1
|
Hwang J, Lee JH, Kim YJ, Hwang I, Kim YY, Kim HS, Park DY. Highly accurate measurement of the relative abundance of oral pathogenic bacteria using colony-forming unit-based qPCR. J Periodontal Implant Sci 2024; 54:444-457. [PMID: 39058349 PMCID: PMC11729247 DOI: 10.5051/jpis.2304520226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE Quantitative polymerase chain reaction (qPCR) has recently been employed to measure the number of bacterial cells by quantifying their DNA fragments. However, this method can yield inaccurate bacterial cell counts because the number of DNA fragments varies among different bacterial species. To resolve this issue, we developed a novel optimized qPCR method to quantify bacterial colony-forming units (CFUs), thereby ensuring a highly accurate count of bacterial cells. METHODS To establish a new qPCR method for quantifying 6 oral bacteria namely, Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, and Streptococcus mutans, the most appropriate primer-probe sets were selected based on sensitivity and specificity. To optimize the qPCR for predicting bacterial CFUs, standard curves were produced by plotting bacterial CFU against Ct values. To validate the accuracy of the predicted CFU values, a spiking study was conducted to calculate the recovery rates of the predicted CFUs to the true CFUs. To evaluate the reliability of the predicted CFU values, the consistency between the optimized qPCR method and shotgun metagenome sequencing (SMS) was assessed by comparing the relative abundance of the bacterial composition. RESULTS For each bacterium, the selected primer-probe set amplified serial-diluted standard templates indicative of bacterial CFUs. The resultant Ct values and the corresponding bacterial CFU values were used to construct a standard curve, the linearity of which was determined by a coefficient of determination (r²) >0.99. The accuracy of the predicted CFU values was validated by recovery rates ranging from 95.1% to 106.8%. The reliability of the predicted CFUs was reflected by the consistency between the optimized qPCR and SMS, as demonstrated by a Spearman rank correlation coefficient (ρ) value of 1 for all 6 bacteria. CONCLUSIONS The CFU-based qPCR quantification method provides highly accurate and reliable quantitation of oral pathogenic bacteria.
Collapse
Affiliation(s)
- Jiyoung Hwang
- R&D Center, DOCSMEDI OralBiome Co. Ltd., Goyang, Korea
| | - Jeong-Hoo Lee
- R&D Center, DOCSMEDI OralBiome Co. Ltd., Goyang, Korea
| | - Yeon-Jin Kim
- R&D Center, DOCSMEDI OralBiome Co. Ltd., Goyang, Korea
| | - Inseong Hwang
- Apple Tree Institute of Biomedical Science, Apple Tree Medical Foundation, Goyang, Korea
| | - Young-Youn Kim
- Apple Tree Dental Hospital, Apple Tree Medical Foundation, Goyang, Korea
| | - Hye-Sung Kim
- Apple Tree Dental Hospital, Apple Tree Medical Foundation, Goyang, Korea
| | - Do-Young Park
- R&D Center, DOCSMEDI OralBiome Co. Ltd., Goyang, Korea.
| |
Collapse
|
2
|
Fine DH, Schreiner H, Diehl SR. A Rose by Any Other Name: The Long Intricate History of Localized Aggressive Periodontitis. Pathogens 2024; 13:849. [PMID: 39452721 PMCID: PMC11510386 DOI: 10.3390/pathogens13100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
This review addresses the recent World Workshop Consensus Conference (WWCC) decision to eliminate Localized Aggressive Periodontitis (LAgP) in young adults as a distinct form of periodontitis. A "Consensus" implies widespread, if not unanimous, agreement among participants. However, a significant number of attendees were opposed to the elimination of the LAgP classification. The substantial evidence supporting a unique diagnosis for LAgP includes the (1) incisor/molar pattern of disease, (2) young age of onset, (3) rapid progression of attachment and bone loss, (4) familial aggregation across multiple generations, and (5) defined consortium of microbiological risk factors including Aggregatibacter actinomycetemcomitans. Distinctive clinical signs and symptoms of LAgP are presented, and the microbial subgingival consortia that precede the onset of signs and symptoms are described. Using Bradford-Hill guidelines to assess causation, well-defined longitudinal studies support the unique microbial consortia, including A. actinomycetemcomitans as causative for LAgP. To determine the effects of the WWCC elimination of LAgP on research, we searched three publication databases and discovered a clear decrease in the number of new publications addressing LAgP since the new WWCC classification. The negative effects of the WWCC guidelines on both diagnosis and treatment success are presented. For example, due to the localized nature of LAgP, the practice of averaging mean pocket depth reduction or attachment gain across all teeth masks major changes in disease recovery at high-risk tooth sites. Reinstating LAgP as a distinct disease entity is proposed, and an alternative or additional way of measuring treatment success is recommended based on an assessment of the extension of the time to relapse of subgingival re-infection. The consequences of the translocation of oral microbes to distant anatomical sites due to ignoring relapse frequency are also discussed. Additional questions and future directions are also presented.
Collapse
Affiliation(s)
- Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA; (H.S.); (S.R.D.)
| | | | | |
Collapse
|
3
|
Kinane DF, Lappin DF, Culshaw S. The role of acquired host immunity in periodontal diseases. Periodontol 2000 2024. [PMID: 38641953 DOI: 10.1111/prd.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/21/2024]
Abstract
The aim of this narrative review is to relate the contribution of European researchers to the complex topic of the host immune system in periodontal disease, focusing on acquired immunity. Other chapters in this volume will address the genetics and autoantibody responses and other forms of immunity to periodontal disease. While the contribution of European authors is the focus, global literature is included in this descriptive narrative for contextual clarity, albeit many with European co-authors. The topic is relatively intense and is thus broken down into sections outlined below, tackled as descriptive narratives to enhance understanding. Any attempt at a systematic or scoping review was quickly abandoned given the descriptive nature and marked variation of approach in almost all publications. Even the most uniform area of this acquired periodontal immunology literature, antibody responses to putative pathogens in periodontal diseases, falls short of common structures and common primary outcome variables one would need and expect in clinical studies, where randomized controlled clinical trials (RCTs) abound. Addressing 'the host's role' in immunity immediately requires a discussion of host susceptibility, which necessitates consideration of genetic studies (covered elsewhere in the volume and superficially covered here).
Collapse
|
4
|
Cai R, Wang L, Zhang W, Liu B, Wu Y, Pang J, Ma C. The role of extracellular vesicles in periodontitis: pathogenesis, diagnosis, and therapy. Front Immunol 2023; 14:1151322. [PMID: 37114060 PMCID: PMC10126335 DOI: 10.3389/fimmu.2023.1151322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Periodontitis is a prevalent disease and one of the leading causes of tooth loss. Biofilms are initiating factor of periodontitis, which can destroy periodontal tissue by producing virulence factors. The overactivated host immune response is the primary cause of periodontitis. The clinical examination of periodontal tissues and the patient's medical history are the mainstays of periodontitis diagnosis. However, there is a lack of molecular biomarkers that can be used to identify and predict periodontitis activity precisely. Non-surgical and surgical treatments are currently available for periodontitis, although both have drawbacks. In clinical practice, achieving the ideal therapeutic effect remains a challenge. Studies have revealed that bacteria produce extracellular vesicles (EVs) to export virulence proteins to host cells. Meanwhile, periodontal tissue cells and immune cells produce EVs that have pro- or anti-inflammatory effects. Accordingly, EVs play a critical role in the pathogenesis of periodontitis. Recent studies have also presented that the content and composition of EVs in saliva and gingival crevicular fluid (GCF) can serve as possible periodontitis diagnostic indicators. In addition, studies have indicated that stem cell EVs may encourage periodontal regeneration. In this article, we mainly review the role of EVs in the pathogenesis of periodontitis and discuss their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Rong Cai
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
| | - Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| | - Chufan Ma
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, China
- *Correspondence: Chufan Ma, ; Jianliang Pang,
| |
Collapse
|
5
|
Correlation of Blood and Salivary pH Levels in Healthy, Gingivitis, and Periodontitis Patients before and after Non-Surgical Periodontal Therapy. Diagnostics (Basel) 2022; 12:diagnostics12010097. [PMID: 35054264 PMCID: PMC8774853 DOI: 10.3390/diagnostics12010097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is an infectious illness which leads to the inflammation of protective tissues around the teeth and the continuous loss of alveolar bone and conjunctive tissue. Biomarker analysis in serum and saliva helps in the evaluation of disease progression and activity. It is also established that every inflammatory change along with resultant damage of tissues ends up in altered pH values in the fluids and tissues. Aim: To correlate the connection of pH levels in both blood as well as saliva in healthy, periodontitis, and gingivitis patients. Materials and Methods: The current research involved 145 subjects amidst the age of 20 and 55 years. The subjects were split into three different groups: healthy (Group A), gingivitis (Group B), and finally chronic periodontitis (Group C). The recording of clinical parameters was done by gingival index (GI), probing depth (PD), and plaque index (PI). pH of saliva and blood was analyzed with the help of digital single electrode pH meter. Subjects have gone through scaling and root planning (SRP) coupled with the instructions of oral hygiene. They were recalled post 4 weeks, and saliva and blood samples were gathered for analyzing pH. Results: Clinical parameters GI and PI were statistically important in both group C as well as group B post SRP. A crucial change has been observed in attachment levels (AL) and PD in the case of periodontitis group post SRP. The difference in the salivary pH values were significant between group B vs. C and A vs. C before the treatment because the values for group C were acidic, whereas in groups B and A the pH was alkaline. After the treatment, the values were still significant because the pH has become more alkaline compared to preoperative value in both group B and C. Saliva’s pH levels have demonstrated a statistically significant reduction in group C post SRP. Conclusion: Salivary pH levels and blood evidently became alkaline in the group C patients post SRP and there is a positive correlation between them and the clinical parameters.
