1
|
Wu N, Zhao Y, Xiao M, Liu H, Chen H, Liu B, Wang X, Fan X. Methylprednisolone Modulates the Tfr/Tfh ratio in EAE-Induced Neuroinflammation through the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR Signalling Pathways. Inflammation 2024:10.1007/s10753-024-02099-y. [PMID: 38980500 DOI: 10.1007/s10753-024-02099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Methylprednisolone (MP) is a potent glucocorticoid that can effectively inhibit immune system inflammation and brain tissue damage in Multiple sclerosis (MS) patients. T follicular helper (Tfh) cells are a subpopulation of activated CD4 + T cells, while T follicular regulatory (Tfr) cells, a novel subset of Treg cells, possess specialized abilities to suppress the Tfh-GC response and inhibit antibody production. Dysregulation of either Tfh or Tfr cells has been implicated in the pathogenesis of MS. However, the molecular mechanism underlying the anti-inflammatory effects of MP therapy on experimental autoimmune encephalomyelitis (EAE), a representative model for MS, remains unclear. This study aimed to investigate the effects of MP treatment on EAE and elucidate the possible underlying molecular mechanisms involed. We evaluated the effects of MP on disease progression, CNS inflammatory cell infiltration and myelination, microglia and astrocyte activation, as well as Tfr/Tfh ratio and related molecules/inflammatory factors in EAE mice. Additionally, Western blotting was used to assess the expression of proteins associated with the PI3K/AKT pathway. Our findings demonstrated that MP treatment ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Furthermore, it reduced microglial and astrocytic activation. MP may increase the number of Tfr cells and the levels of cytokine TGF-β1, while reducing the number of Tfh cells and the levels of cytokine IL-21, as well as regulate the imbalanced Tfr/Tfh ratio in EAE mice. The PI3K/AKT/FoxO1 and PI3K/AKT/mTOR pathways were found to be involved in EAE development. However, MP treatment inhibited their activation. MP reduced neuroinflammation in EAE by regulating the balance between Tfr/Tfh cells via inhibition of the PI3K/AKT/FoxO1 and PI3K/AKT/mTOR signalling pathways.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Yun Zhao
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Minjun Xiao
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hui Liu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Xuezhen Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China.
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China.
| |
Collapse
|
2
|
Weier A, Enders M, Kirchner P, Ekici A, Bigaud M, Kapitza C, Wörl J, Kuerten S. Impact of Siponimod on Enteric and Central Nervous System Pathology in Late-Stage Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232214209. [PMID: 36430692 PMCID: PMC9695324 DOI: 10.3390/ijms232214209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Although immune modulation and suppression are effective during relapsing-remitting MS, secondary progressive MS (SPMS) requires neuroregenerative therapeutic options that act on the CNS. The sphingosine-1-phosphate receptor modulator siponimod is the only approved drug for SPMS. In the pivotal trial, siponimod reduced disease progression and brain atrophy compared with placebo. The enteric nervous system (ENS) was recently identified as an additional autoimmune target in MS. We investigated the effects of siponimod on the ENS and CNS in the experimental autoimmune encephalomyelitis model of MS. Mice with late-stage disease were treated with siponimod, fingolimod, or sham. The clinical disease was monitored daily, and treatment success was verified using mass spectrometry and flow cytometry, which revealed peripheral lymphopenia in siponimod- and fingolimod-treated mice. We evaluated the mRNA expression, ultrastructure, and histopathology of the ENS and CNS. Single-cell RNA sequencing revealed an upregulation of proinflammatory genes in spinal cord astrocytes and ependymal cells in siponimod-treated mice. However, differences in CNS and ENS histopathology and ultrastructural pathology between the treatment groups were absent. Thus, our data suggest that siponimod and fingolimod act on the peripheral immune system and do not have pronounced direct neuroprotective effects.
