1
|
Bernoud-Hubac N, Lo Van A, Lazar AN, Lagarde M. Ischemic Brain Injury: Involvement of Lipids in the Pathophysiology of Stroke and Therapeutic Strategies. Antioxidants (Basel) 2024; 13:634. [PMID: 38929073 PMCID: PMC11200865 DOI: 10.3390/antiox13060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Stroke is a devastating neurological disorder that is characterized by the sudden disruption of blood flow to the brain. Lipids are essential components of brain structure and function and play pivotal roles in stroke pathophysiology. Dysregulation of lipid signaling pathways modulates key cellular processes such as apoptosis, inflammation, and oxidative stress, exacerbating ischemic brain injury. In the present review, we summarize the roles of lipids in stroke pathology in different models (cell cultures, animal, and human studies). Additionally, the potential of lipids, especially polyunsaturated fatty acids, to promote neuroprotection and their use as biomarkers in stroke are discussed.
Collapse
Affiliation(s)
- Nathalie Bernoud-Hubac
- Univ Lyon, INSA Lyon, CNRS, LAMCOS, UMR5259, 69621 Villeurbanne, France; (A.L.V.); (A.-N.L.); (M.L.)
| | | | | | | |
Collapse
|
2
|
Nakamura A, Sakai S, Taketomi Y, Tsuyama J, Miki Y, Hara Y, Arai N, Sugiura Y, Kawaji H, Murakami M, Shichita T. PLA2G2E-mediated lipid metabolism triggers brain-autonomous neural repair after ischemic stroke. Neuron 2023; 111:2995-3010.e9. [PMID: 37490917 DOI: 10.1016/j.neuron.2023.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/08/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The brain is generally resistant to regeneration after damage. The cerebral endogenous mechanisms triggering brain self-recovery have remained unclarified to date. We here discovered that the secreted phospholipase PLA2G2E from peri-infarct neurons generated dihomo-γ-linolenic acid (DGLA) as necessary for triggering brain-autonomous neural repair after ischemic brain injury. Pla2g2e deficiency diminished the expression of peptidyl arginine deiminase 4 (Padi4), a global transcriptional regulator in peri-infarct neurons. Single-cell RNA sequencing (scRNA-seq) and epigenetic analysis demonstrated that neuronal PADI4 had the potential for the transcriptional activation of genes associated with recovery processes after ischemic stroke through histone citrullination. Among various DGLA metabolites, we identified 15-hydroxy-eicosatrienoic acid (15-HETrE) as the cerebral metabolite that induced PADI4 in peri-infarct-surviving neurons. Administration of 15-HETrE enhanced functional recovery after ischemic stroke. Thus, our research clarifies the promising potential of brain-autonomous neural repair triggered by the specialized lipids that initiate self-recovery processes after brain injury.
Collapse
Affiliation(s)
- Akari Nakamura
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Seiichiro Sakai
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshitaka Taketomi
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Jun Tsuyama
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yuichiro Hara
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Nobutaka Arai
- Laboratory for Neuropathology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takashi Shichita
- Stroke Renaissance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Neuroinflammation and Repair, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Core Research for Evolutionary Medical Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan.
| |
Collapse
|
3
|
Yamagata K. Docosahexaenoic acid inhibits ischemic stroke to reduce vascular dementia and Alzheimer’s disease. Prostaglandins Other Lipid Mediat 2023; 167:106733. [PMID: 37028469 DOI: 10.1016/j.prostaglandins.2023.106733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Stroke and dementia are global leading causes of neurological disability and death. The pathology of these diseases is interrelated and they share common, modifiable risk factors. It is suggested that docosahexaenoic acid (DHA) prevents neurological and vascular disorders induced by ischemic stroke and also prevent dementia. The purpose of this study was to review the potential preventative role of DHA against ischemic stroke-induced vascular dementia and Alzheimer's disease. In this review, I analyzed studies on stroke-induced dementia from the PubMed, ScienceDirect, and Web of Science databases as well as studies on the effects of DHA on stroke-induced dementia. As per the results of interventional studies, DHA intake can potentially ameliorate dementia and cognitive function. In particular, DHA derived from foods such as fish oil enters the blood and then migrates to the brain by binding to fatty acid binding protein 5 that is present in cerebral vascular endothelial cells. At this point, the esterified form of DHA produced by lysophosphatidylcholine is preferentially absorbed into the brain instead of free DHA. DHA accumulates in nerve cell membrane and is involved in the prevention of dementia. The antioxidative and anti-inflammatory properties of DHA and DHA metabolites as well as their ability to decrease amyloid beta (Aβ) 42 production were implicated in the improvement of cognitive function. The antioxidant effect of DHA, the inhibition of neuronal cell death by Aβ peptide, improvement in learning ability, and enhancement of synaptic plasticity may contribute to the prevention of dementia induced by ischemic stroke.
