1
|
Schwichtenberg SC, Wisgalla A, Schroeder-Castagno M, Alvarez-González C, Schlickeiser S, Siebert N, Bellmann-Strobl J, Wernecke KD, Paul F, Dörr J, Infante-Duarte C. Fingolimod Therapy in Multiple Sclerosis Leads to the Enrichment of a Subpopulation of Aged NK Cells. Neurotherapeutics 2021; 18:1783-1797. [PMID: 34244929 PMCID: PMC8608997 DOI: 10.1007/s13311-021-01078-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Fingolimod is an approved oral treatment for relapsing-remitting multiple sclerosis (RRMS) that modulates agonistically the sphingosin-1-phosphate receptor (S1PR), inhibiting thereby the egress of lymphocytes from the lymph nodes. In this interventional prospective clinical phase IV trial, we longitudinally investigated the impact of fingolimod on frequencies of NK cell subpopulations by flow cytometry in 17 RRMS patients at baseline and 1, 3, 6, and 12 months after treatment initiation. Clinical outcome was assessed by the Expanded Disability Status Scale (EDSS) and annualized relapse rates (ARR). Over the study period, median EDSS remained stable from month 3 to month 12, and ARR decreased compared to ARR in the 24 months prior treatment. Treatment was paralleled by an increased frequency of circulating NK cells, due primarily to an increase in CD56dimCD94low mature NK cells, while the CD56bright fraction and CD127+ innate lymphoid cells (ILCs) decreased over time. An unsupervised clustering algorithm further revealed that a particular fraction of NK cells defined by the expression of CD56dimCD16++KIR+/-NKG2A-CD94-CCR7+/-CX3CR1+/-NKG2C-NKG2D+NKp46-DNAM1++CD127+ increased during treatment. This specific phenotype might reflect a status of aged, fully differentiated, and less functional NK cells. Our study confirms that fingolimod treatment affects both NK cells and ILC. In addition, our study suggests that treatment leads to the enrichment of a specific NK cell subset characterized by an aged phenotype. This might limit the anti-microbial and anti-tumour NK cell activity in fingolimod-treated patients.
Collapse
Affiliation(s)
- Svenja C Schwichtenberg
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
| | - Anne Wisgalla
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for "Psychiatrie Und Medizinische Klinik M.S. Psychosomatik,", Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Maria Schroeder-Castagno
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Cesar Alvarez-González
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Föhrer Str. 15, 13353, Berlin, Germany
| | - Nadja Siebert
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Klaus-Dieter Wernecke
- Charité - Universitätsmedizin Berlin and CRO SOSTANA GmbH, Wildensteiner Straße 27, 10318, Berlin, Germany
| | - Friedemann Paul
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jan Dörr
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Neurocure Cluster of Excellence, Campus Mitte, Sauerbruchweg 5, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany
- Current Affiliation: Multiple Sclerosis Center, Oberhavel Kliniken, Marwitzer Straße 91, 16761, Hennigsdorf, Germany
| | - Carmen Infante-Duarte
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Institute for Medical Immunology, Campus Virchow Klinikum, Augustenburger Platz 1 (Südstr. 2/Föhrer Str. 15), 13353, Berlin, Germany.
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine & Charité - Universitätsmedizin Berlin, Robert-Rössle-Straße 10, 13125, Berlin, Germany.
| |
Collapse
|
2
|
Ye J, Wang H, Cui L, Chu S, Chen N. The progress of chemokines and chemokine receptors in autism spectrum disorders. Brain Res Bull 2021; 174:268-280. [PMID: 34077795 DOI: 10.1016/j.brainresbull.2021.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders and the main symptoms of ASD are impairments in social communication and abnormal behavioral patterns. Studies have shown that immune dysfunction and neuroinflammation play a key role in ASD patients and experimental models. Chemokines are groups of small proteins that regulate cell migration and mediate inflammation responses via binding to chemokine receptors. Thus, chemokines/chemokine receptors may be involved in neurodevelopmental disorders and associated with ASD. In this review, we summarize the research progress of chemokine aberrations in ASD and also review the recent progress of clinical treatment of ASD and pharmacological research related to chemokines/chemokine receptors. This review highlights the possible connection between chemokines/chemokine receptors and ASD, and provides novel potential targets for drug discovery of ASD.