Collapse
Affiliation(s)
- Alicia Weier
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Michael Enders
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Philipp Kirchner
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Arif Ekici
- Institute of Human Genetics, University Clinic Erlangen, 91054 Erlangen, Germany
| | - Marc Bigaud
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Christopher Kapitza
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Wörl
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2642
| |
Collapse
|
3
|
Une H, Yamasaki R, Nagata S, Yamaguchi H, Nakamuta Y, Indiasari UC, Cui Y, Shinoda K, Masaki K, Götz M, Kira JI. Brain gray matter astroglia-specific connexin 43 ablation attenuates spinal cord inflammatory demyelination. J Neuroinflammation 2021; 18:126. [PMID: 34090477 PMCID: PMC8180177 DOI: 10.1186/s12974-021-02176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Brain astroglia are activated preceding the onset of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We characterized the effects of brain astroglia on spinal cord inflammation, focusing on astroglial connexin (Cx)43, because we recently reported that Cx43 has a critical role in regulating neuroinflammation. Methods Because glutamate aspartate transporter (GLAST)+ astroglia are enriched in the brain gray matter, we generated Cx43fl/fl;GLAST-CreERT2/+ mice that were brain gray matter astroglia-specific Cx43 conditional knockouts (Cx43 icKO). EAE was induced by immunization with myelin oligodendroglia glycoprotein (MOG) 35–55 peptide 10 days after tamoxifen injection. Cx43fl/fl mice were used as controls. Results Acute and chronic EAE signs were significantly milder in Cx43 icKO mice than in controls whereas splenocyte MOG-specific responses were unaltered. Histologically, Cx43 icKO mice showed significantly less demyelination and fewer CD45+ infiltrating immunocytes, including F4/80+ macrophages, and Iba1+ microglia in the spinal cord than controls. Microarray analysis of the whole cerebellum revealed marked upregulation of anti-inflammatory A2-specific astroglia gene sets in the pre-immunized phase and decreased proinflammatory A1-specific and pan-reactive astroglial gene expression in the onset phase in Cx43 icKO mice compared with controls. Astroglia expressing C3, a representative A1 marker, were significantly decreased in the cerebrum, cerebellum, and spinal cord of Cx43 icKO mice compared with controls in the peak phase. Isolated Cx43 icKO spinal microglia showed more anti-inflammatory and less proinflammatory gene expression than control microglia in the pre-immunized phase. In particular, microglial expression of Ccl2, Ccl5, Ccl7, and Ccl8 in the pre-immunized phase and of Cxcl9 at the peak phase was lower in Cx43 icKO than in controls. Spinal microglia circularity was significantly lower in Cx43 icKO than in controls in the peak phase. Significantly lower interleukin (IL)-6, interferon-γ, and IL-10 levels were present in cerebrospinal fluid from Cx43 icKO mice in the onset phase compared with controls. Conclusions The ablation of Cx43 in brain gray matter astroglia attenuates EAE by promoting astroglia toward an anti-inflammatory phenotype and suppressing proinflammatory activation of spinal microglia partly through depressed cerebrospinal fluid proinflammatory cytokine/chemokine levels. Brain astroglial Cx43 might be a novel therapeutic target for MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02176-1.
Collapse
Affiliation(s)
- Hayato Une
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuko Nakamuta
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ulfa Camelia Indiasari
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yiwen Cui
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Ookawa, Fukuoka, 831-8501, Japan. .,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022, Japan.
| |
Collapse
|
4
|
Hou H, Sun Y, Miao J, Gao M, Guo L, Song X. Ponesimod modulates the Th1/Th17/Treg cell balance and ameliorates disease in experimental autoimmune encephalomyelitis. J Neuroimmunol 2021; 356:577583. [PMID: 33940233 DOI: 10.1016/j.jneuroim.2021.577583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) plays an important role in autoimmune disease. Here, we evaluated whether ponesimod, an S1P1 modulator, affects inflammation in experimental autoimmune encephalomyelitis (EAE) and investigated Th1/Th2/Th17/Treg cell subsets. Ponesimod treatment ameliorated EAE and alleviated inflammatory infiltration. Compared with untreated EAE, ponesimod-treated mice had lower Th1 and Th17 cell numbers and higher Treg cell numbers; their IFN-γ, T-bet, IL-17, and RORγt levels as well as their pmTOR/mTOR ratio were diminished, while their TGF-β and Foxp3 levels were enhanced. These results suggest that ponesimod modulates the Th1/Th17/Treg balance and regulates the mTOR pathway.
Collapse
Affiliation(s)
- Huiqing Hou
- Department of Neurology, Key Laboratory of Hebei Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Yafei Sun
- Department of Neurology, Key Laboratory of Hebei Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Jun Miao
- Department of Dermatology, North China Petroleum Bureau General Hospital of Hebei Medical University, Renqiu 062552, Hebei, China
| | - Mengying Gao
- Emergency Department, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Li Guo
- Department of Neurology, Key Laboratory of Hebei Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China
| | - Xiujuan Song
- Department of Neurology, Key Laboratory of Hebei Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, China.
| |
Collapse
|
5
|
Alrashdi B, Dawod B, Schampel A, Tacke S, Kuerten S, Marshall JS, Côté PD. Nav1.6 promotes inflammation and neuronal degeneration in a mouse model of multiple sclerosis. J Neuroinflammation 2019; 16:215. [PMID: 31722722 PMCID: PMC6852902 DOI: 10.1186/s12974-019-1622-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) model of MS, the Nav1.6 voltage-gated sodium (Nav) channel isoform has been implicated as a primary contributor to axonal degeneration. Following demyelination Nav1.6, which is normally co-localized with the Na+/Ca2+ exchanger (NCX) at the nodes of Ranvier, associates with β-APP, a marker of neural injury. The persistent influx of sodium through Nav1.6 is believed to reverse the function of NCX, resulting in an increased influx of damaging Ca2+ ions. However, direct evidence for the role of Nav1.6 in axonal degeneration is lacking. METHODS In mice floxed for Scn8a, the gene that encodes the α subunit of Nav1.6, subjected to EAE we examined the effect of eliminating Nav1.6 from retinal ganglion cells (RGC) in one eye using an AAV vector harboring Cre and GFP, while using the contralateral either injected with AAV vector harboring GFP alone or non-targeted eye as control. RESULTS In retinas, the expression of Rbpms, a marker for retinal ganglion cells, was found to be inversely correlated to the expression of Scn8a. Furthermore, the gene expression of the pro-inflammatory cytokines Il6 (IL-6) and Ifng (IFN-γ), and of the reactive gliosis marker Gfap (GFAP) were found to be reduced in targeted retinas. Optic nerves from targeted eyes were shown to have reduced macrophage infiltration and improved axonal health. CONCLUSION Taken together, our results are consistent with Nav1.6 promoting inflammation and contributing to axonal degeneration following demyelination.