Collapse
|
6
|
Werber T, Bata Z, Vaszine ES, Berente DB, Kamondi A, Horvath AA. The Association of Periodontitis and Alzheimer's Disease: How to Hit Two Birds with One Stone. J Alzheimers Dis 2021; 84:1-21. [PMID: 34511500 DOI: 10.3233/jad-210491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of cognitive impairment in the elderly. Recent evidence suggests that preventive interventional trials could significantly reduce the risk for development of dementia. Periodontitis is the most common dental disease characterized by chronic inflammation and loss of alveolar bone and perialveolar attachment of teeth. Growing number of studies propose a potential link between periodontitis and neurodegeneration. In the first part of the paper, we overview case-control studies analyzing the prevalence of periodontitis among AD patients and healthy controls. Second, we survey observational libraries and cross-sectional studies investigating the risk of cognitive decline in patients with periodontitis. Next, we describe the current view on the mechanism of periodontitis linked neural damage, highlighting bacterial invasion of neural tissue from dental plaques, and periodontitis induced systemic inflammation resulting in a neuroinflammatory process. Later, we summarize reports connecting the four most common periodontal pathogens to AD pathology. Finally, we provide a practical guide for further prevalence and interventional studies on the management of cognitively high-risk patients with and without periodontitis. In this section, we highlight strategies for risk control, patient information, dental evaluation, reporting protocol and dental procedures in the clinical management of patients with a risk for periodontitis and with diagnosed periodontitis. In conclusion, our review summarizes the current view on the association between AD and periodontitis and provides a research and intervention strategy for harmonized interventional trials and for further case-control or cross-sectional studies.
Collapse
Affiliation(s)
- Tom Werber
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsofia Bata
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Eniko Szabo Vaszine
- Department of Conservative Dentistry, Semmelweis University, Budapest, Hungary
| | - Dalida Borbala Berente
- Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Anita Kamondi
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Neurology, Semmelweis University, Budapest, Hungary
| | - Andras Attila Horvath
- Neurocognitive Research Center, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
LaMonte MJ, Andrews CA, Hovey KM, Buck MJ, Li L, McSkimming DI, Banack HR, Rotterman J, Sun Y, Kirkwood KL, Wactawski-Wende J. Subgingival microbiome is associated with alveolar bone loss measured 5 years later in postmenopausal women. J Periodontol 2021; 92:648-661. [PMID: 33141988 PMCID: PMC8089116 DOI: 10.1002/jper.20-0445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND The aim of this study was to quantify the association between subgingival microbiota and periodontal disease progression in older women, for which limited published data exist. METHODS A total of 1016 postmenopausal women, aged 53 to 81 years, completed baseline (1997 to 2001) and 5-year (2002 to 2006) dental exams that included probing depth, clinical attachment level, gingival bleeding, and radiographic alveolar crestal height (ACH). Baseline microbiota were measured in subgingival plaque using 16S rRNA sequencing. Associations between 52 microbiota we previously found statistically significantly associated with clinical periodontal disease at baseline, were examined with disease progression. The traditional Socransky microbiota complexes also were evaluated. Side-by-side radiograph comparisons were used to define progression as ≥2 teeth with ≥1 mm ACH loss or ≥1 new tooth loss to periodontitis. The association between baseline centered log(2) ratio transformed microbial relative abundances and 5-year periodontal disease progression was measured with generalized linear models. RESULTS Of 36 microbiota we previously showed were elevated in moderate/severe disease at baseline, 24 had statistically significantly higher baseline mean relative abundance in progressing compared with non-progressing women (P < .05, all); which included all Socransky red bacteria (P. gingivalis, T. forsythia, T. denticola). Of 16 microbiota elevated in none/mild disease at baseline, five had statistically significantly lower baseline abundance in non-progressing compared with progressing women (P < 0.05, all), including one Socransky yellow bacteria (S. oralis). When adjusted for baseline age, socioeconomic status, and self-rated general health status, odds ratios for 5-year progression ranged from 1.18 to 1.51 (per 1-standard deviation increment in relative abundance) for microbiota statistically significantly (P < 0.05) positively associated with progression, and from 0.77 to 0.82 for those statistically significantly (P < 0.05) inversely associated with progression. These associations were similar when stratified on baseline levels of pocket depth, gingival bleeding, ACH, and smoking status. CONCLUSIONS These prospective results affirm clearly that subgingival microbiota are measurably elevated several years prior to progression of alveolar bone loss, and include antecedent elevations in previously undocumented taxa additional to known Socransky pathogenic complexes.
Collapse
Affiliation(s)
- Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Christopher A Andrews
- Department of Ophthalmology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen M Hovey
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Michael J Buck
- Department of Biochemistry, School of Medicine, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Lu Li
- Department of Computer Science and Engineering, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Daniel I McSkimming
- Department of Bioinformatics, University of South Florida, Tampa, Florida, USA
| | - Hailey R Banack
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Jane Rotterman
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Yijun Sun
- Department of Computer Science and Engineering, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Keith L Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo - SUNY, Buffalo, New York, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo - SUNY, Buffalo, New York, USA
| |
Collapse
|
8
|
Wadhawan A, Reynolds MA, Makkar H, Scott AJ, Potocki E, Hoisington AJ, Brenner LA, Dagdag A, Lowry CA, Dwivedi Y, Postolache TT. Periodontal Pathogens and Neuropsychiatric Health. Curr Top Med Chem 2021; 20:1353-1397. [PMID: 31924157 DOI: 10.2174/1568026620666200110161105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence incriminates low-grade inflammation in cardiovascular, metabolic diseases, and neuropsychiatric clinical conditions, all important causes of morbidity and mortality. One of the upstream and modifiable precipitants and perpetrators of inflammation is chronic periodontitis, a polymicrobial infection with Porphyromonas gingivalis (P. gingivalis) playing a central role in the disease pathogenesis. We review the association between P. gingivalis and cardiovascular, metabolic, and neuropsychiatric illness, and the molecular mechanisms potentially implicated in immune upregulation as well as downregulation induced by the pathogen. In addition to inflammation, translocation of the pathogens to the coronary and peripheral arteries, including brain vasculature, and gut and liver vasculature has important pathophysiological consequences. Distant effects via translocation rely on virulence factors of P. gingivalis such as gingipains, on its synergistic interactions with other pathogens, and on its capability to manipulate the immune system via several mechanisms, including its capacity to induce production of immune-downregulating micro-RNAs. Possible targets for intervention and drug development to manage distal consequences of infection with P. gingivalis are also reviewed.
