1
|
Collagen Family Genes Associated with Risk of Recurrence after Radiation Therapy for Vestibular Schwannoma and Pan-Cancer Analysis. DISEASE MARKERS 2021; 2021:7897994. [PMID: 34691289 PMCID: PMC8528601 DOI: 10.1155/2021/7897994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Background The safety of radiotherapy techniques in the treatment of vestibular schwannoma (VS) shows a high rate of tumor control with few side effects. Neuropeptide Y (NPY) may have a potential relevance to the recurrence of VS. Further research is still needed on the key genes that determine the sensitivity of VS to radiation therapy. Materials and Methods Transcriptional microarray data and clinical information data from VS patients were downloaded from GSE141801, and vascular-related genes associated with recurrence after radiation therapy for VS were obtained by combining information from MSigDB. Logistics regression was applied to construct a column line graph prediction model for recurrence status after radiation therapy. Pan-cancer analysis was also performed to investigate the cooccurrence of these genes in tumorigenesis. Results We identified eight VS recurrence-related genes from the GSE141801 dataset. All of these genes were highly expressed in the VS recurrence samples. Four collagen family genes (COL5A1, COL3A1, COL4A1, and COL15A1) were further screened, and a model was constructed to predict the risk of recurrence of VS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that these four collagen family genes play important roles in a variety of biological functions and cellular pathways. Pan-cancer analysis further revealed that the expression of these genes was significantly heterogeneous across immune phenotypes and significantly associated with immune infiltration. Finally, Neuropeptide Y (NPY) was found to be significantly and negatively correlated with the expression of COL5A1, COL3A1, and COL4A1. Conclusions Four collagen family genes have been identified as possible predictors of recurrence after radiation therapy for VS. Pan-cancer analysis reveals potential associations between the pathogenesis of VS and other tumorigenic factors. The relevance of NPY to VS was also revealed for the first time.
Collapse
|
2
|
Wang C, Zhou X, Chen Y, Zhang J, Chen W, Svensson P, Wang K. Somatosensory profiling of patients with plaque-induced gingivitis: a case–control study. Clin Oral Investig 2019; 24:875-882. [DOI: 10.1007/s00784-019-02963-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/16/2019] [Indexed: 11/24/2022]
|
3
|
Abd El-Aleem SA, Morales-Aza BM. In Situ Hybridisation Study of Neuronal Neuropeptides Expression in Models of Mandibular Denervation with or without Inflammation: Injury Dependant Neuropeptide Plasticity. ACTA ACUST UNITED AC 2018; 9. [PMID: 31192032 PMCID: PMC6561781 DOI: 10.4172/2157-7099.1000509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neuronal expression of neuropeptides is altered following peripheral tissue injury associated with inflammation or nerve injury. This results in neuropathic pain with or without neurogenic inflammation which is a major health problem regularly seen in trigeminal neuralgia. Activation of the trigeminal system results in the release of vasoactive neuropeptides substance P and Calcitonin Gene-related Peptide (CGRP) which contribute to nociception, pain and neurogenic inflammation in injured tissues.
Collapse
Affiliation(s)
| | - Begonia M Morales-Aza
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Olivier BJ, Cailotto C, van der Vliet J, Knippenberg M, Greuter MJ, Hilbers FW, Konijn T, Te Velde AA, Nolte MA, Boeckxstaens GE, de Jonge WJ, Mebius RE. Vagal innervation is required for the formation of tertiary lymphoid tissue in colitis. Eur J Immunol 2016; 46:2467-2480. [PMID: 27457277 DOI: 10.1002/eji.201646370] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
Tertiary lymphoid tissue (TLT) is lymphoid tissue that forms in adult life as a result of chronic inflammation in a tissue or organ. TLT has been shown to form in a variety of chronic inflammatory diseases, though it is not clear if and how TLT develops in the inflamed colon during inflammatory bowel disease. Here, we show that TLT develops as newly formed lymphoid tissue in the colon following dextran sulphate sodium induced colitis in C57BL/6 mice, where it can be distinguished from the preexisting colonic patches and solitary intestinal lymphoid tissue. TLT in the inflamed colon develops following the expression of lymphoid tissue-inducing chemokines and adhesion molecules, such as CXCL13 and VCAM-1, respectively, which are produced by stromal organizer cells. Surprisingly, this process of TLT formation was independent of the lymphotoxin signaling pathway, but rather under neuronal control, as we demonstrate that selective surgical ablation of vagus nerve innervation inhibits CXCL13 expression and abrogates TLT formation without affecting colitis. Sympathetic neuron denervation does not affect TLT formation. Hence, we reveal that inflammation in the colon induces the formation of TLT, which is controlled by innervation through the vagus nerve.
Collapse
Affiliation(s)
- Brenda J Olivier
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, ,University of Amsterdam, Amsterdam, The Netherlands
| | - Cathy Cailotto
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Jan van der Vliet
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Marlene Knippenberg
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Mascha J Greuter
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Francisca W Hilbers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - Martijn A Nolte
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, ,University of Amsterdam, Amsterdam, The Netherlands
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Department of Gastroenterology, University Hospital Leuven, Leuven, Belgium
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands.