Collapse
|
4
|
Sato T, Sakai K, Okumura M, Kitagawa T, Takatsu H, Tanabe M, Komatsu T, Sakuta K, Umehara T, Murakami H, Mitsumura H, Matsushima M, Iguchi Y. Low dihomo-γ-linolenic acid is associated with susceptibility vessel sign in cardioembolism. Thromb Res 2022; 213:84-90. [DOI: 10.1016/j.thromres.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
5
|
Lipoxins, RevD1 and 9, 13 HODE as the most important derivatives after an early incident of ischemic stroke. Sci Rep 2020; 10:12849. [PMID: 32732956 PMCID: PMC7393087 DOI: 10.1038/s41598-020-69831-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/15/2020] [Indexed: 11/19/2022] Open
Abstract
There is limited information available regarding the association of plasma free fatty acids (FFA) and inflammation mediators with ischemic stroke. At the same time, new treatment strategies are being pursued. The aim of this study was to carry out a thorough analysis of inflammation with multiple FFA-derivative mediators after and ischemic stroke and standard treatment. HPLC separations of 17 eicosanoids were performed using an Agilent Technologies 1,260 liquid chromatograph. The profiles of the esters of fatty acids were labelled by means of gas chromatography. FFA, and eicosanoid profiles in the group of patients after ischemic stroke significantly differed from the profile of the control group. Studies confirmed the involvement of derivative synthesis pathways responsible for the inflammation, especially palmitic acid (9 and 13 HODE), arachidonic acid, EPA and DHA. Arachidonic acid derivatives were synthesised on 5LOX, 15 LOX and COX pathways with the participation of prostaglandins while omega 3 derivatives strengthened the synthesis of resolvins, RevD1 in particular. The ability to accelerate the quenching of inflammation after ischemic stroke seems to be a promising strategy of stroke treatment in its early stage. In this context, our study points to lipoxins, RevD1, and 9, 13 HODE as the most important derivatives.
Collapse
|
6
|
Algae Oil Treatment Protects Retinal Ganglion Cells (RGCs) via ERK Signaling Pathway in Experimental Optic Nerve Ischemia. Mar Drugs 2020; 18:md18020083. [PMID: 32012745 PMCID: PMC7074556 DOI: 10.3390/md18020083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/17/2022] Open
Abstract
Background: We investigated the therapeutic effects and related mechanisms of algae oil (ALG) to protect retinal ganglion cells (RGCs) in a rat model of anterior ischemic optic neuropathy (rAION). Methods: Rats were daily gavaged with ALG after rAION induction for seven days. The therapeutic effects of ALG on rAION were evaluated using flash visual evoked potentials (FVEPs), retrograde labeling of RGCs, TUNEL assay of the retina, and ED1 staining of optic nerves (ONs). The levels of inducible nitric oxide synthase (iNOS), IL-1β, TNF-α, Cl-caspase-3, ciliary neurotrophic factor (CNTF), and p-ERK were analyzed by using western blots. Results: Protection of visual function in FVEPs amplitude was noted, with a better preservation of the P1–N2 amplitude in the ALG-treated group (p = 0.032) than in the rAION group. The density of RGCs was 2.4-fold higher in the ALG-treated group compared to that in the rAION group (p < 0.0001). The number of ED1-positive cells in ONs was significantly reduced 4.1-fold in the ALG-treated group compared to those in the rAION group (p = 0.029). The number of apoptotic RGCs was 3.2-fold lower in number in the ALG-treated group (p = 0.001) than that in the rAION group. The ALG treatment inhibited ERK activation to reduce the levels of iNOS, IL-1β, TNF-α, and Cl-caspase-3 and to increase the level of CNTF in the rAION model. Conclusion: The treatment with ALG after rAION induction inhibits ERK activation to provide both anti-inflammatory and antiapoptotic effects in rAION.