Collapse
Affiliation(s)
- Abhishek Wadhawan
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Department of Psychiatry, Saint Elizabeths Hospital, Washington, D.C. 20032, United States
| | - Mark A Reynolds
- Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore 21201, United States
| | - Hina Makkar
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Alison J Scott
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, United States
| | - Eileen Potocki
- VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, United States
| | - Andrew J Hoisington
- Air Force Institute of Technology, Wright-Patterson Air Force Base, United States
| | - Lisa A Brenner
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States
| | - Aline Dagdag
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States
| | - Christopher A Lowry
- Departments of Psychiatry, Neurology, and Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, United States
| | - Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Aurora, United States.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, United States
| |
Collapse
|
9
|
Yamamoto M, Aizawa R. Maintaining a protective state for human periodontal tissue. Periodontol 2000 2021; 86:142-156. [PMID: 33690927 DOI: 10.1111/prd.12367] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Periodontitis, caused by infection with periodontal pathogens, is primarily characterized by inflammatory bone resorption and destruction of connective tissue. Simply describing periodontitis as a specific bacterial infection cannot completely explain the various periodontal tissue destruction patterns observed. Periodontal tissue damage is thought to be caused by various factors. In recent years, research goals for periodontal pathogens have shifted from searching for specific pathogens to investigating mechanisms that damage periodontal tissues. Bacteria interact directly with the host in several ways, influencing expression and activity of molecules that evade host defenses, and destroying local tissues and inhibiting their repair. The host's innate and acquired immune systems are important defense mechanisms that protect periodontal tissues from attack and invasion of periodontal pathogens, thus preventing infection. Innate and acquired immunity have evolved to confront the microbial challenge, forming a seamless defense network in periodontal tissues. In the innate immune response, host cells quickly detect, via specialized receptors, macromolecules and nucleic acids present on bacterial cell walls, and this triggers a protective, inflammatory response. The work of this subsystem of host immunity is performed mainly by phagocytes, beta-defensin, and the complement system. In addition, the first line of defense in oral innate immunity is the junctional epithelium, which acts as a physical barrier to the entry of oral bacteria and other nonself substances. In the presence of a normal flora, junctional epithelial cells differentiate actively and proliferate apically, with concomitant increase in chemotactic factor expression recruiting neutrophils. These immune cells play an important role in maintaining homeostasis and the protective state in periodontal tissue because they eliminate unwanted bacteria over time. Previous studies indicate a mechanism for attracting immune cells to periodontal tissue with the purpose of maintaining a protective state; although this mechanism can function without bacteria, it is enhanced by the normal flora. A better understanding of the relationship between the protective state and its disruption in periodontal disease could lead to the development of new treatment strategies for periodontal disease.
Collapse
Affiliation(s)
- Matsuo Yamamoto
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| | - Ryo Aizawa
- Department of Periodontology, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
10
|
Fine DH, Schreiner H, Velusamy SK. Aggregatibacter, A Low Abundance Pathobiont That Influences Biogeography, Microbial Dysbiosis, and Host Defense Capabilities in Periodontitis: The History of A Bug, And Localization of Disease. Pathogens 2020; 9:pathogens9030179. [PMID: 32131551 PMCID: PMC7157720 DOI: 10.3390/pathogens9030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, the focus of this review, was initially proposed as a microbe directly related to a phenotypically distinct form of periodontitis called localized juvenile periodontitis. At the time, it seemed as if specific microbes were implicated as the cause of distinct forms of disease. Over the years, much has changed. The sense that specific microbes relate to distinct forms of disease has been challenged, as has the sense that distinct forms of periodontitis exist. This review consists of two components. The first part is presented as a detective story where we attempt to determine what role, if any, Aggregatibacter plays as a participant in disease. The second part describes landscape ecology in the context of how the host environment shapes the framework of local microbial dysbiosis. We then conjecture as to how the local host response may limit the damage caused by pathobionts. We propose that the host may overcome the constant barrage of a dysbiotic microbiota by confining it to a local tooth site. We conclude speculating that the host response can confine local damage by restricting bacteremic translocation of members of the oral microbiota to distant organs thus constraining morbidity and mortality of the host.
Collapse
|
11
|
Hajishengallis G, Diaz PI. Porphyromonas gingivalis: Immune subversion activities and role in periodontal dysbiosis. ACTA ACUST UNITED AC 2020; 7:12-21. [PMID: 33344104 DOI: 10.1007/s40496-020-00249-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose of review This review summarizes mechanisms by which Porphyromonas gingivalis interacts with community members and the host so that it can persist in the periodontium under inflammatory conditions that drive periodontal disease. Recent findings Recent advances indicate that, in great part, the pathogenicity of P. gingivalis is dependent upon its ability to establish residence in the subgingival environment and to subvert innate immunity in a manner that uncouples the nutritionally favorable (for the bacteria) inflammatory response from antimicrobial pathways. While the initial establishment of P. gingivalis is dependent upon interactions with early colonizing bacteria, the immune subversion strategies of P. gingivalis in turn benefit co-habiting species. Summary Specific interspecies interactions and subversion of the host response contribute to the emergence and persistence of dysbiotic communities and are thus targets of therapeutic approaches for the treatment of periodontitis.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40 Street, Philadelphia, PA 19104, USA
| | - Patricia I Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Riviere GR, Thompson AJ, Brannan RD, McCoy DE, Simonson LG. Detection of Pathogen-Related Oral Spirochetes, Treponema denticola, and Treponema socranskii in Dental Plaque from Dogs. J Vet Dent 2020. [DOI: 10.1177/089875649601300401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spirochetes have been observed in dental plaque from dogs, but specific spirochetes have not been identified. In particular, it is not known whether treponemes associated with periodontal diseases in humans also occur in dogs, and whether, like in humans, detection of specific treponemes correlates with periodontal status of dogs. Forty-two dogs were grouped according to the worst periodontal condition in the mouth, as determined by overt signs of inflammation and pocket probing depths. A representative specimen of dental plaque was obtained by pooling subgingival plaque collected from three uniform reference sites, irrespective of periodontal status at selected sites. The presence of pathogen-related oral spirochetes, Treponema denticola, and T. socranskii was determined using specific monoclonal antibodies in an immunocytochemical microscopic assay. All three treponemes were detected in all groups, but a significantly greater proportion of dogs with pocket probing depths ≥5 mm had detectable treponemes, compared to dogs that were in periodontal health.
Collapse
Affiliation(s)
- George R. Riviere
- From the Department of Pediatric Dentistry, Oregon Health Sciences University, 611 SW Campus Drive, Portland, OR 97201-3097
| | - Aaron J. Thompson
- From the Department of Pediatric Dentistry, Oregon Health Sciences University, 611 SW Campus Drive, Portland, OR 97201-3097
| | | | - Donald E. McCoy
- North Portland Animal Clinic, 2009 N Killingsworth, Portland, OR 97217
| | | |
Collapse
|
13
|
Abstract
The dynamic and polymicrobial oral microbiome is a direct precursor of diseases such as dental caries and periodontitis, two of the most prevalent microbially induced disorders worldwide. Distinct microenvironments at oral barriers harbour unique microbial communities, which are regulated through sophisticated signalling systems and by host and environmental factors. The collective function of microbial communities is a major driver of homeostasis or dysbiosis and ultimately health or disease. Despite different aetiologies, periodontitis and caries are each driven by a feedforward loop between the microbiota and host factors (inflammation and dietary sugars, respectively) that favours the emergence and persistence of dysbiosis. In this Review, we discuss current knowledge and emerging mechanisms governing oral polymicrobial synergy and dysbiosis that have both enhanced our understanding of pathogenic mechanisms and aided the design of innovative therapeutic approaches for oral diseases.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA.
| | - Hyun Koo
- Department of Orthodontics and Divisions of Pediatric Dentistry and Community Oral Health, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Noël A, Verroken A, Belkhir L, Rodriguez-Villalobos H. Fatal thoracic empyema involving Campylobacter rectus: A case report. Anaerobe 2018; 49:95-98. [PMID: 29325875 DOI: 10.1016/j.anaerobe.2017.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/28/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
We report the case of a 69-year-old man admitted for septic shock secondary to necrotic pneumoniae complicated by thoracic empyema of fatal issue. Microbiological examination of pleural liquid revealed a mixed anaerobic flora involving Campylobacter rectus and Actinomyces meyeri. Campylobacter rectus is an infrequent anaerobic pathogen of oral origin To our knowledge, this is the first case report of fatal C. rectus - associated thoracic empyema, and only the second reported case in which identification was successfully performed by MALDI-TOF MS.