Collapse
Affiliation(s)
- Junrui Ye
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongyun Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liyuan Cui
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
3
|
Dhaiban S, Al-Ani M, Elemam NM, Maghazachi AA. Targeting Chemokines and Chemokine Receptors in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J Inflamm Res 2020; 13:619-633. [PMID: 33061527 PMCID: PMC7532903 DOI: 10.2147/jir.s270872] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated and neurodegenerative disorder that results in inflammation and demyelination of the central nervous system (CNS). MS symptoms include walking difficulties, visual weakening, as well as learning and memory impairment, thus affecting the quality of the patient's life. Chemokines and chemokine receptors are expressed on the immune cells as well as the CNS resident cells. Several sets of chemokine receptors and their ligands tend to be pathogenic players in MS, including CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL17, CCL19, CCL21, CCL22, CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL16. Furthermore, current modulatory drugs that are used in the treatment of MS and its animal model, the experimental autoimmune encephalomyelitis (EAE), affect the expression of several chemokine and chemokine receptors. In this review, we highlight the pathogenic roles of chemokines and their receptors as well as utilizing them as potential therapeutic targets through selective agents, such as specific antibodies and receptor blockers, or indirectly through MS or EAE immunomodulatory drugs.
Collapse
Affiliation(s)
- Sarah Dhaiban
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mena Al-Ani
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Immuno-Oncology Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Napier J, Rose L, Adeoye O, Hooker E, Walsh KB. Modulating acute neuroinflammation in intracerebral hemorrhage: the potential promise of currently approved medications for multiple sclerosis. Immunopharmacol Immunotoxicol 2019; 41:7-15. [PMID: 30702002 DOI: 10.1080/08923973.2019.1566361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary inflammatory injury following intracerebral hemorrhage (ICH) results in increased morbidity and mortality. White blood cells have been implicated as critical mediators of this inflammatory injury. Currently, no medications have been clinically proven to ameliorate or beneficially modulate inflammation, or to improve outcomes by any mechanism, following ICH. However, other neuroinflammatory conditions, such as multiple sclerosis, have approved pharmacologic therapies that modulate the inflammatory response and minimize the damage caused by inflammatory cells. Thus, there is substantial interest in existing therapies for neuroinflammation and their potential applicability to other acute neurological diseases such as ICH. In this review, we examined the mechanism of action of twelve currently approved medications for multiple sclerosis: alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta-1a, interferon beta-1b, mitoxantrone, natalizumab, ocrelizumab, rituximab, teriflunomide. We analyzed the existing literature pertaining to the effects of these medications on various leukocytes and also with emphasis on mechanisms of action during the acute period following initiation of therapy. As a result, we provide a valuable summary of the current body of knowledge regarding these therapies and evidence that supports or refutes their likely promise for treating neuroinflammation following ICH.
