1
|
Ran C, Olofsgård FJ, Wellfelt K, Steinberg A, Belin AC. Elevated cytokine levels in the central nervous system of cluster headache patients in bout and in remission. J Headache Pain 2024; 25:121. [PMID: 39044165 PMCID: PMC11267889 DOI: 10.1186/s10194-024-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Cluster headache is characterized by activation of the trigeminovascular pathway with subsequent pain signalling in the meningeal vessels, and inflammation has been suggested to play a role in the pathophysiology. To further investigate inflammation in cluster headache, inflammatory markers were analysed in patients with cluster headache and controls. METHODS We performed a case-control study, collecting cerebrospinal fluid and serum samples from healthy controls, cluster headache patients in remission, active bout, and during an attack to cover the dynamic range of the cluster headache phenotype. Inflammatory markers were quantified using Target 48 OLINK cytokine panels. RESULTS Altered levels of several cytokines were found in patients with cluster headache compared to controls. CCL8, CCL13, CCL11, CXCL10, CXCL11, HGF, MMP1, TNFSF10 and TNFSF12 levels in cerebrospinal fluid were comparable in active bout and remission, though significantly higher than in controls. In serum samples, CCL11 and CXCL11 displayed decreased levels in patients. Only one cytokine, IL-13 was differentially expressed in serum during attacks. CONCLUSION AND INTERPRETATION Our data shows signs of possible neuroinflammation occurring in biological samples from cluster headache patients. Increased cerebrospinal fluid cytokine levels are detectable in active bout and during remission, indicating neuroinflammation could be considered a marker for cluster headache and is unrelated to the different phases of the disorder.
Collapse
Affiliation(s)
- Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | - Katrin Wellfelt
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Søborg MLK, Jensen RH, Barloese M, Petersen AS. Biomarkers in cluster headache: A systematic review. Headache 2024; 64:98-116. [PMID: 38111226 DOI: 10.1111/head.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/24/2023] [Indexed: 12/20/2023]
Abstract
OBJECTIVE To systematically investigate previously examined biomarkers in blood, urine, cerebrospinal fluid, tear fluid, and saliva of patients with cluster headache. BACKGROUND Cluster headache is a condition with extensive clinical challenges in terms of diagnosis and treatment. Identification of a biomarker with diagnostic implications or as a potential treatment target is highly warranted. METHODS We conducted a systematic review including peer reviewed full text of studies that measured biochemical compounds in either blood, urine, cerebrospinal fluid, tear fluid, or saliva of patients with cluster headache diagnosed after the implementation of the International Classification of Headache Disorders (1988) written in English, Danish, Swedish, or Norwegian. Inclusion required a minimum of five participants. The search was conducted in PubMed and EMBASE, in September 2022, and extracted data were screened by two authors. Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for reporting systematic reviews were followed. The Newcastle-Ottawa Scale was used to assess the risk of bias in case-controlled studies. RESULTS We included 40 studies involving 832 patients with cluster headache and 872 controls, evaluating 80 potential biomarkers. The risk of bias for case-controlled studies was a median of 6 (range: 3-8) and 20 studies out of 40 (50%) were of fair or good quality. Most studies were identified within three groups: hypothalamic-regulated hormones, inflammatory markers, and neuropeptides. Among the hypothalamic hormones, cortisol was the most frequently investigated (N = 7) and was elevated in cluster headache in most of the studies. The most frequently examined inflammatory marker was interleukin 1 (N = 3), but findings were divergent. Calcitonin gene-related peptide was the most investigated neuropeptide (N = 9) and all studies found increased levels during attacks. CONCLUSION Biomarker findings have been inconsistent and widely non-specific for cluster headache, which explains why none of the previous studies succeeded in identifying a unique biomarker for cluster headache, but instead contributed to substantiating the underlying pathophysiologic mechanisms. Several of the examined biomarkers could hold promise as markers for disease activity but are unfit for a clear distinction from both controls and other headaches.