Collapse
Affiliation(s)
- A Noël
- Department of Microbiology, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium.
| | - A Verroken
- Department of Microbiology, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - L Belkhir
- Department of Internal Medicine and Infectious Diseases, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | | |
Collapse
|
15
|
Abstract
An appreciation of dental plaque and the host response provides an essential basis from which to understand the disease process and treatment rationale. This information will help the reader to understand not only the way that plaque may have an impact on oral tissues but also why regular effective cleaning may improve periodontal health and why some individuals appear to have a greater susceptibility to periodontitis than others, either intrinsically or in relation to various systemic factors.
Collapse
|
16
|
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Front Microbiol 2016; 7:53. [PMID: 26903954 PMCID: PMC4746253 DOI: 10.3389/fmicb.2016.00053] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/12/2016] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease represents a group of oral inflammatory infections initiated by oral pathogens which exist as a complex biofilms on the tooth surface and cause destruction to tooth supporting tissues. The severity of this disease ranges from mild and reversible inflammation of the gingiva (gingivitis) to chronic destruction of connective tissues, the formation of periodontal pocket and ultimately result in loss of teeth. While human subgingival plaque harbors more than 500 bacterial species, considerable research has shown that Porphyromonas gingivalis, a Gram-negative anaerobic bacterium, is the major etiologic agent which contributes to chronic periodontitis. This black-pigmented bacterium produces a myriad of virulence factors that cause destruction to periodontal tissues either directly or indirectly by modulating the host inflammatory response. Here, this review provides an overview of P. gingivalis and how its virulence factors contribute to the pathogenesis with other microbiome consortium in oral cavity.
Collapse
Affiliation(s)
- Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Sunway Campus Subang Jaya, Malaysia
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Benachinmardi KK, Nagamoti J, Kothiwale S, Metgud SC. Microbial flora in chronic periodontitis: study at a tertiary health care center from north karnataka. J Lab Physicians 2015; 7:49-54. [PMID: 25949060 PMCID: PMC4411811 DOI: 10.4103/0974-2727.154798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background and Objective: Periodontitis is a major public health problem in India with a prevalence of 60–80%. If untreated it acts as a risk factor for systemic diseases. Data on anaerobic periodontal microflora in the Indian population is very scarce. Hence, this study was undertaken to know the nature of oral microbiota in chronic periodontitis in this region of India and also the semiquantitative study in pre- and post-treatment group and to determine antibiotic susceptibility pattern for aerobic isolates. Materials and Methods: The present study was conducted on 60 cases. Material was collected from the subgingival pockets in patients with chronic periodontitis attending the Periodontology, Outpatient Department. Clinical samples were transported to the laboratory in fluid thioglycollate medium. Initially Gram's stain and Fontana stains were done. Aerobic, anaerobic, and microaerophilic culture were put up. Antibiotic sensitivity test was done for aerobic isolates. Results: Sixty samples yielded 121 isolates of which 78.34% were polymicrobial, 11.66% were monomicrobial and oral commensals were grown in 10% cases. Out of 121 isolates 91.74% were anaerobic, 7.43% were aerobic and 0.83% were microaerophilic. Fusobacterium species was the most common isolate among anaerobes. Using “paired t-test” “P” value was significant indicating significant reduction in colony count after phase-I periodontal therapy. Conclusion: This study has shown that anaerobic bacteria are important cause of chronic periodontitis, along with aerobes and microaerophilic organisms. Fusobacterium spp, Bacteroides fragilis, Porphyromonas spp and Prevotella intermedia are the most common anaerobic pathogens. Bacterial culture methods are still economical and gold standard.
Collapse
Affiliation(s)
- Kirtilaxmi K Benachinmardi
- Department of Microbiology, Employees' State Insurance Corporation Medical College and PGIMSR, Rajajinagar, Bengaluru, India
| | - Jyoti Nagamoti
- Department of Microbiology, Jawaharlal Nehru Medical College, Belgaum, Karnataka, India
| | - Shaila Kothiwale
- Department of Periodontics, V. K. Institute of Dental Sciences, KLE University, Belgaum, Karnataka, India
| | - Sharada C Metgud
- Department of Microbiology, Jawaharlal Nehru Medical College, Belgaum, Karnataka, India
| |
Collapse
|
18
|
Amaliya A, Laine ML, Delanghe JR, Loos BG, Van Wijk AJ, Van der Velden U. Java project on periodontal diseases: periodontal bone loss in relation to environmental and systemic conditions. J Clin Periodontol 2015; 42:325-32. [DOI: 10.1111/jcpe.12381] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Amaliya
- Department of Periodontology; Padjadjaran State University; Bandung Indonesia
| | - Marja L. Laine
- Department of Periodontology; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Joris R. Delanghe
- Department of Laboratory Medicine; Ghent University Hospital; Ghent Belgium
| | - Bruno G. Loos
- Department of Periodontology; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| | - Arjen J. Van Wijk
- Department of Social Dentistry; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University; Amsterdam The Netherlands
| | - Ubele Van der Velden
- Department of Periodontology; Academic Centre for Dentistry Amsterdam (ACTA); University of Amsterdam and VU University Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
19
|
Yu G, Dye BA, Gail MH, Shi J, Klepac-Ceraj V, Paster BJ, Wang GQ, Wei WQ, Fan JH, Qiao YL, Dawsey SM, Freedman ND, Abnet CC. The association between the upper digestive tract microbiota by HOMIM and oral health in a population-based study in Linxian, China. BMC Public Health 2014; 14:1110. [PMID: 25348940 PMCID: PMC4223728 DOI: 10.1186/1471-2458-14-1110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bacteria affect oral health, but few studies have systematically examined the role of bacterial communities in oral diseases. We examined this relationship in a large population-based Chinese cancer screening cohort. METHODS Human Oral Microbe Identification Microarrays were used to test for the presence of 272 human oral bacterial species (97 genera) in upper digestive tract (UDT) samples collected from 659 participants. Oral health was assessed using US NHANES (National Health and Nutrition Examination Survey) protocols. We assessed both dental health (total teeth missing; tooth decay; and the decayed, missing, and filled teeth (DMFT) score) and periodontal health (bleeding on probing (BoP) extent score, loss of attachment extent score, and a periodontitis summary estimate). RESULTS Microbial richness, estimated by number of genera per sample, was positively correlated with BoP score (P = 0.015), but negatively correlated with tooth decay and DMFT score (P = 0.008 and 0.022 respectively). Regarding β-diversity, as estimated by the UniFrac distance matrix for pairwise differences among samples, at least one of the first three principal components of the UniFrac distance matrix was correlated with the number of missing teeth, tooth decay, DMFT, BoP, or periodontitis. Of the examined genera, Parvimonas was positively associated with BoP and periodontitis. Veillonellacease [G-1] was associated with a high DMFT score, and Filifactor and Peptostreptococcus were associated with a low DMFT score. CONCLUSIONS Our results suggest distinct relationships between UDT microbiota and dental and periodontal health. Poor dental health was associated with a less microbial diversity, whereas poor periodontal health was associated with more diversity and the presence of potentially pathogenic species.