Collapse
Affiliation(s)
- Jarred Napier
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Lucas Rose
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Opeolu Adeoye
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| | - Edmond Hooker
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kyle B Walsh
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
5
|
Liu Z, Wang M, Zhou S, Ma J, Shi Y, Peng J, Hou M, Guo C. Pulsed high-dose dexamethasone modulates Th1-/Th2-chemokine imbalance in immune thrombocytopenia. J Transl Med 2016; 14:301. [PMID: 27776524 PMCID: PMC5078891 DOI: 10.1186/s12967-016-1064-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022] Open
Abstract
Background Chemokines and chemokine receptors play important roles in autoimmune diseases; however, their role in immune thrombocytopenia (ITP) is unclear. High-dose dexamethasone (HD-DXM) may become a first-line therapy for adult patients with ITP, but the effect of HD-DXM on chemokines in ITP patients is unknown. Our aim was to investigate the mechanism of pulsed HD-DXM for management of ITP, specifically regarding the chemokine pathways. Methods Th1-/Th2-associated chemokine and chemokine receptor profiles in ITP patients before and after pulsed HD-DXM was studied. Plasma levels of CCL5 and CXCL11 (Th1-associated) and of CCL11 (Th2-associated) were determined by ELISA. Gene expression of these three chemokines and their corresponding receptors CCR5, CXCR3, and CCR3, in peripheral blood mononuclear cells (PBMCs) was determined by quantitative RT-PCR. Results Thirty-three of the thirty-eight ITP patients responded effectively to HD-DXM (oral, 40 mg/day, 4 days). In ITP patients, plasma CXCL11 levels increased, while CCL11 and CCL5 decreased compared to controls (P < 0.05). Similarly, gene expression of CXCL11 and its receptor CXCR3 increased, while CCL11 and CCR3 decreased (P < 0.05). CCL5 expression did not significantly change; however, expression of its receptor CCR5 increased (P < 0.05). Interestingly, in the patients who responded to pulsed HD-DXM, CXCL11 and CXCR3 expression was down-regulated, while CCL11 and CCR3 expression was up-regulated (P < 0.05). Meanwhile, CCL5 expression was up-regulated and CCR5 was down-regulated by HD-DXM (P < 0.05). Conclusions The abnormal profiles of Th1-/Th2-associated chemokines and chemokine receptors may play important roles in the pathogenesis of ITP. Importantly, regulating Th1 polarization by pulsed HD-DXM may represent a novel approach for immunoregulation in ITP.
Collapse
Affiliation(s)
- Zongtang Liu
- Medical College, Shandong University, Jinan, 250012, China.,Department of Hematology and Oncology, Tancheng Hospital, Linyi, 276100, China
| | - Meiying Wang
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Shufen Zhou
- Department of Rheumatology and Immunology, the Affiliated Shenzhen Baoan Hospital of Southern Medical University, the 2nd Longjing Road, Baoan, Shenzhen, 518101, China
| | - Ji Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chengshan Guo
- Department of Rheumatology and Immunology, the Affiliated Shenzhen Baoan Hospital of Southern Medical University, the 2nd Longjing Road, Baoan, Shenzhen, 518101, China. .,Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China. .,Department of Rheumatology, the Affiliated Shenzhen Baoan Hospital of Guangdong Medical University, Shenzhen, 518101, China.
| |
Collapse
|
6
|
Jatczak-Pawlik I, Książek-Winiarek D, Wojkowska D, Jóźwiak K, Jastrzębski K, Pietruczuk M, Głąbiński A. The impact of multiple sclerosis relapse treatment on migration of effector T cells--Preliminary study. Neurol Neurochir Pol 2016; 50:155-62. [PMID: 27154441 DOI: 10.1016/j.pjnns.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 02/10/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Migration of inflammatory cells from the blood to the central nervous system (CNS) is crucial for development of multiple sclerosis (MS). Inhibition of this process would allow to control disease activity. The first step confirming this approach would be the analysis of the impact of effective MS relapse therapy on migration of effector T cells. The aim of the study was to analyze the influence of methylprednisolone (MP) on the migratory activity of effector CD4+ T cells from MS patients. Moreover, to study the potential mechanism of this process we studied expression of chemokine receptors on migrating cells. MATERIAL AND METHODS Peripheral blood samples were obtained from relapsing-remitting MS (RR-MS) patients during relapse (n=23) and from control group (n=23). After isolation CD4+ T cells were incubated with various concentrations of MP. Then they were stimulated in chemotaxis assay with chemokines CCL3 or CXCL10 or were used to CCR1 and CXCR3 expression analysis. RESULTS CXCL10- and CCL3-stimulated migration of CD4+ T cells was significantly increased in MS. MP was able to reduce in vitro migration of effector T cells induced by CXCL10, but not by CCL3. Inhibition by MP was dose-dependent. Expression of analyzed chemokine receptors was unaltered after MP incubation. CONCLUSIONS MP reduced CD4+ T cells migration induced by CXCL10 without affecting CXCR3 expression. These observations demonstrate one of the potential mechanisms of MP action in MS, distinct from inducing cell apoptosis, and suggests the new targets for development of more effective MS treatments.