Collapse
|
7
|
Ren Z, Chen L, Wang Y, Wei X, Zeng S, Zheng Y, Gao C, Liu H. Activation of the Omega-3 Fatty Acid Receptor GPR120 Protects against Focal Cerebral Ischemic Injury by Preventing Inflammation and Apoptosis in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 202:747-759. [PMID: 30598514 DOI: 10.4049/jimmunol.1800637] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
Abstract
G protein-coupled receptor 120 (GPR120) has been shown to negatively regulate inflammation and apoptosis, but its role in cerebral ischemic injury remains unclear. Using an in vivo model of middle cerebral artery occlusion (MCAO) and an in vitro model of oxygen-glucose deprivation (OGD), we investigated the potential role and molecular mechanisms of GPR120 in focal cerebral ischemic injury. Increased GPR120 expression was observed in microglia and neurons following MCAO-induced ischemia in wild type C57BL/6 mice. Treatment with docosahexaenoic acid (DHA) inhibited OGD-induced inflammatory response in primary microglia and murine microglial BV2 cells, whereas silencing of GPR120 strongly exacerbated the inflammation induced by OGD and abolished the anti-inflammatory effects of DHA. Mechanistically, DHA inhibited OGD-induced inflammation through GPR120 interacting with β-arrestin2. In addition to its anti-inflammatory function, GPR120 also played a role in apoptosis as its knockdown impaired the antiapoptotic effect of DHA in OGD-induced rat pheochromocytoma (PC12) cells. Finally, using MCAO mouse model, we demonstrated that GPR120 activation protected against focal cerebral ischemic injury by preventing inflammation and apoptosis. Our study indicated that pharmacological targeting of GPR120 may provide a novel approach for the treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Ren
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shenglan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; .,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China;
| |
Collapse
|
8
|
Zuo G, Zhang D, Mu R, Shen H, Li X, Wang Z, Li H, Chen G. Resolvin D2 protects against cerebral ischemia/reperfusion injury in rats. Mol Brain 2018; 11:9. [PMID: 29439730 PMCID: PMC5812187 DOI: 10.1186/s13041-018-0351-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia/reperfusion (I/R) injury is a critical factor leading to a poor prognosis for ischemic stroke patients. ω-3 fatty acid supplements taken as part of a daily diet have been shown to improve the prognosis of patients with ischemic stroke. In this study, we aimed to investigate the potential effects of resolvin D2 (RvD2), a derivative of ω-3 fatty acids, and its possible advantage on cerebral I/R injury in rats. Cerebral I/R caused by middle cerebral artery occlusion and reperfusion (MCAO/R) was established in Sprague-Dawley rats. First, in rats fed a regular diet, the MCAO/R stimulus led to a significant decrease in endogenous production of RvD2. Exogenous supply of RvD2 via intraperitoneal injection reversed MCAO/R-induced brain injury, including infarction, inflammatory response, brain edema, and neurological dysfunction. Meanwhile, RvD2 reversed the MCAO/R-induced decrease in the protein level of GPR18, which has been identified as a receptor for RvD2, especially in neurons and brain microvascular endothelial cells (BMVECs). Furthermore, RvD2 exerted rescue effects on MCAO/R-induced neuron and BMVEC death. Moreover, GPR18 antagonist O-1918 could block the rescue effects of RvD2, possibly at least partially though the GPR18-ERK1/2-NOS signaling pathway. Finally, compared with ω-3 fatty acid supplements, RvD2 treatment had a better rescue effect on cerebral infarction, which may be due to the MCAO/R-induced decrease in 5-lipoxygense phosphorylation and subsequent RvD2 generation. In conclusion, compared with ω-3 fatty acids, RvD2 may be an optimal alternative and complementary treatment for ischemic stroke patients with recanalization treatment.
Collapse
Affiliation(s)
- Gang Zuo
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Dongping Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Rutao Mu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
9
|
Yin J, Li H, Meng C, Chen D, Chen Z, Wang Y, Wang Z, Chen G. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway. Int J Biochem Cell Biol 2016; 75:11-22. [DOI: 10.1016/j.biocel.2016.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/25/2016] [Accepted: 03/17/2016] [Indexed: 01/14/2023]
|
10
|
Shigematsu K, Watanabe Y, Nakano H. Weekly variations of stroke occurrence: an observational cohort study based on the Kyoto Stroke Registry, Japan. BMJ Open 2015; 5:e006294. [PMID: 25805529 PMCID: PMC4386235 DOI: 10.1136/bmjopen-2014-006294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Understanding the temporal pattern of stroke onset and exploring the possible triggers are important strategies to reducing the incidence of stroke. If stroke occurs frequently on a specific day of the week, it is assumed that other factors, that is, 'triggering factors', induce stroke. The aim of the study is to investigate differences in the incidences of stroke among days of the week. DESIGN Hospital-based registry stroke over an 11-year period. SETTING Kyoto Prefecture, Japan. PARTICIPANTS A total of 13,788 patients with stroke identified from January 1999 to December 2009 inclusive in the entire Kyoto Prefecture and registered in the Kyoto Stroke Registry (KSR). MAIN OUTCOME MEASURES Patients with stroke were classified into seven groups based on the day of the week on which stroke developed. We confirmed the differences in the incidence among days using the χ(2) test and then performed multinomial logistic analysis referring to the stroke incidence on Sunday to calculate the OR and 95% CI of the stroke occurrence on each day of the week. RESULTS The OR (95% CI) for stroke occurring on Monday, Tuesday, Wednesday, Thursday, Friday and Saturday was 1.157 (1.030 to 1.293), 1.101 (0.981 to 1.236), 1.059 (0.943 to 1.188), 1.091 (0.972 to 1.225), 1.053 (0.938 to 1.205) and 1.074 (0.956 to 1.205), respectively. After stratification by stroke subtypes, cerebral infarction occurred more frequently on Monday than on Sunday (OR and 95% CI were 1.189 and 1.034 to 1.366, p=0.014) independent of age and gender. There was no significant day of the week variation in cerebral haemorrhage or subarachnoid haemorrhage. CONCLUSIONS Some factors that arise periodically appear to affect the incidence of cerebral infarction, which gradually develops over years, and this suggests an aetiological mechanism different from the conventional cumulative effect of risk factors due to long-term exposure. We propose a hypothesis that there is a 'triggering factor' for the development of cerebral infarction.