Collapse
Affiliation(s)
- Guoqin Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol 2014; 29:248-57. [PMID: 24976068 DOI: 10.1111/omi.12065] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2014] [Indexed: 01/05/2023]
Abstract
In periodontitis, dysbiotic microbial communities exhibit synergistic interactions for enhanced protection from host defenses, nutrient acquisition, and persistence in an inflammatory environment. This review discusses evidence that periodontitis-associated communities are 'inflammo-philic' (=loving or attracted to inflammation) in that they have evolved to not only endure inflammation but also to take advantage of it. In this regard, inflammation can drive the selection and enrichment of these pathogenic communities by providing a source of nutrients in the form of tissue breakdown products (e.g. degraded collagen peptides and heme-containing compounds). In contrast, those species that cannot benefit from the altered ecological conditions of the inflammatory environment, or for which host inflammation is detrimental, are likely to be outcompeted. Consistent with the concept that inflammation fosters the growth of dysbiotic microbial communities, the bacterial biomass of human periodontitis-associated biofilms was shown to increase with increasing periodontal inflammation. Conversely, anti-inflammatory treatments in animal models of periodontitis were shown to diminish the periodontal bacterial load, in addition to protecting from bone loss. The selective flourishing of inflammophilic bacteria can perpetuate inflammatory tissue destruction by setting off a 'vicious cycle' for disease progression, in which dysbiosis and inflammation reinforce each other. Therefore, the control of inflammation appears to be central to the treatment of periodontitis, as it is likely to control both dysbiosis and disease progression.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
21
|
Development and evaluation of new primers for PCR-based identification of Prevotella intermedia. Anaerobe 2014; 28:126-9. [PMID: 24875331 DOI: 10.1016/j.anaerobe.2014.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to develop new Prevotella intermedia-specific PCR primers based on the 16S rRNA. The new primer set, Pi-192 and Pi-468, increased the accuracy of PCR-based P. intermedia identification and could be useful in the detection of P. intermedia as well as epidemiological studies on periodontal disease.
Collapse
|
22
|
Gonçalves PF, Klepac-Ceraj V, Huang H, Paster BJ, Aukhil I, Wallet SM, Shaddox LM. Correlation of Aggregatibacter actinomycetemcomitans detection with clinical/immunoinflammatory profile of localized aggressive periodontitis using a 16S rRNA microarray method: a cross-sectional study. PLoS One 2013; 8:e85066. [PMID: 24376864 PMCID: PMC3871691 DOI: 10.1371/journal.pone.0085066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE The objective of this study was to determine whether the detection of Aggregatibacter actinomycetemcomitans (Aa) correlates with the clinical and immunoinflammatory profile of Localized Aggressive Periodontitis (LAP), as determined by by 16S rRNA gene-based microarray. SUBJECTS AND METHODS Subgingival plaque samples from the deepest diseased site of 30 LAP patients [PD ≥ 5 mm, BoP and bone loss] were analyzed by 16S rRNA gene-based microarrays. Gingival crevicular fluid (GCF) samples were analyzed for 14 cyto/chemokines. Peripheral blood was obtained and stimulated in vitro with P.gingivalis and E.coli to evaluate inflammatory response profiles. Plasma lipopolysaccharide (LPS) levels were also measured. RESULTS Aa was detected in 56% of LAP patients and was shown to be an indicator for different bacterial community structures (p<0.01). Elevated levels of pro-inflammatory cyto/chemokines were detected in LPS-stimulated blood samples in both Aa-detected and Aa-non-detected groups (p>0.05). Clinical parameters and serum LPS levels were similar between groups. However, Aa-non-detected GCF contained higher concentration of IL-8 than Aa-detected sites (p<0.05). TNFα and IL1β were elevated upon E.coli LPS stimulation of peripheral blood cells derived from patients with Aa-detected sites. CONCLUSIONS Our findings demonstrate that the detection of Aa in LAP affected sites, did not correlate with clinical severity of the disease at the time of sampling in this cross-sectional study, although it did associate with lower local levels of IL-8, a different subgingival bacterial profile and elevated LPS-induced levels of TNFα and IL1β.
Collapse
Affiliation(s)
- Patricia F Gonçalves
- Department of Dentistry, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil ; Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Vanja Klepac-Ceraj
- Department of Microbial Ecology and Pathogenesis, The Fortsyth Institute, Cambridge, Massachusetts, United States of America ; Department of Biological Sciences, Wellesley College, Wellesley, Massachusetts, United States of America
| | - Hong Huang
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Bruce J Paster
- Department of Microbial Ecology and Pathogenesis, The Fortsyth Institute, Cambridge, Massachusetts, United States of America ; Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Ikramuddin Aukhil
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Shannon M Wallet
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Luciana M Shaddox
- Department of Periodontology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Dashper SG, O'Brien-Simpson NM, Bhogal PS, Franzmann AD, Reynolds EC. Purification and characterization of a putative fimbrial protein/receptor ofPorphyromonas gingivalis. Aust Dent J 2013. [DOI: 10.1111/j.1834-7819.1998.tb06097.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Baliga S, Muglikar S, Kale R. Salivary pH: A diagnostic biomarker. J Indian Soc Periodontol 2013; 17:461-5. [PMID: 24174725 PMCID: PMC3800408 DOI: 10.4103/0972-124x.118317] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 07/12/2013] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. STUDY DESIGN The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. RESULTS The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001) whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001). CONCLUSION These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.
Collapse
Affiliation(s)
- Sharmila Baliga
- Department of Periodontology and Implantology, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Sangeeta Muglikar
- Department of Periodontology and Implantology, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Rahul Kale
- Department of Periodontology and Implantology, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| |
Collapse
|
25
|
Yoneda S, Kawarai T, Narisawa N, Tuna E, Sato N, Tsugane T, Saeki Y, Ochiai K, Senpuku H. Effects of short-chain fatty acids onActinomyces naeslundiibiofilm formation. Mol Oral Microbiol 2013; 28:354-65. [DOI: 10.1111/omi.12029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Affiliation(s)
- S. Yoneda
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - T. Kawarai
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - N. Narisawa
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | | | - N. Sato
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| | - T. Tsugane
- Oral Science Section Basic Research Department; Lotte Co., Ltd.; Saitama; Japan
| | - Y. Saeki
- Oral Science Section Basic Research Department; Lotte Co., Ltd.; Saitama; Japan
| | - K. Ochiai
- Department of Microbiology; Nihon University of Dentistry; Tokyo; Japan
| | - H. Senpuku
- Department of Bacteriology; National Institute of Infectious Diseases; Tokyo; Japan
| |
Collapse
|
26
|
Hajishengallis G, Abe T, Maekawa T, Hajishengallis E, Lambris JD. Role of complement in host-microbe homeostasis of the periodontium. Semin Immunol 2013; 25:65-72. [PMID: 23684627 DOI: 10.1016/j.smim.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
Complement plays a key role in immunity and inflammation through direct effects on immune cells or via crosstalk and regulation of other host signaling pathways. Deregulation of these finely balanced complement activities can link infection to inflammatory tissue damage. Periodontitis is a polymicrobial community-induced chronic inflammatory disease that can destroy the tooth-supporting tissues. In this review, we summarize and discuss evidence that complement is involved in the dysbiotic transformation of the periodontal microbiota and in the inflammatory process that leads to the destruction of periodontal bone. Recent insights into the mechanisms of complement involvement in periodontitis have additionally provided likely targets for therapeutic intervention against this oral disease.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
27
|
Cugini C, Klepac-Ceraj V, Rackaityte E, Riggs JE, Davey ME. Porphyromonas gingivalis: keeping the pathos out of the biont. J Oral Microbiol 2013; 5:19804. [PMID: 23565326 PMCID: PMC3617648 DOI: 10.3402/jom.v5i0.19804] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 01/21/2023] Open
Abstract
The primary goal of the human microbiome initiative has been to increase our understanding of the structure and function of our indigenous microbiota and their effects on human health and predisposition to disease. Because of its clinical importance and accessibility for in vivo study, the oral biofilm is one of the best-understood microbial communities associated with the human body. Studies have shown that there is a succession of select microbial interactions that directs the maturation of a defined community structure, generating the formation of dental plaque. Although the initiating factors that lead to disease development are not clearly defined, in many individuals there is a fundamental shift from a health-associated biofilm community to one that is pathogenic in nature and a central player in the pathogenic potential of this community is the presence of Porphyromonas gingivalis. This anaerobic bacterium is a natural member of the oral microbiome, yet it can become highly destructive (termed pathobiont) and proliferate to high cell numbers in periodontal lesions, which is attributed to its arsenal of specialized virulence factors. Hence, this organism is regarded as a primary etiologic agent of periodontal disease progression. In this review, we summarize some of the latest information regarding what is known about its role in periodontitis, including pathogenic potential as well as ecological and nutritional parameters that may shift this commensal to a virulent state. We also discuss parallels between the development of pathogenic biofilms and the human cellular communities that lead to cancer, specifically we frame our viewpoint in the context of 'wounds that fail to heal'.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA ; Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
