Universités; UPMC Univ Paris 06; CNRS, Collège de France; Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP); 11 Place Marcelin Berthelot, F-75005 Paris France
| |
Collapse
|
49
|
Komlev VS, Popov VK, Mironov AV, Fedotov AY, Teterina AY, Smirnov IV, Bozo IY, Rybko VA, Deev RV. 3D Printing of Octacalcium Phosphate Bone Substitutes. Front Bioeng Biotechnol 2015. [DOI: 10.3389/fbioe.2015.00081 (in engl)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Komlev VS, Popov VK, Mironov AV, Fedotov AY, Teterina AY, Smirnov IV, Bozo IY, Rybko VA, Deev RV. 3D Printing of Octacalcium Phosphate Bone Substitutes. Front Bioeng Biotechnol 2015; 3:81. [PMID: 26106596 PMCID: PMC4459096 DOI: 10.3389/fbioe.2015.00081] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/17/2015] [Indexed: 11/13/2022] Open
Abstract
Biocompatible calcium phosphate ceramic grafts are able of supporting new bone formation in appropriate environment. The major limitation of these materials usage for medical implants is the absence of accessible methods for their patient-specific fabrication. 3D printing methodology is an excellent approach to overcome the limitation supporting effective and fast fabrication of individual complex bone substitutes. Here, we proposed a relatively simple route for 3D printing of octacalcium phosphates (OCP) in complexly shaped structures by the combination of inkjet printing with post-treatment methodology. The printed OCP blocks were further implanted in the developed cranial bone defect followed by histological evaluation. The obtained result confirmed the potential of the developed OCP bone substitutes, which allowed 2.5-time reducing of defect's diameter at 6.5 months in a region where native bone repair is extremely inefficient.
Collapse
Affiliation(s)
- Vladimir S Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences , Moscow , Russia
| | - Vladimir K Popov
- Institute of Laser and Information Technologies, Russian Academy of Sciences , Moscow , Russia
| | - Anton V Mironov
- Institute of Laser and Information Technologies, Russian Academy of Sciences , Moscow , Russia
| | - Alexander Yu Fedotov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences , Moscow , Russia
| | - Anastasia Yu Teterina
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences , Moscow , Russia
| | - Igor V Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Bozo
- Human Stem Cells Institute , Moscow , Russia ; A.I. Evdokimov Moscow State University of Medicine and Dentistry , Moscow , Russia ; A.I. Burnazyan Federal Medical Biophysical Center of FMBA of Russia , Moscow , Russia
| | - Vera A Rybko
- Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Roman V Deev
- Human Stem Cells Institute , Moscow , Russia ; Kazan Federal University , Kazan , Russia
| |
Collapse
|