Collapse
Affiliation(s)
- Barakat Alrashdi
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Biology, Al-Jouf University, Sakaka, Saudi Arabia
| | - Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Andrea Schampel
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sabine Tacke
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Patrice D Côté
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
6
|
Rapamycin and fingolimod modulate Treg/Th17 cells in experimental autoimmune encephalomyelitis by regulating the Akt-mTOR and MAPK/ERK pathways. J Neuroimmunol 2018; 324:26-34. [DOI: 10.1016/j.jneuroim.2018.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
7
|
Simon M, Ipek R, Homola GA, Rovituso DM, Schampel A, Kleinschnitz C, Kuerten S. Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation 2018; 15:225. [PMID: 30098594 PMCID: PMC6086993 DOI: 10.1186/s12974-018-1263-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. Electronic supplementary material The online version of this article (10.1186/s12974-018-1263-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micha Simon
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Rojda Ipek
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - György A Homola
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Germany
| | - Damiano M Rovituso
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Andrea Schampel
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.,Department of Neurology, University Hospital Essen, Essen, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany. .,Institute of Anatomy and Cell Biology, Friedrich Alexander University Erlangen-Nürnberg (FAU), Krankenhausstr. 9, 91054, Erlangen, Bavaria, Germany.
| |
Collapse
|
8
|
Wan X, Pei W, Shahzad KA, Zhang L, Song S, Jin X, Wang L, Zhao C, Shen C. A Tolerogenic Artificial APC Durably Ameliorates Experimental Autoimmune Encephalomyelitis by Directly and Selectively Modulating Myelin Peptide–Autoreactive CD4+and CD8+T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1194-1210. [DOI: 10.4049/jimmunol.1800108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/19/2018] [Indexed: 01/19/2023]
|
9
|
Al-Ghobashy MA, ElMeshad AN, Abdelsalam RM, Nooh MM, Al-Shorbagy M, Laible G. Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model. Sci Rep 2017; 7:46468. [PMID: 28425447 PMCID: PMC5397842 DOI: 10.1038/srep46468] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/15/2017] [Indexed: 02/08/2023] Open
Abstract
Recombinant human myelin basic protein (rhMBP) was previously produced in the milk of transgenic cows. Differences in molecular recognition of either hMBP or rhMBP by surface-immobilized anti-hMBP antibodies were demonstrated. This indicated differences in immunological response between rhMBP and hMBP. Here, the activity of free and controlled release rhMBP poly(ε-caprolactone) nanoparticles (NPs), as a therapeutic vaccine against multiple sclerosis (MS) was demonstrated in experimental autoimmune encephalomyelitis (EAE) animal model. Following optimization of nanoformulation, discrete spherical, rough-surfaced rhMBP NPs with high entrapment efficiency and controlled release pattern were obtained. Results indicated that rhMBP was loaded into and electrostatically adsorbed onto the surface of NPs. Subcutaneous administration of free or rhMBP NPs before EAE-induction reduced the average behavioral score in EAE mice and showed only mild histological alterations and preservation of myelin sheath, with rhMBP NPs showing increased protection. Moreover, analysis of inflammatory cytokines (IFN-γ and IL-10) in mice brains revealed that pretreatment with free or rhMBP NPs significantly protected against induced inflammation. IN CONCLUSION i) rhMBP ameliorated EAE symptoms in EAE animal model, ii) nanoformulation significantly enhanced efficacy of rhMBP as a therapeutic vaccine and iii) clinical investigations are required to demonstrate the activity of rhMBP NPs as a therapeutic vaccine for MS.