28
|
Hajishengallis G, Lambris JD. Complement and dysbiosis in periodontal disease. Immunobiology 2013; 217:1111-6. [PMID: 22964237 DOI: 10.1016/j.imbio.2012.07.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 07/13/2012] [Accepted: 07/14/2012] [Indexed: 12/16/2022]
Abstract
Signaling crosstalk between complement and Toll-like receptors (TLRs) normally serves to coordinate host immunity. However, the periodontal bacterium Porphyromonas gingivalis expresses C5 convertase-like enzymatic activity and adeptly exploits complement-TLR crosstalk to subvert host defenses and escape elimination. Intriguingly, this defective immune surveillance leads to the remodeling of the periodontal microbiota to a dysbiotic state that causes inflammatory periodontitis. Understanding the mechanisms by which P. gingivalis modulates complement function to cause dysbiosis offers new targets for complement therapeutics.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
29
|
Cugini C, Stephens DN, Nguyen D, Kantarci A, Davey ME. Arginine deiminase inhibits Porphyromonas gingivalis surface attachment. MICROBIOLOGY-SGM 2012; 159:275-285. [PMID: 23242802 DOI: 10.1099/mic.0.062695-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The oral cavity is host to a complex microbial community whose maintenance depends on an array of cell-to-cell interactions and communication networks, with little known regarding the nature of the signals or mechanisms by which they are sensed and transmitted. Determining the signals that control attachment, biofilm development and outgrowth of oral pathogens is fundamental to understanding pathogenic biofilm development. We have previously identified a secreted arginine deiminase (ADI) produced by Streptococcus intermedius that inhibited biofilm development of the commensal pathogen Porphyromonas gingivalis through downregulation of genes encoding the major (fimA) and minor (mfa1) fimbriae, both of which are required for proper biofilm development. Here we report that this inhibitory effect is dependent on enzymic activity. We have successfully cloned, expressed and defined the conditions to ensure that ADI from S. intermedius is enzymically active. Along with the cloning of the wild-type allele, we have created a catalytic mutant (ADIC399S), in which the resulting protein is not able to catalyse the hydrolysis of l-arginine to l-citrulline. P. gingivalis is insensitive to the ADIC399S catalytic mutant, demonstrating that enzymic activity is required for the effects of ADI on biofilm formation. Biofilm formation is absent under l-arginine-deplete conditions, and can be recovered by the addition of the amino acid. Taken together, the results indicate that arginine is an important signal that directs biofilm formation by this anaerobe. Based on our findings, we postulate that ADI functions to reduce arginine levels and, by a yet to be identified mechanism, signals P. gingivalis to alter biofilm development. ADI release from the streptococcal cell and its cross-genera effects are important findings in understanding the nature of inter-bacterial signalling and biofilm-mediated diseases of the oral cavity.
Collapse
Affiliation(s)
- Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | | | - Daniel Nguyen
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Department of Periodontology, The Forsyth Institute, Cambridge, MA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.,Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
30
|
Priyadarshini R, Cugini C, Arndt A, Chen T, Tjokro NO, Goodman SD, Davey ME. The nucleoid-associated protein HUβ affects global gene expression in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2012; 159:219-229. [PMID: 23175503 DOI: 10.1099/mic.0.061002-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HU is a non-sequence-specific DNA-binding protein and one of the most abundant nucleoid-associated proteins in the bacterial cell. Like Escherichia coli, the genome of Porphyromonas gingivalis is predicted to encode both the HUα (PG1258) and the HUβ (PG0121) subunit. We have previously reported that PG0121 encodes a non-specific DNA-binding protein and that PG0121 is co-transcribed with the K-antigen capsule synthesis operon. We also reported that deletion of PG0121 resulted in downregulation of capsule operon expression and produced a P. gingivalis strain that is phenotypically deficient in surface polysaccharide production. Here, we show through complementation experiments in an E. coli MG1655 hupAB double mutant strain that PG0121 encodes a functional HU homologue. Microarray and quantitative RT-PCR analysis were used to further investigate global transcriptional regulation by HUβ using comparative expression profiling of the PG0121 (HUβ) mutant strain to the parent strain, W83. Our analysis determined that expression of genes encoding proteins involved in a variety of biological functions, including iron acquisition, cell division and translation, as well as a number of predicted nucleoid associated proteins were altered in the PG0121 mutant. Phenotypic and quantitative real-time-PCR (qRT-PCR) analyses determined that under iron-limiting growth conditions, cell division and viability were defective in the PG0121 mutant. Collectively, our studies show that PG0121 does indeed encode a functional HU homologue, and HUβ has global regulatory functions in P. gingivalis; it affects not only production of capsular polysaccharides but also expression of genes involved in basic functions, such as cell wall synthesis, cell division and iron uptake.
Collapse
Affiliation(s)
- Richa Priyadarshini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Carla Cugini
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Tsute Chen
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| | - Natalia O Tjokro
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Steven D Goodman
- Division of Biomedical Sciences, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mary E Davey
- Department of Oral Medicine Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Department of Molecular Genetics, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
31
|
Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral Microbiol 2012; 27:409-19. [PMID: 23134607 DOI: 10.1111/j.2041-1014.2012.00663.x] [Citation(s) in RCA: 795] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
Recent advancements in the periodontal research field are consistent with a new model of pathogenesis according to which periodontitis is initiated by a synergistic and dysbiotic microbial community rather than by select 'periopathogens', such as the 'red complex'. In this polymicrobial synergy, different members or specific gene combinations within the community fulfill distinct roles that converge to shape and stabilize a disease-provoking microbiota. One of the core requirements for a potentially pathogenic community to arise involves the capacity of certain species, termed 'keystone pathogens', to modulate the host response in ways that impair immune surveillance and tip the balance from homeostasis to dysbiosis. Keystone pathogens also elevate the virulence of the entire microbial community through interactive communication with accessory pathogens. Other important core functions for pathogenicity require the expression of diverse molecules (e.g. appropriate adhesins, cognate receptors, proteolytic enzymes and proinflammatory surface structures/ligands), which in combination act as community virulence factors to nutritionally sustain a heterotypic, compatible and proinflammatory microbial community that elicits a non-resolving and tissue-destructive host response. On the basis of the fundamental concepts underlying this model of periodontal pathogenesis, that is, polymicrobial synergy and dysbiosis, we term it the PSD model.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
32
|
Abstract
Recent studies have highlighted the importance of the human microbiome in health and disease. However, for the most part the mechanisms by which the microbiome mediates disease, or protection from it, remain poorly understood. The keystone-pathogen hypothesis holds that certain low-abundance microbial pathogens can orchestrate inflammatory disease by remodelling a normally benign microbiota into a dysbiotic one. In this Opinion article, we critically assess the available literature that supports this hypothesis, which may provide a novel conceptual basis for the development of targeted diagnostics and treatments for complex dysbiotic diseases.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
33
|
McIntosh ML, Hajishengallis G. Inhibition of Porphyromonas gingivalis-induced periodontal bone loss by CXCR4 antagonist treatment. Mol Oral Microbiol 2012; 27:449-57. [PMID: 23134610 DOI: 10.1111/j.2041-1014.2012.00657.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial pathogens have evolved mechanisms to proactively manipulate innate immunity, thereby improving their fitness in mammalian hosts. We have previously shown that Porphyromonas gingivalis exploits CXC-chemokine receptor-4 (CXCR4) to instigate a subversive crosstalk with Toll-like receptor 2 that inhibits leukocyte killing of this periodontal pathogen. However, whether CXCR4 plays a role in periodontal disease pathogenesis has not been previously addressed. Here, we hypothesized that CXCR4 is required for P. gingivalis virulence in the periodontium and that treatment with AMD3100, a potent CXCR4 antagonist, would inhibit P. gingivalis-induced periodontitis. Indeed, mice given AMD3100 via osmotic minipumps became resistant to induction of periodontal bone loss following oral inoculation with P. gingivalis. AMD3100 appeared to act in an antimicrobial manner, because mice treated with AMD3100 were protected against P. gingivalis colonization and the associated elevation of the total microbiota counts in the periodontal tissue. Moreover, even when administered 2 weeks after infection, AMD3100 halted the progression of P. gingivalis-induced periodontal bone loss. Therefore, AMD3100 can act in both preventive and therapeutic ways and CXCR4 antagonism could be a promising novel approach to treat human periodontitis.