Collapse
Affiliation(s)
- Marie-Louise K Søborg
- The Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Rigmor H Jensen
- The Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Barloese
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, Hvidovre, Denmark
| | - Anja S Petersen
- The Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
3
|
Şahin E, Karaaslan Z, Şanlı E, Timirci Kahraman Ö, Ulusoy C, Kocasoy Orhan E, Ekizoğlu E, Küçükali Cİ, Tüzün E, Baykan B. Reduced expression of inflammasome complex components in cluster headache. Headache 2022; 62:967-976. [DOI: 10.1111/head.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Erdi Şahin
- Headache Unit, Department of Neurology Istanbul Faculty of Medicine, Istanbul University Istanbul Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
- Institute of Graduate Studies in Health Sciences Istanbul University Istanbul Turkey
| | - Elif Şanlı
- Department of Neuroscience Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
| | - Özlem Timirci Kahraman
- Department of Molecular Medicine Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
| | - Canan Ulusoy
- Department of Neuroscience Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
| | - Elif Kocasoy Orhan
- Headache Unit, Department of Neurology Istanbul Faculty of Medicine, Istanbul University Istanbul Turkey
| | - Esme Ekizoğlu
- Headache Unit, Department of Neurology Istanbul Faculty of Medicine, Istanbul University Istanbul Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
| | - Erdem Tüzün
- Department of Neuroscience Aziz Sancar Institute of Experimental Medicine, Istanbul University Istanbul Turkey
| | - Betül Baykan
- Headache Unit, Department of Neurology Istanbul Faculty of Medicine, Istanbul University Istanbul Turkey
| |
Collapse
|
4
|
Biscetti L, De Vanna G, Cresta E, Bellotti A, Corbelli I, Letizia Cupini M, Calabresi P, Sarchielli P. Immunological findings in patients with migraine and other primary headaches: a narrative review. Clin Exp Immunol 2022; 207:11-26. [PMID: 35020858 PMCID: PMC8802184 DOI: 10.1093/cei/uxab025] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022] Open
Abstract
Experimental findings suggest an involvement of neuroinflammatory mechanisms in the pathophysiology of migraine. Specifically, preclinical models of migraine have emphasized the role of neuroinflammation following the activation of the trigeminal pathway at several peripheral and central sites including dural vessels, the trigeminal ganglion, and the trigeminal nucleus caudalis. The evidence of an induction of inflammatory events in migraine pathophysiological mechanisms has prompted researchers to investigate the human leukocyte antigen (HLA) phenotypes as well as cytokine genetic polymorphisms in order to verify their potential relationship with migraine risk and severity. Furthermore, the role of neuroinflammation in migraine seems to be supported by evidence of an increase in pro-inflammatory cytokines, both ictally and interictally, together with the prevalence of Th1 lymphocytes and a reduction in regulatory lymphocyte subsets in peripheral blood of migraineurs. Cytokine profiles of cluster headache (CH) patients and those of tension-type headache patients further suggest an immunological dysregulation in the pathophysiology of these primary headaches, although evidence is weaker than for migraine. The present review summarizes available findings to date from genetic and biomarker studies that have explored the role of inflammation in primary headaches.
Collapse
Affiliation(s)
- Leonardo Biscetti
- Istituto Nazionale di Riposo e Cura dell'Anziano a carattere scientifico, IRCSS-INRCA, Ancona, Italy
| | - Gioacchino De Vanna
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Elena Cresta
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessia Bellotti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ilenia Corbelli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Calabresi
- Department of Neuroscience, Università Cattolica Sacro Cuore, Rome, Italy.,Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Fourier C, Ran C, Sjöstrand C, Waldenlind E, Steinberg A, Belin AC. The molecular clock gene cryptochrome 1 ( CRY1) and its role in cluster headache. Cephalalgia 2021; 41:1374-1381. [PMID: 34256648 PMCID: PMC8592106 DOI: 10.1177/03331024211024165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Cluster headache is a severe primary headache disorder commonly featuring a strikingly distinct circadian attack pattern. Therefore, the circadian system has been suggested to play a crucial role in the pathophysiology of cluster headache. Cryptochromes are key components of the molecular clock generating circadian rhythms and have previously been shown to be associated with several psychiatric disorders, including seasonal affective disorder, bipolar disorder, and depression. Methods In this case-control study, we investigated the role of cryptochrome (CRY) genes in cluster headache by screening 628 cluster headache patients and 681 controls from Sweden for four known genetic variants in the CRY1 (rs2287161 and rs8192440) and CRY2 (rs10838524 and rs1554338) genes. In addition, we analyzed CRY1 gene expression in primary fibroblast cell lines from eleven patients and ten controls. Results The exonic CRY1 variant rs8192440 was associated with cluster headache on allelic level (p=0.02) and this association was even more pronounced in a subgroup of patients with reported diurnal rhythmicity of attacks (p=0.002). We found a small significant difference in CRY1 gene expression between cluster headache patients and control individuals (p=0.04), but we could not identify an effect of the associated variant rs8192440 on CRY1 expression. Conclusions We discovered a disease-associated variant in the CRY1 gene and slightly increased CRY1 gene expression in tissue from cluster headache patients, strengthening the hypothesis of circadian dysregulation in cluster headache. How this gene variant may contribute to the pathophysiology of the disease remains subject to further studies.