Collapse
Affiliation(s)
- Medhat A. Al-Ghobashy
- Analytical Chemistry Department of, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Bioanalysis Research Group, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aliaa N. ElMeshad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania M. Abdelsalam
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed M. Nooh
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammad Al-Shorbagy
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Götz Laible
- AgRresearch, Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
10
|
Thalamus Degeneration and Inflammation in Two Distinct Multiple Sclerosis Animal Models. J Mol Neurosci 2016; 60:102-14. [PMID: 27491786 DOI: 10.1007/s12031-016-0790-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022]
Abstract
There is a broad consensus that multiple sclerosis (MS) represents more than an inflammatory disease: it harbors several characteristic aspects of a classical neurodegenerative disorder, i.e., damage to axons, synapses, and nerve cell bodies. While several accepted paraclinical methods exist to monitor the inflammatory-driven aspects of the disease, techniques to monitor progression of early and late neurodegeneration are still in their infancy and have not been convincingly validated. It was speculated that the thalamus with its multiple reciprocal connections is sensitive to inflammatory processes occurring in different brain regions, thus acting as a "barometer" for diffuse brain parenchymal damage in MS. To what extent the thalamus is affected in commonly applied MS animal models is, however, not known. In this article we describe direct and indirect damage to the thalamus in two distinct MS animal models. In the cuprizone model, we observed primary oligodendrocyte stress which is followed by demyelination, microglia/astrocyte activation, and acute axonal damage. These degenerative cuprizone-induced lesions were found to be more severe in the lateral compared to the medial part of the thalamus. In MOG35-55-induced EAE, in contrast, most parts of the forebrain, including the thalamus were not directly involved in the autoimmune attack. However, important thalamic afferent fiber tracts, such as the spinothalamic tract were inflamed and demyelinated on the spinal cord level. Quantitative immunohistochemistry revealed that this spinal cord inflammatory-demyelination is associated with neuronal loss within the target region of the spinothalamic tract, namely the sensory ventral posterolateral nucleus of the thalamus. This study highlights the possibility of trans-neuronal degeneration as one mechanism of secondary neuronal damage in MS. Further studies are now warranted to investigate involved cell types and cellular mechanisms.
Collapse
|
11
|
Sevastou I, Pryce G, Baker D, Selwood DL. Characterisation of Transcriptional Changes in the Spinal Cord of the Progressive Experimental Autoimmune Encephalomyelitis Biozzi ABH Mouse Model by RNA Sequencing. PLoS One 2016; 11:e0157754. [PMID: 27355629 PMCID: PMC4927105 DOI: 10.1371/journal.pone.0157754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is a debilitating immune-mediated neurological disorder affecting young adults. MS is primarily relapsing-remitting, but neurodegeneration and disability accumulate from disease onset. The most commonly used mouse MS models exhibit a monophasic immune response with fast accumulation of neurological damage that does not allow the study of progressive neurodegeneration. The chronic relapsing and secondary progressive EAE (pEAE) Biozzi ABH mouse model of MS exhibits a reproducible relapsing-remitting disease course that slowly accumulates permanent neurological deficit and develops a post-relapsing progressive disease that permits the study of demyelination and neurodegeneration. RNA sequencing (RNAseq) was used to explore global gene expression in the pEAE Biozzi ABH mouse. Spinal cord tissue RNA from pEAE Biozzi ABH mice and healthy age-matched controls was sequenced. 2,072 genes were differentially expressed (q<0.05) from which 1,397 were significantly upregulated and 675 were significantly downregulated. This hypothesis-free investigation characterised the genomic changes that describe the pEAE mouse model. The differentially expressed genes revealed a persistent immunoreactant phenotype, combined with downregulation of the cholesterol biosynthesis superpathway and the LXR/RXR activation pathway. Genes differentially expressed include the myelination genes Slc17a7, Ugt8A and Opalin, the neuroprotective genes Sprr1A, Osm and Wisp2, as well as genes identified as MS risk factors, including RGs14 and Scap2. Novel genes with unestablished roles in EAE or MS were also identified. The identification of differentially expressed novel genes and genes involved in MS pathology, opens the door to their functional study in the pEAE mouse model which recapitulates some of the important clinical features of progressive MS.
Collapse
Affiliation(s)
- Ioanna Sevastou
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Science, London, WC1E 6BT, United Kingdom
| | - Gareth Pryce
- Neuroimmmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - David Baker
- Neuroimmmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, E1 2AT, United Kingdom
| | - David L. Selwood
- Department of Medicinal Chemistry, UCL Wolfson Institute for Biomedical Science, London, WC1E 6BT, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Prinz J, Karacivi A, Stormanns ER, Recks MS, Kuerten S. Time-Dependent Progression of Demyelination and Axonal Pathology in MP4-Induced Experimental Autoimmune Encephalomyelitis. PLoS One 2015; 10:e0144847. [PMID: 26658811 PMCID: PMC4676607 DOI: 10.1371/journal.pone.0144847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/24/2015] [Indexed: 11/21/2022] Open
Abstract
Background Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) characterized by inflammation, demyelination and axonal pathology. Myelin basic protein/proteolipid protein (MBP-PLP) fusion protein MP4 is capable of inducing chronic experimental autoimmune encephalomyelitis (EAE) in susceptible mouse strains mirroring diverse histopathological and immunological hallmarks of MS. Limited availability of human tissue underscores the importance of animal models to study the pathology of MS. Methods Twenty-two female C57BL/6 (B6) mice were immunized with MP4 and the clinical development of experimental autoimmune encephalomyelitis (EAE) was observed. Methylene blue-stained semi-thin and ultra-thin sections of the lumbar spinal cord were assessed at the peak of acute EAE, three months (chronic EAE) and six months after onset of EAE (long-term EAE). The extent of lesional area and inflammation were analyzed in semi-thin sections on a light microscopic level. The magnitude of demyelination and axonal damage were determined using electron microscopy. Emphasis was put on the ventrolateral tract (VLT) of the spinal cord. Results B6 mice demonstrated increasing demyelination and severe axonal pathology in the course of MP4-induced EAE. In addition, mitochondrial swelling and a decrease in the nearest neighbor neurofilament distance (NNND) as early signs of axonal damage were evident with the onset of EAE. In semi-thin sections we observed the maximum of lesional area in the chronic state of EAE while inflammation was found to a similar extent in acute and chronic EAE. In contrast to the well-established myelin oligodendrocyte glycoprotein (MOG) model, disease stages of MP4-induced EAE could not be distinguished by assessing the extent of parenchymal edema or the grade of inflammation. Conclusions Our results complement our previous ultrastructural studies of B6 EAE models and suggest that B6 mice immunized with different antigens constitute useful instruments to study the diverse histopathological aspects of MS.