Collapse
Affiliation(s)
- M L McIntosh
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY, USA
| | | |
Collapse
|
34
|
Stájer A, Urbán E, Pelsõczi I, Mihalik E, Rakonczay Z, Nagy K, Turzó K, Radnai M. Effect of caries preventive products on the growth of bacterial biofilm on titanium surface. Acta Microbiol Immunol Hung 2012; 59:51-61. [PMID: 22510287 DOI: 10.1556/amicr.59.2012.1.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorides may affect the oxide layer on titanium surface. Caries preventive mouthwashes or gels contain fluorides and are applied at low pH. The aim of the present work was to study whether various concentrations of fluoride at acidic pH cause changes in the surface structure on the polished region of Ti implants, and alter the adherence and colonization of bacteria. Commercially pure Ti grade 4 discs with a polished surface were treated with a mouthwash containing 0.025% fluoride, a gel containing 1.25% fluoride or a 1% aqueous solution of NaF (pH 4.5). The change of surface roughness of the samples and the colonization of Porphyromonas gingivalis strains were studied by scanning electron microscopy after 5 days of anaerobic incubation. The quantity of the bacterial protein was determined by protein assay analysis. Agents with high fluoride concentration at acidic pH increased the roughness of the Ti surface. A slight increase in the amount of bacteria was found on the surfaces treated with 1% NaF and gel in comparison with the control surface. This study suggested that a high fluoride concentration at acidic pH may hinder the development of a healthy transgingival epithelial junction on Ti implants, due to bacterial colonization.
Collapse
Affiliation(s)
- Anette Stájer
- 1 University of Szeged Department of Prosthodontics and Oral Biology, Faculty of Dentistry Szeged Hungary
| | - Edit Urbán
- 2 University of Szeged Department of Clinical Microbiology, Faculty of Medicine Szeged Hungary
| | - István Pelsõczi
- 1 University of Szeged Department of Prosthodontics and Oral Biology, Faculty of Dentistry Szeged Hungary
| | - Erzsébet Mihalik
- 3 University of Szeged Department of Botany and Botanic Garden, Faculty of Science and Informatics Szeged Hungary
| | - Zoltán Rakonczay
- 1 University of Szeged Department of Prosthodontics and Oral Biology, Faculty of Dentistry Szeged Hungary
| | - Katalin Nagy
- 4 University of Szeged Department of Oral Surgery, Faculty of Dentistry Szeged Hungary
| | - Kinga Turzó
- 1 University of Szeged Department of Prosthodontics and Oral Biology, Faculty of Dentistry Szeged Hungary
| | - Márta Radnai
- 1 University of Szeged Department of Prosthodontics and Oral Biology, Faculty of Dentistry Szeged Hungary
| |
Collapse
|
35
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
36
|
Park SN, Park JY, Kook JK. Development of species-specific polymerase chain reaction primers for detection of Fusobacterium periodonticum. Microbiol Immunol 2011; 54:750-3. [PMID: 21223363 DOI: 10.1111/j.1348-0421.2010.00279.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to develop species-specific PCR primers for detection of Fusobacterium periodonticum. The specificity data showed that two sets of PCR primers, Fp-F3/Fp-R2 and Fp-F1/Fp-R2 PCR, produced amplicons from all the F. periodonticum, but not from the other species tested, which included 12 Fusobacterium species or subspecies and representative oral bacteria. The sensitivity of the primer sets was 4 or 40 pg of the chromosomal DNA from F. periodonticum ATCC 33693(T) . These results suggest that these two sets of PCR primers are quite sensitive in detection of F. periodonticum in molecular epidemiological studies of periodontitis.
Collapse
Affiliation(s)
- Soon-Nang Park
- Department of Oral Biochemistry, Medical School, Chosun University, Gwangju, Korea
| | | | | |
Collapse
|
37
|
HU protein affects transcription of surface polysaccharide synthesis genes in Porphyromonas gingivalis. J Bacteriol 2010; 192:6217-29. [PMID: 20889748 DOI: 10.1128/jb.00106-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
K-antigen capsule synthesis is an important virulence determinant of the oral anaerobe Porphyromonas gingivalis. We previously reported that the locus required for synthesis of this surface polysaccharide in strain W83 (TIGR identification PG0106 to PG0120) is transcribed as a large (∼16.7-kb) polycistronic message. Through sequence analysis, we have now identified a 77-bp inverted repeat located upstream (206 bp) of the start codon of PG0106 that is capable of forming a large hairpin structure. Further sequence analysis just upstream and downstream of the capsule synthesis genes revealed the presence of two genes oriented in the same direction as the operon that are predicted to encode DNA binding proteins: PG0104, which is highly similar (57%) to DNA topoisomerase III, and PG0121, which has high similarity (72%) to DNA binding protein HU (β-subunit). In this report, we show that these two genes, as well as the 77-bp inverted repeat region, are cotranscribed with the capsule synthesis genes, resulting in a large transcript that is ∼19.4 kb (based on annotation). We also show that a PG0121 recombinant protein is a nonspecific DNA binding protein with strong affinity to the hairpin structure, in vitro, and that transcript levels of the capsule synthesis genes are downregulated in a PG0121 deletion mutant. Furthermore, we show that this decrease in transcript levels corresponds to a decrease in the amount of polysaccharide produced. Interestingly, expression analysis of another polysaccharide synthesis locus (PG1136 to PG1143) encoding genes involved in synthesis of a surface-associated phosphorylated branched mannan (APS) indicated that this locus is also downregulated in the PG0121 mutant. Altogether our data indicate that HU protein modulates expression of surface polysaccharides in P. gingivalis strain W83.
Collapse
|
38
|
Iwano Y, Sugano N, Matsumoto K, Nishihara R, Iizuka T, Yoshinuma N, Ito K. Salivary microbial levels in relation to periodontal status and caries development. J Periodontal Res 2010; 45:165-9. [PMID: 20470257 DOI: 10.1111/j.1600-0765.2009.01213.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Although an inverse relationship between caries and periodontal disease has been suggested, some studies have reported a positive correlation between periodontal disease and the decayed, missing and filled teeth (DMF) index. The aim of the present study was to examine the relationship between caries and periodontal disease. MATERIAL AND METHODS We assessed the clinical parameters and salivary levels of Porphyromonas gingivalis and Streptococcus mutans using real-time polymerase chain reaction in 40 subjects with varying degrees of caries and periodontal disease. RESULTS The salivary levels of S. mutans were significantly higher in the periodontally healthy group than in the periodontitis group. The salivary levels of P. gingivalis were significantly higher in the caries-free group than in the periodontally healthy group with caries. The salivary levels of S. mutans were significantly increased after the initial periodontal treatment. CONCLUSIONS This study showed that an inverse relationship exists between periodontitis and caries in terms of the clinical and bacteriological findings.
Collapse
Affiliation(s)
- Y Iwano
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Christopher AB, Arndt A, Cugini C, Davey ME. A streptococcal effector protein that inhibits Porphyromonas gingivalis biofilm development. MICROBIOLOGY-SGM 2010; 156:3469-3477. [PMID: 20705665 DOI: 10.1099/mic.0.042671-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dental plaque formation is a developmental process involving cooperation and competition within a diverse microbial community, approximately 70 % of which is composed of an array of streptococci during the early stages of supragingival plaque formation. In this study, 79 cell-free culture supernatants from a variety of oral streptococci were screened to identify extracellular compounds that inhibit biofilm formation by the oral anaerobe Porphyromonas gingivalis strain 381. The majority of the streptococcal supernatants (61 isolates) resulted in lysis of P. gingivalis cells, and some (17 isolates) had no effect on cell viability, growth or biofilm formation. One strain, however, produced a supernatant that abolished biofilm formation without affecting growth rate. Analysis of this activity led to the discovery that a 48 kDa protein was responsible for the inhibition. Protein sequence identification and enzyme activity assays identified the effector protein as an arginine deiminase. To identify the mechanism(s) by which this protein inhibits biofilm formation, we began by examining the expression levels of genes encoding fimbrial subunits; surface structures known to be involved in biofilm development. Quantitative RT-PCR analysis revealed that exposure of P. gingivalis cells to this protein for 1 h resulted in the downregulation of genes encoding proteins that are the major subunits of two distinct types of thin, single-stranded fimbriae (fimA and mfa1). Furthermore, this downregulation occurred in the absence of arginine deiminase enzymic activity. Hence, our data indicate that P. gingivalis can sense this extracellular protein, produced by an oral streptococcus (Streptococcus intermedius), and respond by downregulating expression of cell-surface appendages required for attachment and biofilm development.