Collapse
Affiliation(s)
| | - Dominika Książek-Winiarek
- Department of Propedeutics of Neurology, Medical University of Lodz, Lodz, Poland; Department of Neurology and Stroke, Medical University of Lodz, Lodz, Poland.
| | - Dagmara Wojkowska
- Department of Propedeutics of Neurology, Medical University of Lodz, Lodz, Poland; Department of Neurology and Stroke, Medical University of Lodz, Lodz, Poland
| | - Krzysztof Jóźwiak
- Department of Propedeutics of Neurology, Medical University of Lodz, Lodz, Poland; Department of Neurology and Stroke, Medical University of Lodz, Lodz, Poland
| | - Karol Jastrzębski
- Department of Neurology and Stroke, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej Głąbiński
- Department of Propedeutics of Neurology, Medical University of Lodz, Lodz, Poland; Department of Neurology and Stroke, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Magni R, Espina BH, Liotta LA, Luchini A, Espina V. Hydrogel nanoparticle harvesting of plasma or urine for detecting low abundance proteins. J Vis Exp 2014:e51789. [PMID: 25145492 DOI: 10.3791/51789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University;
| |
Collapse
|
8
|
Chemokines and chemokine receptors in multiple sclerosis. Mediators Inflamm 2014; 2014:659206. [PMID: 24639600 PMCID: PMC3930130 DOI: 10.1155/2014/659206] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 12/18/2013] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis is an autoimmune disease with classical traits of demyelination, axonal damage, and neurodegeneration. The migration of autoimmune T cells and macrophages from blood to central nervous system as well as the destruction of blood brain barrier are thought to be the major processes in the development of this disease. Chemokines, which are small peptide mediators, can attract pathogenic cells to the sites of inflammation. Each helper T cell subset expresses different chemokine receptors so as to exert their different functions in the pathogenesis of MS. Recently published results have shown that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients. This review describes the advanced researches on the role of chemokines and chemokine receptors in the development of MS and discusses the potential therapy of this disease targeting the chemokine network.
Collapse
|
9
|
Mirowska-Guzel D, Gromadzka G, Kurowska K, Czlonkowski A, Czlonkowska A. Long-term effect of high doses glucocorticosteroids on mRNA expression for IL-6 and IL-8 in relapsed multiple sclerosis patients. Immunopharmacol Immunotoxicol 2010; 32:416-21. [PMID: 20095806 DOI: 10.3109/08923970903486625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticosteroids (GS) are standard treatment of multiple sclerosis (MS) relapse, but no superiority of any commonly used doses is known. The aim of present study was to evaluate mRNA expression for two cytokines: IL-6 and IL-8. Ethylenediaminetetraacetic acid blood samples from 35 MS relapse patients were obtained before therapy, after 7, 14 days, and 3 months from treatment start (500 versus 1000 mg for 5 days). Significant neurological improvement measured with EDSS was independent to GS dose. Changes of mRNA cytokines expression were more evident in higher dose group but for IL-6 mainly in females.
Collapse
|
10
|
Mitosek-Szewczyk K, Stelmasiak Z, Bartosik-Psujek H, Belniak E. Impact of cladribine on soluble adhesion molecules in multiple sclerosis. Acta Neurol Scand 2010; 122:409-13. [PMID: 20175758 DOI: 10.1111/j.1600-0404.2010.01330.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Soluble forms of vascular cell adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and E-Selectin play a role in the regulation of blood-brain barrier damage and represent markers of the clinical course of multiple sclerosis (MS) and magnetic resonance imaging activity. We determined sICAM, sVCAM and sE-Selectin concentrations in the cerebrospinal fluid (CSF) and serum of patients with remitting-relapsing multiple sclerosis before and after cladribine treatment as well as in a control group. METHODS We examined 17 patients diagnosed according to McDonald's criteria. Thirteen healthy age-matched subjects served as controls. The ELISA method was used to measure sICAM-1, sVCAM-1 and sE-Selectin. RESULTS The concentration of sICAM and sE-Selectin decreased in sera (difference between patients and controls was statistically significant, in the former P < 0.04, in the latter P < 0.0003) but not in the CSF of MS patients after cladribine treatment. CONCLUSIONS The reduction in sICAM and sE-Selectin concentrations after cladribine treatment indicates an immuno-suppressive effect of the drug. The changes in levels of sICAM and sE-Selectin after cladribine treatment reflect disease activity and indicate a reduction in the inflammatory reaction.