Collapse
MESH Headings
- Animals
- Axons/pathology
- Axons/ultrastructure
- Demyelinating Diseases
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Female
- Humans
- Immunization
- Lumbar Vertebrae/pathology
- Lumbar Vertebrae/ultrastructure
- Mice
- Mice, Inbred C57BL
- Microtomy
- Mitochondria/pathology
- Mitochondria/ultrastructure
- Mitochondrial Swelling
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Multiple Sclerosis/physiopathology
- Myelin Basic Protein/administration & dosage
- Myelin Proteolipid Protein/administration & dosage
- Myelin Sheath/pathology
- Myelin Sheath/ultrastructure
- Recombinant Fusion Proteins/administration & dosage
- Severity of Illness Index
- Time Factors
Collapse
Affiliation(s)
- Johanna Prinz
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany
| | - Aylin Karacivi
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany
| | - Eva R. Stormanns
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany
| | - Mascha S. Recks
- Department of Anatomy II, University of Cologne, Joseph-Stelzmann-Str. 9, 50931, Cologne, Germany
| | - Stefanie Kuerten
- Department of Anatomy and Cell Biology, University of Würzburg, Koellikerstraße 6, 97070, Würzburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Pikor N, Astarita J, Summers-Deluca L, Galicia G, Qu J, Ward L, Armstrong S, Dominguez C, Malhotra D, Heiden B, Kay R, Castanov V, Touil H, Boon L, O’Connor P, Bar-Or A, Prat A, Ramaglia V, Ludwin S, Turley S, Gommerman J. Integration of Th17- and Lymphotoxin-Derived Signals Initiates Meningeal-Resident Stromal Cell Remodeling to Propagate Neuroinflammation. Immunity 2015; 43:1160-73. [DOI: 10.1016/j.immuni.2015.11.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/22/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
|
14
|
Afraei S, Azizi G, Zargar SJ, Sedaghat R, Mirshafiey A. New therapeutic approach by G2013 in experimental model of multiple sclerosis. Acta Neurol Belg 2015; 115:259-66. [PMID: 25388635 DOI: 10.1007/s13760-014-0392-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/02/2014] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that leads to an inflammatory demyelination and axonal damage. MS disease often displays a relapsing-remitting course of neurological manifestations that is mimicked by experimental autoimmune encephalomyelitis (EAE) in animal models. The aim of the present research was to test the therapeutic effect of small molecule G2013, a novel designed non-steroidal anti-inflammatory agent in EAE. All experiments were conducted on C57BL/6 male mice aged 10 weeks. To induce the EAE, we performed subcutaneously injection of myelin oligodendrocyte glycoprotein-35-55 (MOG35-55) in Complete Freund's Adjuvant (CFA) emulsion, and for treatment of EAE we used intraperitoneal (IP) injection of G2013. On day 21 post-immunization, for total antioxidant, nitric oxide (NO) and TNF-α assessment, blood samples were taken from the heart and mice were killed, and the brains and cerebellums were then removed for histological analysis. Our findings demonstrated that G2013 had beneficial effects on EAE by lower incidence, attenuation in the severity, and a delay in the onset of disease. Histological analysis showed that inflammation criteria including the number of inflammatory cells and plaques as well as demyelination in G2013 dosed mice were lower than control group. Moreover, the serum level of NO in G2013-treated mice was significantly less than control animals. These data indicate that G2013 therapy can attenuate the disease progression in experimental model of MS.