Collapse
Affiliation(s)
- Carmen Fourier
- Department of Neuroscience, 27106Karolinska Institutet, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ran
- Department of Neuroscience, 27106Karolinska Institutet, Karolinska Institutet, Stockholm, Sweden
| | - Christina Sjöstrand
- Department of Clinical Neuroscience, 27106Karolinska Institutet, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, 59562Karolinska University Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Waldenlind
- Department of Clinical Neuroscience, 27106Karolinska Institutet, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, 59562Karolinska University Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, 27106Karolinska Institutet, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, 59562Karolinska University Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Carmine Belin
- Department of Neuroscience, 27106Karolinska Institutet, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Waung MW, Taylor A, Qualmann KJ, Burish MJ. Family History of Cluster Headache: A Systematic Review. JAMA Neurol 2021; 77:887-896. [PMID: 32310255 DOI: 10.1001/jamaneurol.2020.0682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Genetic and environmental factors are thought to contribute to cluster headache, and cluster headache can affect multiple members of a family. A thorough understanding of its inheritance is critical to understanding the pathogenesis of this debilitating disease. Objective To systematically review family history rates and inheritance patterns of cluster headache. Evidence Review A systematic review was performed in PubMed, Embase, and Cochrane Library. Search criteria were created by a librarian. Articles published between 1985 and 2016, after the publication date of a large review in 1985, were analyzed independently by 2 neurologists to identify family history rates and pedigrees. Pedigrees were analyzed by a genetic counselor. Findings A total of 1995 studies were found (1988 through the search criteria and 7 through other means). Forty articles met inclusion criteria: 22 large cohort studies, 1 twin-based study, and 17 case reports or small case series. Across the 22 large cohort studies, the positive family history rate of cluster headache varied between 0% and 22%, with a median of 8.2%. The largest 5 studies, of 1134, 785, 693, 609, and 500 probands each, had a positive family history in 18.0% (numerator not provided), 5.1% (40 of 785 cases), 10.0% (numerator not provided), 2.0% (12 of 609 cases), and 11.2% (56 of 500 cases), respectively. No meta-analysis was performed, given differences in methodologies. Separately, 1 twin-based study examined 37 twin pairs and reported a concordance rate of 5.4% (2 pairs). Finally, 67 pedigrees were identified. Most pedigrees (46 of 67 [69%]) were consistent with an autosomal dominant pattern, but 19 of 67 (28%) were consistent with an autosomal recessive inheritance pattern; 10 pedigrees of probable or atypical cluster headache were identified, and all were consistent with an autosomal dominant inheritance pattern. The sex ratio for cluster headache in identified pedigrees was 1.39 (103:74) in affected men and boys compared with affected women and girls, which is lower than that of the general cluster headache population. Conclusions and Relevance Cluster headache is an inherited disorder in a subset of families and is associated with multiple hereditary patterns. There is an unexpectedly high preponderance of women and girls with familial cluster headache; genetic subanalyses limited to female participants are necessary to further explore this observation, because these data are otherwise masked by the higher numbers of male participants with cluster headache. Overall, this systematic review supports the notion that familial cluster headache is likely the result of multiple susceptibility genes as well as environmental factors.