Collapse
Affiliation(s)
| | - Annette Arndt
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Carla Cugini
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA, USA
| | - Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, MA, USA
| |
Collapse
|
40
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Tipton D, Legan Z, Dabbous M. Methamphetamine cytotoxicity and effect on LPS-stimulated IL-1β production by human monocytes. Toxicol In Vitro 2010; 24:921-7. [DOI: 10.1016/j.tiv.2009.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 12/19/2022]
|
42
|
McBain AJ, Madhwani T, Eatough J, Ledder R. An introduction to probiotics for dental health. ACTA ACUST UNITED AC 2009. [DOI: 10.1616/1476-2137.15748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Uematsu H, Hoshino E. Degradation of Arginine and Other Amino Acids byEubacterium nodatumATCC 33099. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609609166471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- H. Uematsu
- Department of Oral Microbiology, Niigata University School of Dentistry, Gakkocho-dori 2, Niigata, 951, Japan
| | - E. Hoshino
- Department of Oral Microbiology, Niigata University School of Dentistry, Gakkocho-dori 2, Niigata, 951, Japan
| |
Collapse
|
44
|
Rawlinson A, Eley A, Bennett KW, Goodwin L. Bacteroides gracilisin Periodontal Health and Disease. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609409141355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A. Rawlinson
- Department of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, S10 2TA, UK
| | - A. Eley
- Department of Experimental and Clinical Microbiology, University of Sheffield Medical School, Royal Hallamshire Hospital, Sheffield, S10 2RX, UK
| | - K. W. Bennett
- Department of Experimental and Clinical Microbiology, University of Sheffield Medical School, Royal Hallamshire Hospital, Sheffield, S10 2RX, UK
| | - L. Goodwin
- Department of Experimental and Clinical Microbiology, University of Sheffield Medical School, Royal Hallamshire Hospital, Sheffield, S10 2RX, UK
| |
Collapse
|
45
|
Tanner A, Maiden MFJ. Gingivitis and the Initial Periodontal Lesion. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609609166479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A. Tanner
- Forsyth Dental Center, 140 The Fenway, Boston, MA, 02115, USA
| | - M. F. J. Maiden
- Forsyth Dental Center, 140 The Fenway, Boston, MA, 02115, USA
| |
Collapse
|
46
|
Sato T, Hoshino E, Uematsu H, Noda T. Predominant Obligate Anaerobes in Necrotic Pulps of Human Deciduous Teeth. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609309141335] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- T. Sato
- Departments of Oral Microbiology, Niigata University School of Dentistry, Gakkocho-dori 2, Niigata, 951, Japan
| | - E. Hoshino
- Departments of Oral Microbiology, Niigata University School of Dentistry, Gakkocho-dori 2, Niigata, 951, Japan
| | - H. Uematsu
- Departments of Oral Microbiology, Niigata University School of Dentistry, Gakkocho-dori 2, Niigata, 951, Japan
| | - T. Noda
- Departments of Pediatric Dentistry, Niigata University School of Dentistry, Gakkocho-dori 2, Niigata, 951, Japan
| |
Collapse
|
47
|
Bacterial profiles of oral streptococcal and periodontal bacterial species in saliva specimens from Japanese subjects. Arch Oral Biol 2009; 54:374-9. [DOI: 10.1016/j.archoralbio.2009.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 12/18/2008] [Accepted: 01/21/2009] [Indexed: 11/24/2022]
|
48
|
Ota-Tsuzuki C, Brunheira ATP, Mayer MPA. 16S rRNA region based PCR protocol for identification and subtyping of Parvimonas micra. Braz J Microbiol 2008; 39:605-7. [PMID: 24031274 PMCID: PMC3768457 DOI: 10.1590/s1517-83822008000400001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 05/19/2007] [Accepted: 11/02/2008] [Indexed: 11/22/2022] Open
Abstract
The present study established a PCR protocol in order to identify Parvimonas micra and to evaluate the intra-species diversity by PCR-RFLP of 16S rRNA partial sequence. The data indicated that the protocol was able to identify this species which could be clustered in five genotypes.
Collapse
Affiliation(s)
- C Ota-Tsuzuki
- Instituto de Ciências Biomédicas, Universidade de São Paulo , São Paulo, SP , Brasil
| | | | | |
Collapse
|
49
|
Alves de Souza R, Borges de Araújo Magnani MB, Nouer DF, Oliveira da Silva C, Klein MI, Sallum EA, Gonçalves RB. Periodontal and microbiologic evaluation of 2 methods of archwire ligation: ligature wires and elastomeric rings. Am J Orthod Dentofacial Orthop 2008; 134:506-12. [PMID: 18929268 DOI: 10.1016/j.ajodo.2006.09.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Prophylactic programs to prevent dental biofilm accumulation must be implemented to minimize the risk for periodontal diseases in orthodontic patients. Therefore, we assessed the possible periodontal and microbiologic changes resulting from the use of 2 methods of orthodontic archwire ligation: elastomeric rings and steel ligatures. METHODS The following parameters were measured: plaque index, gingival bleeding index, probing depth, and biofilm samples from the maxillary second premolars and the mandibular lateral incisors were evaluated in 14 subjects without clinical signs of gingival inflammation before orthodontic appliance placement and after 6 months of treatment. Each orthodontic arch was fixed with elastomeric rings on 1 side of the midline, and steel ligatures were used on the opposite side. Polymerase chain reaction analysis was used to detect Porphyromonas gingivalis, Tannerella forsythia, Actinobacillus actinomycetemcomitans, Prevotella intermedia, and P nigrescens. RESULTS The elastomeric rings were associated with a higher score for plaque index and bleeding than steel ligatures, as well as many positive sites of T forsythia and P nigrescens (P <0.05). CONCLUSIONS Elastomeric rings favored these 2 periodontopathogens and harmed gingival conditions.
Collapse
Affiliation(s)
- Ricardo Alves de Souza
- Department of Orthodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Sao Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jandik KA, Bélanger M, Low SL, Dorn BR, Yang MCK, Progulske-Fox A. Invasive differences among Porphyromonas gingivalis strains from healthy and diseased periodontal sites. J Periodontal Res 2008; 43:524-30. [PMID: 18544120 DOI: 10.1111/j.1600-0765.2007.01064.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to determine any difference between Porphyromonas gingivalis isolates from periodontally healthy sites as compared to those from diseased sites with respect to the ability to invade host cells. MATERIAL AND METHODS Subgingival plaque samples were obtained from periodontally healthy and diseased sites using paper points. P. gingivalis colonies were isolated and tested, using an antibiotic protection assay, for their ability to invade KB cells. P. gingivalis 381 and Escherichia coli MC1061 were used as controls. RESULTS Mean values of 16.79 +/- 0.86 x 10(3) colony-forming units/mL and 26.14 +/- 2.11 x 10(3) colony-forming units/mL were observed in invasion assays for isolates from periodontally healthy and diseased sites, respectively. P. gingivalis present in diseased sites had significantly greater invasive abilities than strains isolated from healthy sites. No statistical difference was noted between male or female subjects concerning the degree of invasion; isolates from diseased sites from both genders had significantly greater invasion abilities than those from healthy sites. A significant correlation was found between the increased invasive capabilities of P. gingivalis isolates vs. an increased probing depth. CONCLUSION The increased invasion noted with P. gingivalis isolates from diseased sites vs. healthy sites, and the increased invasive capabilities with increasing probing depth, indicate that P. gingivalis isolates have a varying ability to invade host cells in the periodontal pocket.
Collapse
Affiliation(s)
- K A Jandik
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|