Collapse
Affiliation(s)
- Sanaz Afraei
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish, Iran
| | | | | | | | | |
Collapse
|
15
|
Dupree JL, Polak PE, Hensley K, Pelligrino D, Feinstein DL. Lanthionine ketimine ester provides benefit in a mouse model of multiple sclerosis. J Neurochem 2015; 134:302-14. [PMID: 25846048 DOI: 10.1111/jnc.13114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 01/26/2023]
Abstract
Lanthionine ketimine (LK) is a natural sulfur amino acid metabolite which binds to collapsin response mediator protein-2 (CRMP2), an abundant brain protein that interacts with multiple partners to regulate microtubule dynamics, neurite growth and retraction, axonal transport, and neurotransmitter release. LK ethyl-ester (LKE) is a cell-permeable synthetic derivative that promotes neurogenesis, suppresses nitric oxide production from microglia, and reduces neurotoxicity of microglia-conditioned medium. These properties led us to test the effects of LKE in experimental autoimmune encephalomyelitis (EAE), a commonly used mouse model of multiple sclerosis. Female C57Bl/6 mice were immunized with myelin oligodendrocyte glycoprotein peptide 35-55 to develop a chronic disease. LKE was provided in the chow at 100 ppm, ad libitum beginning when the mice reached moderate clinical signs. Over the following 4 weeks the LKE-treated mice showed a significant reduction in clinical signs compared to vehicle-treated mice. LKE dose dependently reduced IFNγ production from splenic T cells, but had no effect on IL-17 production suggesting protective effects were mediated within the CNS. Electron microscopy revealed that, compared to sham mice, EAE mice had significant neurodegeneration in both the optic nerve and spinal cord, which was reduced in the LKE-treated mice. In contrast only minimal disruption of myelin was observed at this time point. In the optic nerve, measurements of axon caliber and myelin thickness showed little changes between sham and EAE mice, however, treatment with LKE increased the percentage of axons with thicker myelin and with larger axon calibers. In the spinal cord, only smaller effects of LKE on myelin thickness were observed. The effects of LKE were associated with a reduced relative level of phosphorylated CRMP2 to CRMP2. Together, these results demonstrate that LKE reduces neurodegeneration in a chronic EAE model of MS, which could have translation potential for treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul E Polak
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kenneth Hensley
- Department of Pathology, University of Toledo, College of Medicine, Toledo, Ohio, USA
| | - Dale Pelligrino
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
16
|
Chen L, Li J, Wu L, Yang M, Gao F, Yuan L. Synergistic actions of olomoucine and bone morphogenetic protein-4 in axonal repair after acute spinal cord contusion. Neural Regen Res 2014; 9:1830-8. [PMID: 25422646 PMCID: PMC4239774 DOI: 10.4103/1673-5374.143431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2014] [Indexed: 01/10/2023] Open
Abstract
To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improvements in locomotor function in injured rats, combined administration of both treatments had a significantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.
Collapse
Affiliation(s)
- Liang Chen
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China ; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Liang Wu
- Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing, China
| | - Mingliang Yang
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China ; Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Feng Gao
- Capital Medical University School of Rehabilitation Medicine, Beijing, China ; Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Li Yuan
- Department of General Surgery, China Rehabilitation Research Center, Beijing, China
| |
Collapse
|
17
|
Wu L, Li J, Chen L, Zhang H, Yuan L, Davies SJ. Combined transplantation of GDAs(BMP) and hr-decorin in spinal cord contusion repair. Neural Regen Res 2014; 8:2236-48. [PMID: 25206533 PMCID: PMC4146032 DOI: 10.3969/j.issn.1673-5374.2013.24.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022] Open
Abstract
Following spinal cord injury, astrocyte proliferation and scar formation are the main factors inhibiting the regeneration and growth of spinal cord axons. Recombinant decorin suppresses inflammatory reactions, inhibits glial scar formation, and promotes axonal growth. Rat models of T8 spinal cord contusion were created with the NYU impactor and these models were subjected to combined transplantation of bone morphogenetic protein-4-induced glial-restricted precursor-derived astrocytes and human recombinant decorin transplantation. At 28 days after spinal cord contusion, double-immunofluorescent histochemistry revealed that combined transplantation inhibited the early inflammatory response in injured rats. Furthermore, brain-derived neurotrophic factor, which was secreted by transplanted cells, protected injured axons. The combined transplantation promoted axonal regeneration and growth of injured motor and sensory neurons by inhibiting astrocyte proliferation and glial scar formation, with astrocytes forming a linear arrangement in the contused spinal cord, thus providing axonal regeneration channels.
Collapse
Affiliation(s)
- Liang Wu
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China ; Rehabilitation Center, Beijing Xiaotangshan Rehabilitation Hospital, Beijing 102211, China
| | - Jianjun Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Liang Chen
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Hong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China
| | - Li Yuan
- School of Rehabilitation Medicine, Capital Medical University, Beijing 100068, China ; Department of Neural Functional Reconstruction of Spine and Spinal Cord, China Rehabilitation Research Center, Beijing 100068, China
| | - Stephen Ja Davies
- Department of Neurosurgery, University of Colorado Denver, 1250 14th Street Denver, Colorado 80217, USA
| |
Collapse
|
18
|
Iannitti T, Kerr BJ, Taylor BK. Mechanisms and pharmacology of neuropathic pain in multiple sclerosis. Curr Top Behav Neurosci 2014; 20:75-97. [PMID: 24590824 PMCID: PMC4464806 DOI: 10.1007/7854_2014_288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neuropathic pain of multiple sclerosis is quite prevalent and severely impacts quality of life. A few randomized, placebo-controlled, blinded clinical trials suggest that cannabis- and anticonvulsant-based treatments provide partial pain relief, but at the expense of adverse events. An even smaller, but emerging, number of translational studies are using rodent models of experimental autoimmune encephalomyelitis (EAE), which exhibit pain-like behaviors resembling those of Multiple sclerosis (MS) patients. These studies not only support the possible effectiveness of anticonvulsants, but also compel further clinical trials with serotonin-norepinephrine reuptake inhibitors, the immunosuppressant drug rapamycin, or drugs which interfere with glutamatergic neurotransmission. Future behavioral studies in EAE models are essential toward a new pharmacotherapy of multiple sclerosis pain.