Collapse
Affiliation(s)
- Maggie W Waung
- Department of Neurology, University of California, San Francisco, San Francisco
| | - Amy Taylor
- Houston Methodist Hospital, Houston, Texas
| | - Krista J Qualmann
- McGovern Medical School, Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston
| | - Mark J Burish
- McGovern Medical School, Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston
| |
Collapse
|
7
|
Snoer AH, Vollesen ALH, Beske RP, Guo S, Hoffmann J, Jørgensen NR, Martinussen T, Ashina M, Jensen RH. S100B and NSE in Cluster Headache - Evidence for Glial Cell Activation? Headache 2020; 60:1569-1580. [PMID: 32548854 DOI: 10.1111/head.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neuronal-specific enolase (NSE) and protein S100B have gained considerable interest as the markers of CNS injury, glial cell activation, and/or blood-brain barrier (BBB) disruption. No studies have investigated NSE and S100B in cluster headache (CH), but these biomarkers could contribute to the understanding of CH. METHODS Patients with episodic CH in bout (eCHa), in remission (eCHr), and chronic CH (cCH) were included in this randomized, double-blind, placebo-controlled, 2-way cross-over provocation study carried out at the Danish Headache Center. The primary endpoints included (1) differences of NSE and S100B in between groups (eCHa, eCHr, and cCH) at baseline; (2) differences over time in plasma concentrations of NSE and S100B between patient developing an attack and those who did not; (3) differences in plasma concentrations over time of NSE and S100B between active day and placebo day. Baseline findings were compared to the historical data on migraine patients and healthy controls and presented with means ± SD. RESULTS Nine eCHa, 9 eCHr, and 13 cCH patients completed the study and blood samples from 11 CGRP-induced CH attacks were obtained. There were no differences in NSE levels between CH groups at baseline, but CH patients in active disease phase had higher levels compared with 32 migraine patients (9.1 ± 2.2 µg/L vs 6.0 ± 2.2 µg/L, P < .0001) and 6 healthy controls (9.1 ± 2.2 µg/L vs 7.3 ± 2.0 µg/L, P = .007). CGRP-infusion caused no NSE changes and, but a slight, non-significant, increase in NSE was seen in patients who reported a CGRP-induced CH attack (2.39 µg/L, 95% Cl [-0.26, 3.85], P = .061). At baseline S100B levels in eCHa patients were higher compared to cCH patients (0.06 ± 0.02 µg/L vs 0.04 ± 0.02 µg/L, P = .018). Infusion of CGRP and CGRP-induced attacks did not change S100B levels. Apart from induced CH-attacks no other adverse events were noted. CONCLUSIONS At baseline eCHa patients had higher S100B plasma levels than cCH patients and there was a slight, however not significant, NSE increase in response to CGRP-induced CH attack. Our findings suggest a possible role of an ictal activation of glial cells in CH pathophysiology, but further studies are warranted.
Collapse
Affiliation(s)
- Agneta H Snoer
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise H Vollesen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Paulin Beske
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet Glostrup, Glostrup, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Population-Based Analysis of Cluster Headache-Associated Genetic Polymorphisms. J Mol Neurosci 2018; 65:367-376. [PMID: 29959630 DOI: 10.1007/s12031-018-1103-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Cluster headache is a disorder with increased hereditary risk. Associations between cluster headache and polymorphism rs2653349 of the HCRTR2 gene have been demonstrated. The less common allele (A) seems to reduce disease susceptibility. The polymorphism rs5443 of the GNB3 gene positively influences triptan treatment response. Carriers of the mutated T allele are more likely to respond positively compared to C:C homozygotes, when treated with triptans. DNA was extracted from buccal swabs obtained from 636 non-related Southeastern European Caucasian individuals and was analyzed by real-time PCR. Gene distribution for the rs2653349 was G:G = 79.1%, G:A = 19.2%, and A:A = 1.7%. The frequency of the wild-type G allele was 88.7%. The frequencies for rs5443 were C:C = 44.0%, C:T = 42.6%, and T:T = 13.4%. The frequency of the wild-type C allele was 65.3%. The frequency distribution of rs2653349 in the Southeastern European Caucasian population differs significantly when compared with other European and East Asian populations, and the frequency distribution of rs5443 showed a statistically significant difference between Southeastern European Caucasian and African, South Asian, and East Asian populations. For rs2653349, a marginal statistically significant difference between genders was found (p = 0.080) for A:A versus G:G and G:A genotypes (OR = 2.78), indicating a higher representation of male homozygotes for the protective mutant A:A allele than female. No statistically significant difference was observed between genders for rs5443. Cluster headache pathophysiology and pharmacotherapy response may be affected by genetic factors, indicating the significant role of genotyping in the overall treatment effectiveness of cluster headaches.