Collapse
Affiliation(s)
- Kazuo Shigematsu
- Department of Neurology, National Hospital Organization, Minami Kyoto Hospital, Kyoto, Japan
| | - Yoshiyuki Watanabe
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hiromi Nakano
- Department of Neurosurgery, Kyoto Kidugawa Hospital, Kyoto, Japan
| | | |
Collapse
|
11
|
Zendedel A, Habib P, Dang J, Lammerding L, Hoffmann S, Beyer C, Slowik A. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J Neuroimmunol 2014; 278:200-11. [PMID: 25468770 DOI: 10.1016/j.jneuroim.2014.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/04/2014] [Accepted: 11/07/2014] [Indexed: 01/10/2023]
Abstract
Omega-3 polyunsaturated fatty acids (PUFA n3) provide neuroprotection due to their anti-inflammatory and anti-apoptotic properties as well as their regulatory function on growth factors and neuronal plasticity. These qualities enable PUFA n3 to ameliorate stroke outcome and limit neuronal damage. Young adult male rats received transient middle cerebral artery occlusion (tMCAO). PUFA n3 were intravenously administered into the jugular vein immediately after stroke and 12h later. We analyzed stroke volume and behavioral performance as well as the regulation of functionally-relevant genes in the penumbra. The extent of ischemic damage was reduced and behavioral performance improved subject to applied PUFA n3. Expression of Tau and growth-associated protein-43 genes were likewise restored. Ischemia-induced increase of cytokine mRNA levels was abated by PUFA n3. Using an in vitro approach, we demonstrate that cultured astroglial and microglia directly respond to PUFA n3 administration by preventing ischemia-induced increase of cyclooxygenase 2, hypoxia-inducible factor 1alpha, inducible nitric oxide synthase, and interleukin 1beta. Cultured cortical neurons also appeared as direct targets, since PUFA n3 shifted the Bcl-2-like protein 4 (Bax)/B-cell lymphoma 2 (Bcl 2) ratio towards an anti-apoptotic constellation. Thus, PUFA n3 reveal a high neuroprotective and anti-inflammatory potential in an acute ischemic stroke model by targeting astroglial and microglial function as well as improving neuronal survival strategies. Our findings signify the potential clinical feasibility of PUFA n3 therapeutic treatment in stroke and other acute neurological diseases.
Collapse
Affiliation(s)
- Adib Zendedel
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Jon Dang
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Leoni Lammerding
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefanie Hoffmann
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| | - Alexander Slowik
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
12
|
Luo C, Ren H, Wan JB, Yao X, Zhang X, He C, So KF, Kang JX, Pei Z, Su H. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 2014; 55:1288-97. [PMID: 24875538 DOI: 10.1194/jlr.m046466] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 12/13/2022] Open
Abstract
Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model.