Collapse
Affiliation(s)
- T Iannitti
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY, 40536-0298, USA
| | | | | |
Collapse
|
19
|
Rahn EJ, Iannitti T, Donahue RR, Taylor BK. Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 2014; 5:4. [PMID: 24581045 PMCID: PMC3974112 DOI: 10.1186/2042-6410-5-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/31/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS), a demyelinating disease of the central nervous system, is one of the most prevalent neurological disorders in the industrialized world. This disease afflicts more than two million people worldwide, over two thirds of which are women. MS is typically diagnosed between the ages of 20-40 and can produce debilitating neurological impairments including muscle spasticity, muscle paralysis, and chronic pain. Despite the large sex disparity in MS prevalence, clinical and basic research investigations of how sex and estrous cycle impact development, duration, and severity of neurological impairments and pain symptoms are limited. To help address these questions, we evaluated behavioral signs of sensory and motor functions in one of the most widely characterized animal models of MS, the experimental autoimmune encephalomyelitis (EAE) model. METHODS C57BL/6 male and female mice received flank injection of complete Freund's adjuvant (CFA) or CFA plus myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) to induce EAE. Experiment 1 evaluated sex differences of EAE-induced neurological motor deficits and neuropathic pain-like behavior over 3 weeks, while experiment 2 evaluated the effect of estrous phase in female mice on the same behavioral measures for 3 months. EAE-induced neurological motor deficits including gait analysis and forelimb grip strength were assessed. Neuropathic pain-like behaviors evaluated included sensitivity to mechanical, cold, and heat stimulations. Estrous cycle was determined daily via vaginal lavage. RESULTS MOG35-55-induced EAE produced neurological impairments (i.e., motor dysfunction) including mild paralysis and decreases in grip strength in both females and males. MOG35-55 produced behavioral signs of neuropathic pain-mechanical and cold hypersensitivity-in females, but not males. MOG35-55 did not change cutaneous heat sensitivity in either sex. Administration of CFA or CFA + MOG35-55 prolonged the time spent in diestrus for 2 weeks, after which normal cycling returned. MOG35-55 produced fewer neurological motor deficits when mice were in proestrus relative to non-proestrus phases. CONCLUSIONS We conclude that female mice are superior to males for the study of neuropathic pain-like behaviors associated with MOG35-55-induced EAE. Further, proestrus may be protective against EAE-induced neurological deficits, thus necessitating further investigation into the impact that estrous cycle exerts on MS symptoms.
Collapse
Affiliation(s)
| | | | | | - Bradley K Taylor
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
20
|
Soellner IA, Rabe J, Mauri V, Kaufmann J, Addicks K, Kuerten S. Differential aspects of immune cell infiltration and neurodegeneration in acute and relapse experimental autoimmune encephalomyelitis. Clin Immunol 2013; 149:519-29. [DOI: 10.1016/j.clim.2013.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 12/11/2022]
|
21
|
Recks MS, Stormanns ER, Bader J, Arnhold S, Addicks K, Kuerten S. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Clin Immunol 2013; 149:32-45. [DOI: 10.1016/j.clim.2013.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/04/2013] [Accepted: 06/10/2013] [Indexed: 12/14/2022]
|
22
|
Different mechanisms of inflammation induced in virus and autoimmune-mediated models of multiple sclerosis in C57BL6 mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:589048. [PMID: 24083230 PMCID: PMC3780522 DOI: 10.1155/2013/589048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/01/2013] [Indexed: 01/17/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system (CNS). Neurotropic demyelinating strain of MHV (MHV-A59 or its isogenic recombinant strain RSA59) induces MS-like disease in mice mediated by microglia, along with a small population of T cells. The mechanism of demyelination is at least in part due to microglia-mediated myelin stripping, with some direct axonal injury. Immunization with myelin oligodendrocyte glycoprotein (MOG) induces experimental autoimmune encephalomyelitis (EAE), a mainly CD4+ T-cell-mediated disease, although CD8+ T cells may play a significant role in demyelination. It is possible that both autoimmune and nonimmune mechanisms such as direct viral toxicity may induce MS. Our study directly compares CNS pathology in autoimmune and viral-induced MS models. Mice with viral-induced and EAE demyelinating diseases demonstrated similar patterns and distributions of demyelination that accumulated over the course of the disease. However, significant differences in acute inflammation were noted. Inflammation was restricted mainly to white matter at all times in EAE, whereas inflammation initially largely involved gray matter in acute MHV-induced disease and then is subsequently localized only in white matter in the chronic disease phase. The presence of dual mechanisms of demyelination may be responsible for the failure of immunosuppression to promote long-term remission in many MS patients.