Collapse
|
9
|
Hoffmann J, May A. Diagnosis, pathophysiology, and management of cluster headache. Lancet Neurol 2017; 17:75-83. [PMID: 29174963 DOI: 10.1016/s1474-4422(17)30405-2] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
Abstract
Cluster headache is a trigeminal autonomic cephalalgia characterised by extremely painful, strictly unilateral, short-lasting headache attacks accompanied by ipsilateral autonomic symptoms or the sense of restlessness and agitation, or both. The severity of the disorder has major effects on the patient's quality of life and, in some cases, might lead to suicidal ideation. Cluster headache is now thought to involve a synchronised abnormal activity in the hypothalamus, the trigeminovascular system, and the autonomic nervous system. The hypothalamus appears to play a fundamental role in the generation of a permissive state that allows the initiation of an episode, whereas the attacks are likely to require the involvement of the peripheral nervous system. Triptans are the most effective drugs to treat an acute cluster headache attack. Monoclonal antibodies against calcitonin gene-related peptide, a crucial neurotransmitter of the trigeminal system, are under investigation for the preventive treatment of cluster headache. These studies will increase our understanding of the disorder and perhaps reveal other therapeutic targets.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
Jay GW, Barkin RL. Primary Headache Disorders Part I- Migraine and the Trigeminal Autonomic Cephalalgias. Dis Mon 2017; 63:308-338. [DOI: 10.1016/j.disamonth.2017.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Identifying a gene expression signature of cluster headache in blood. Sci Rep 2017; 7:40218. [PMID: 28074859 PMCID: PMC5225606 DOI: 10.1038/srep40218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022] Open
Abstract
Cluster headache is a relatively rare headache disorder, typically characterized by multiple daily, short-lasting attacks of excruciating, unilateral (peri-)orbital or temporal pain associated with autonomic symptoms and restlessness. To better understand the pathophysiology of cluster headache, we used RNA sequencing to identify differentially expressed genes and pathways in whole blood of patients with episodic (n = 19) or chronic (n = 20) cluster headache in comparison with headache-free controls (n = 20). Gene expression data were analysed by gene and by module of co-expressed genes with particular attention to previously implicated disease pathways including hypocretin dysregulation. Only moderate gene expression differences were identified and no associations were found with previously reported pathogenic mechanisms. At the level of functional gene sets, associations were observed for genes involved in several brain-related mechanisms such as GABA receptor function and voltage-gated channels. In addition, genes and modules of co-expressed genes showed a role for intracellular signalling cascades, mitochondria and inflammation. Although larger study samples may be required to identify the full range of involved pathways, these results indicate a role for mitochondria, intracellular signalling and inflammation in cluster headache.
Collapse
|
12
|
Neeb L, Hellen P, Hoffmann J, Dirnagl U, Reuter U. Methylprednisolone blocks interleukin 1 beta induced calcitonin gene related peptide release in trigeminal ganglia cells. J Headache Pain 2016; 17:19. [PMID: 26931452 PMCID: PMC4773314 DOI: 10.1186/s10194-016-0609-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/17/2016] [Indexed: 11/22/2022] Open
Abstract
Background Methylprednisolone (MPD) is a rapid acting highly effective cluster headache preventive and also suppresses the recurrence of migraine attacks. Previously, we could demonstrate that elevated CGRP plasma levels in a cluster headache bout are normalized after a course of high dose corticosteroids. Here we assess whether MPD suppresses interleukin-1β (IL-1β)- and prostaglandin E2 (PGE2)-induced CGRP release in a cell culture model of trigeminal ganglia cells, which could account for the preventive effect in migraine and cluster headache. Metoprolol(MTP), a migraine preventive with a slow onset of action, was used for comparison. Methods Primary cultures of rat trigeminal ganglia were stimulated for 24 h with 10 ng/ml IL-1β or for 4 h with 10 μM PGE2 following the exposure to 10 or 100 μM MPD or 100 nM or 10 µM MTP for 45 min or 24 h. CGRP was determined by using a commercial enzyme immunoassay. Results MPD but not MTP blocked IL-1β-induced CGRP release from cultured trigeminal cells. PGE2-stimulated CGRP release from trigeminal ganglia cell culture was not affected by pre-stimulation whether with MPD or MTP. Conclusion MPD but not MTP suppresses cytokine (IL-1β)-induced CGRP release from trigeminal ganglia cells. We propose that blockade of cytokine mediated trigeminal activation may represent a potential mechanism of action that mediates the preventive effect of MTP on cluster headache and recurrent migraine attacks.