Collapse
|
11
|
Teixeira MM, Vilela MC, Soriani FM, Rodrigues DH, Teixeira AL. Using intravital microscopy to study the role of chemokines during infection and inflammation in the central nervous system. J Neuroimmunol 2010; 224:62-5. [DOI: 10.1016/j.jneuroim.2010.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/04/2010] [Indexed: 12/14/2022]
|
12
|
Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A. Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 2010; 7:10. [PMID: 20128908 PMCID: PMC2829540 DOI: 10.1186/1742-2094-7-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 02/03/2010] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES This review summarizes recent developments in platelet biology relevant to neuroinflammatory disorders. Multiple sclerosis (MS) is taken as the "Poster Child" of these disorders but the implications are wide. The role of platelets in inflammation is well appreciated in the cardiovascular and cancer research communities but appears to be relatively neglected in neurological research. ORGANIZATION After a brief introduction to platelets, topics covered include the matrix metalloproteinases, platelet chemokines, cytokines and growth factors, the recent finding of platelet PPAR receptors and Toll-like receptors, complement, bioactive lipids, and other agents/functions likely to be relevant in neuroinflammatory diseases. Each section cites literature linking the topic to areas of active research in MS or other disorders, including especially Alzheimer's disease. CONCLUSION The final section summarizes evidence of platelet involvement in MS. The general conclusion is that platelets may be key players in MS and related disorders, and warrant more attention in neurological research.
Collapse
Affiliation(s)
- Lawrence L Horstman
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wenche Jy
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Yeon S Ahn
- Wallace Coulter Platelet Laboratory, Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, The Jacobs Neurological Institute, Department of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo NY, USA
| | - Amir H Maghzi
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| |
Collapse
|
13
|
Liu M, Hu X, Wang Y, Peng F, Yang Y, Chen X, Lu Z, Zheng X. Effect of high-dose methylprednisolone treatment on Th17 cells in patients with multiple sclerosis in relapse. Acta Neurol Scand 2009; 120:235-41. [PMID: 19769778 DOI: 10.1111/j.1600-0404.2009.01158.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Growing evidences have suggested that Th17 cells are involved in the pathogenic mechanisms of multiple sclerosis (MS). Treatment with high-dose intravenous methylprednisolone (IVMP) has beneficial effects on functional recovery in patients with MS during relapse. The present study was designed to analyze the influences of IVMP on Th17 cells in patients with MS after a 5-day high-dose IVMP treatment. MATERIALS AND METHODS Th17 cell count and the production of IL-17 in peripheral blood mononuclear cells (PBMCs) were measured using flow cytometry and ELISA respectively. Quantitative real-time PCR was performed to analyze the mRNA expression of Th17 cell-related factors (IL-17, RORc and IL-23R) in PBMCs. RESULTS A significant reduction in IL-17 production and Th17 cells count in PBMCs was found in patients with MS after IVMP treatment. Moreover, the expression of IL-17, IL-23R and RORc mRNA decreased significantly after IVMP treatment. CONCLUSIONS Treatment with methylprednisolone has a suppressive effect on Th17 cells and may be related to its clinical efficiency.
Collapse
Affiliation(s)
- M Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Current World Literature. Curr Opin Neurol 2009; 22:321-9. [DOI: 10.1097/wco.0b013e32832cf9cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|