Collapse
Affiliation(s)
- Chuanming Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaojing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
13
|
Ito R, Satoh-Asahara N, Yamakage H, Sasaki Y, Odori S, Kono S, Wada H, Suganami T, Ogawa Y, Hasegawa K, Shimatsu A. An increase in the EPA/AA ratio is associated with improved arterial stiffness in obese patients with dyslipidemia. J Atheroscler Thromb 2013; 21:248-60. [PMID: 24270918 DOI: 10.5551/jat.19976] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Previous epidemiological studies demonstrated that the ratio of n-6 to n-3 polyunsaturated fatty acids is associated with cardiovascular diseases. We herein investigated whether the beneficial effect of highly purified eicosapentaenoic acid(EPA) on arterial stiffness is associated with changes in the ratio of polyunsaturated fatty acids, such as EPA, docosahexaenoic acid(DHA) and dihomo-γ-linolenic acid(DGLA), relative to arachidonic acid(AA), in obese Japanese patients with dyslipidemia. METHODS The EPA/AA, DHA/AA and DGLA/AA ratios were compared between obese patients with(n=94) and without (n=31) dyslipidemia. Among the former group, 88 patients received either highly purified EPA treatment(1.8g daily, n=45) or treatment without EPA(control, n=43). RESULTS At baseline, the ratios of DHA/AA and DGLA/AA were significantly(P<0.05) higher in obese patients with dyslipidemia than in those without, while the EPA/AA ratio was similar between patients with and without dyslipidemia. EPA significantly reduced the hemoglobin A1c, total cholesterol, triglycerides, CRP, cardio-ankle vascular index(CAVI)(an index of arterial stiffness) and the DGLA/AA ratio relative to the control at three months after the treatment. On the other hand, EPA significantly increased the adiponectin level and EPA/AA ratio(P<0.05). A multivariate regression analysis revealed that only age, an increase in the EPA/AA ratio and a decrease in the CRP level were significant determinants of a reduction of the CAVI by EPA. CONCLUSION These findings suggest that EPA improves the arterial stiffness in association with an increase in the EPA/AA ratio and a decrease in inflammation in obese patients with dyslipidemia.
Collapse
Affiliation(s)
- Ryo Ito
- Diabetes Center, National Hospital Organization, Kyoto Medical Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Suda S, Katsumata T, Okubo S, Kanamaru T, Suzuki K, Watanabe Y, Katsura KI, Katayama Y. Low serum n-3 polyunsaturated fatty acid/n-6 polyunsaturated fatty acid ratio predicts neurological deterioration in Japanese patients with acute ischemic stroke. Cerebrovasc Dis 2013; 36:388-93. [PMID: 24248098 DOI: 10.1159/000355683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/16/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Epidemiological and clinical trials have shown that n-3 polyunsaturated fatty acids (PUFAs) reduce the incidence of coronary heart disease or stroke. However, the association between PUFAs and acute-phase stroke has not yet been thoroughly studied. We investigated the impact of serum PUFAs on early neurological deterioration (END) in patients with acute ischemic stroke. METHODS In this retrospective study, we enrolled 281 Japanese patients (mean age: 75 ± 13 years; 165 males) with acute ischemic stroke diagnosed within 24 h of onset. General blood examinations, including PUFAs (n-3 PUFAs: eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA, and n-6 PUFAs: arachidonic acid, AA), were performed on admission. Other risk factors and comorbidities were also examined. END was defined as a ≥2-point increase in the National Institutes of Health Stroke Scale (NIHSS) score within a 72-hour period. Statistical significance between the END and non-END group was assessed using Wilcoxon rank sum tests or Student's t tests for categorical variables. Multiple logistic regression analyses were performed to identify predictors of END. RESULTS END was observed in 75 patients (26.7%). Diabetes mellitus (p = 0.003), high-sensitivity C-reactive protein (hs-CRP) level (p < 0.001), prior stroke (p = 0.035), ischemic heart disease (p = 0.029), EPA/AA ratio (p = 0.003), DHA/AA ratio (p = 0.002), EPA+DHA/AA ratio (p = 0.002), diagnosis of small vessel disease (p = 0.004) and admission NIHSS score (p < 0.001) were significantly associated with END. We used separate multiple logistic regression analyses for the EPA/AA, DHA/AA and EPA+DHA/AA ratios, because EPA and DHA are considered covariant factors (r = 0.544; p < 0.0001). Multiple logistic regression analyses showed that END was positively associated with diabetes mellitus, hs-CRP level and NIHSS score on admission, and negatively associated with the EPA/AA ratio (odds ratio, OR: 0.18; 95% confidence interval, CI: 0.05-0.58; p = 0.003), DHA/AA ratio (OR: 0.045; 95% CI: 0.006-0.30; p = 0.001), EPA+DHA/AA ratio (OR: 0.45; 95% CI: 0.26-0.74; p = 0.002) and diagnosis of small vessel disease. CONCLUSIONS Our data suggest that a low serum n-3 PUFA/n-6 PUFA ratio on admission may predict neurological deterioration in Japanese patients with acute ischemic stroke. Large-scale prospective studies are further required to clarify the role of PUFAs in the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Satoshi Suda
- Division of Neurology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|