Collapse
Affiliation(s)
- Lars Neeb
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Peter Hellen
- Department of Neuroradiology, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Jan Hoffmann
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany
| | - Ulrich Dirnagl
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Uwe Reuter
- Department of Neurology and Experimental Neurology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
13
|
Neeb L, Anders L, Euskirchen P, Hoffmann J, Israel H, Reuter U. Corticosteroids alter CGRP and melatonin release in cluster headache episodes. Cephalalgia 2014; 35:317-26. [PMID: 24958681 DOI: 10.1177/0333102414539057] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a marker of trigeminal activation in acute cluster headache (CH). Melatonin production is altered in CH patients and may reflect hypothalamic dysfunction. We assessed the effects of short-term CH prevention with corticosteroids on CGRP and melatonin release in a prospective observational cohort study hypothesizing that corticosteroids influence the interictal activity of both systems indicated by the change of these biomarkers. METHODS Episodic CH subjects (n = 9) in the bout and controls with multiple sclerosis (n = 6) received 1000 mg/d methylprednisolone (MPD) i.v. for three days followed by oral tapering with prednisone. We determined CGRP plasma levels in external jugular vein blood outside an attack and 6-sulfatoxymelatonin (aMT6s) - the stable metabolite of melatonin - in 12-hour day- and nighttime urine collection prior to and several times after MPD therapy and again when CH subjects were outside the bout in complete remission. CH patients recorded the frequency of attacks. RESULTS In parallel to the reduction of headache frequency, administration of corticosteroids resulted in significantly decreased CGRP plasma levels and increased nocturnal aMT6s urine excretion in CH subjects. No significant changes were observed in controls. CONCLUSION Corticosteroids alter CGRP plasma and aMT6s urine levels in a cluster bout. These changes may indicate an effect of corticosteroids on trigeminal activation and hypothalamic dysfunction.
Collapse
Affiliation(s)
- Lars Neeb
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
| | - Linn Anders
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
| | | | - Jan Hoffmann
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
| | - Heike Israel
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
| | - Uwe Reuter
- Department of Neurology, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
14
|
|
15
|
Abstract
Nitric oxide (NO) is an important molecule in headache pathophysiology. NO regulates vascular tone and acts as a potent vasodilator, and thus participates in regulating blood flow. NO is also considered to play a role in processing sensory information and pain sensitization. In this article, we review the role of NO in one of the primary headache disorders, cluster headache (CH). The pathophysiology of CH is still not completely understood. A multifactorial genesis where NO is likely to be involved is probable. The level of NO production has been shown to correlate with disease activity in several inflammatory disorders, such as cystitis, multiple sclerosis, and cerebral lupus erythematosus. In this article, the issue of whether similar circumstances apply for CH and also the role of NO in the pathophysiology of CH in a wider perspective are discussed.
Collapse
Affiliation(s)
- Anna Steinberg
- Department of Neurology, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
16
|
Oleanolic acid exerts an osteoprotective effect in ovariectomy-induced osteoporotic rats and stimulates the osteoblastic differentiation of bone mesenchymal stem cells in vitro. Menopause 2012; 19:225-33. [PMID: 22011754 DOI: 10.1097/gme.0b013e3182272ef1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Oleanolic acid (OA) and its glycosides have been reported to prevent bone loss by inhibiting the formation of osteoclasts. However, because bone formation and resorption are balanced processes in bone metabolism, no studies have described the effect of OA on osteogenesis. The aim of the present study was to evaluate the osteoprotective effect of OA in rats with ovariectomy (OVX)-induced osteoporosis and to search for the molecular targets of OA in bone mesenchymal stem cells (bMSCs). METHODS Two-month-old female mice that underwent OVX were treated with OA (20 mg/kg a day). After 2 weeks and after 3 months, bone mass was evaluated by micro-CT, morphometry, and immunohistochemical detection. In addition, the expression of 256 genes was measured via microarray and confirmed by real-time reverse transcription-polymerase chain reaction. The effects of OA on the activities of bMSCs were also observed in vitro using alkaline phosphatase and cell proliferation assays. RESULTS Micro-CT displayed only a tendency for bone loss at 2 weeks but a decrease in bone mass at 3 months after OVX. OA treatment increased osteoblast number, increasing osteocalcin and runt-related protein 2 protein levels in vivo and facilitating the osteoblastic differentiation of bMSCs in vitro at doses of 10(-6) and 10(-5) M. Gene expression profile analysis revealed that OVX caused a marked dysregulation of gene expression, especially at 2 weeks, some of which was rescued by OA. Few of these genes overlapped, but their functions were involved in the Notch signaling pathway between two phases of the osteoporotic process. CONCLUSIONS OA exerts an osteoprotective effect in OVX-induced osteoporotic rats and stimulates the osteoblastic differentiation of bMSCs in vitro. The molecular mechanism of this effect might be related to the Notch signaling pathway and requires further investigation.
Collapse
|