Collapse
|
23
|
Das Sarma J. Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol 2013; 20:122-36. [PMID: 23979705 DOI: 10.1007/s13365-013-0188-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 07/03/2013] [Indexed: 02/07/2023]
Abstract
Microglia, the major resident immune cells in the central nervous system (CNS) are considered as the key cellular mediators of neuroinflammatory processes. In the past few years, microglial research has become a main focus in cellular neuroimmunology and neuroinflammation. Chronic/remitting neurological disease such as multiple sclerosis (MS) has long been considered an inflammatory autoimmune disease with the infiltration of peripheral myelin-specific T cells into the CNS. With the rapid advancement in the field of microglia and astrocytic neurobiology, the term neuroinflammation progressively started to denote chronic CNS cell-specific inflammation in MS. The direct glial responses in MS are different from conventional peripheral immune responses. This review attempts to summarize current findings of neuroinflammatory responses within the CNS by direct infection of neural cells by mouse hepatitis virus (MHV) and the mechanisms by which glial cell responses ultimately contribute to the neuropathology on demyelination. Microglia can be persistently infected by MHV. Microglial activation and phagocytosis are recognized to be critically important in the pathogenesis of demyelination. Emerging evidence for the pathogenic role of microglia and the activation of inflammatory pathways in these cells in MHV infection supports the concept that microglia induced neuroinflammation is an amplifier of virus-induced neuropathology.
Collapse
Affiliation(s)
- Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India,
| |
Collapse
|
24
|
Treg cell resistance to apoptosis in DNA vaccination for experimental autoimmune encephalomyelitis treatment. PLoS One 2012; 7:e49994. [PMID: 23166807 PMCID: PMC3498204 DOI: 10.1371/journal.pone.0049994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/15/2012] [Indexed: 12/29/2022] Open
Abstract
Background Regulatory T (Treg) cells can be induced with DNA vaccinations and protect mice from the development of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Tacrolimus (FK506) has been shown to have functions on inducing immunosuppression and augmenting apoptosis of pathologic T cells in autoimmune disease. Here we examined the therapeutic effect of DNA vaccine in conjunction with FK506 on EAE. Methodology/Principal Findings After EAE induction, C57BL/6 mice were treated with DNA vaccine in conjunction with FK506. Functional Treg cells were induced in treated EAE mice and suppressed Th1 and Th17 cell responses. Infiltrated CD4 T cells were reduced while Treg cells were induced in spinal cords of treated EAE mice. Remarkably, the activated CD4 T cells augmented apoptosis, but the induced Treg cells resisted apoptosis in treated EAE mice, resulting in alleviation of clinical EAE severity. Conclusions/Significance DNA vaccine in conjunction with FK506 treatment ameliorates EAE by enhancing apoptosis of CD4 T cells and resisting apoptosis of induced Treg cells. Our findings implicate the potential of tolerogenic DNA vaccines for treating MS.
Collapse
|
25
|
Practical guide to the induction of relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. Mult Scler Relat Disord 2012; 1:29-38. [DOI: 10.1016/j.msard.2011.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/12/2011] [Accepted: 09/02/2011] [Indexed: 01/04/2023]
|
26
|
Recks MS, Addicks K, Kuerten S. Spinal cord histopathology of MOG peptide 35-55-induced experimental autoimmune encephalomyelitis is time- and score-dependent. Neurosci Lett 2011; 494:227-31. [PMID: 21406210 DOI: 10.1016/j.neulet.2011.03.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/05/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
In the present study, we demonstrate that the histopathologic features of myelin oligodendrocyte glycoprotein (MOG) peptide 35-55-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice closely mirror the hallmarks of MS pathology. On the one hand, we depict a time-dependent transition from acute inflammation to chronic neurodegeneration in spinal cord histopathology and provide distinct criteria (i.e. parenchymal edema, cellular infiltration and perivascular inflammatory infiltrates) by which acute and chronic stages of the disease can be distinguished. On the other hand, we assessed the extent of spinal cord plaque formation in relation to the total white matter area and we demonstrate a strong correlation with the clinical disease severity. Additionally, we report on the involvement of different spinal cord regions, focusing on the anterolateral, posterior and pyramidal tract. Our results help to further characterize histopathology of MOG peptide 35-55-induced EAE and reinforce the importance of this model for structural and functional studies of MS features.
Collapse
Affiliation(s)
- Mascha S Recks
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann-Str. 9, 50931 Cologne, Germany
| | | | | |
Collapse
|