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Szabó E, Csáki Á, Boldogkői Z, Tóth Z, Köves K. Identification of autonomic neuronal chains innervating gingiva and lip. Auton Neurosci 2015; 190:10-9. [PMID: 25854799 DOI: 10.1016/j.autneu.2015.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/26/2022]
Abstract
The major goals of this present study were 1) to further clarify which parasympathetic ganglion sends postganglionic fibers to the lower gingiva and lip that may be involved in the inflammatory processes besides the local factors; 2) to separately examine the central pathways regulating sympathetic and parasympathetic innervation; and 3) to examine the distribution of central premotor neurons on both sides. A retrogradely transported green fluorescent protein conjugated pseudorabies virus was injected into the lower gingiva and lip of intact and sympathectomized adult female rats. Some animals received virus in the adrenal medulla which receive only preganglionic sympathetic fibers to separately clarify the sympathetic nature of premotor neurons. After 72-120h of survival and perfusion, the corresponding thoracic part of the spinal cord, brainstem, hypothalamus, cervical, otic, submandibular and trigeminal ganglia were harvested. Frozen sections were investigated under a confocal microscope. Green fluorescence indicated the presence of the virus. The postganglionic sympathetic neurons related to both organs are located in the three cervical ganglia, the preganglionic neurons in the lateral horn of the spinal cord on ipsilateral side; premotor neurons were found in the ventrolateral medulla, locus ceruleus, gigantocellular and paraventricular nucleus and perifornical region in nearly the same number on both sides. The parasympathetic postganglionic neurons related to the gingiva are present in the otic and related to the lip are present in the otic and submandibular ganglia and the preganglionic neurons are in the salivatory nuclei. Third order neurons were found in the gigantocellular reticular and hypothalamic paraventricular nuclei and perifornical area.
Collapse
Affiliation(s)
- E Szabó
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Hungary
| | - Á Csáki
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zs Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Hungary
| | - Zs Tóth
- Department of Conservative Dentistry, Faculty of Dentistry, Semmelweis University, Hungary
| | - K Köves
- Department of Human Morphology and Developmental Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Etiologic factors of early-onset periodontal disease in Down syndrome. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2008.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Morgan J. Why is periodontal disease more prevalent and more severe in people with Down syndrome? SPECIAL CARE IN DENTISTRY 2007; 27:196-201. [PMID: 17990479 DOI: 10.1111/j.1754-4505.2007.tb00346.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Periodontal disease has been found to be significantly more prevalent and more severe in people with Down syndrome. A series of studies have reported a prevalence of between 58% and 96% for persons younger than 35 years of age. This phenomenon cannot simply be attributed to poor oral hygiene. The etiology of periodontal disease in persons with Down syndrome is complex. In recent years, much focus has been placed on the altered immune response resulting from the underlying genetic disorder. This paper presents an overview of contemporary knowledge on periodontal disease in patients with Down syndrome.
Collapse
|
8
|
Dumitrescu AL, Abd-El-Aleem S, Morales-Aza B, Donaldson LF. A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. J Clin Periodontol 2004; 31:596-603. [PMID: 15257734 DOI: 10.1111/j.1600-051x.2004.00528.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To establish and characterise a rat model of periodontitis that reiterates the features of human disease. METHODS Periodontal inflammation was induced by a single injection of 10 microg liposaccharide (LPS) (Salmonella typhimurium) in 1 microl saline into rat mandibular gingiva at the buccomesial aspect of the second molar. Animals were killed after 3, 7 and 10 days, mandibles dissected and sectioned for histological and immunocytochemical analysis. RESULTS LPS injection resulted in a significant gingival and periodontal inflammation with inflammatory infiltrate, apical migration of the junctional epithelium, interdental bone loss, and activation of osteoclasts at the site of injection 7 and 10 days after injection. At 10 days post injection, there was a significant trend for bone loss on both sides of the mandible. Periodontal inflammation was associated with alteration in the levels of calcitonin gene-related peptide-like immunoreactivity in nerve terminals innervating the inflamed gingival papilla. CONCLUSION Intragingival injection of LPS in the rat provides an easily induced reproducible experimental model of periodontal inflammation that reiterates features of human disease.
Collapse
|
9
|
Sasaki Y, Sumi Y, Miyazaki Y, Hamachi T, Nakata M. Periodontal management of an adolescent with Down's syndrome--a case report. Int J Paediatr Dent 2004; 14:127-35. [PMID: 15005701 DOI: 10.1111/j.1365-263x.2004.00529.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A case of periodontitis in a young adolescent Japanese girl with Down's syndrome is presented in this report. The patient received a monthly preventive course of dental care consisting of mechanical plaque control and oral hygiene instruction. After 2.5 years she recovered from progression of periodontal disease both clinically and microbiologically. The importance of clinical care for periodontitis in Down's syndrome patients is discussed.
Collapse
Affiliation(s)
- Y Sasaki
- Section of Pediatric Dentistry and Section of Preventive Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | |
Collapse
|
10
|
López-Pérez R, Borges-Yáñez SA, Jiménez-García G, Maupomé G. Oral hygiene, gingivitis, and periodontitis in persons with Down syndrome. SPECIAL CARE IN DENTISTRY 2002; 22:214-20. [PMID: 12790229 DOI: 10.1111/j.1754-4505.2002.tb00274.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study was conducted to determine and compare the prevalence, severity, and extent of gingivitis and periodontitis in patients with Down syndrome and patients who did not have Down syndrome. The authors also assessed the relationship of these conditions and compared them to the age, gender, and oral hygiene profiles in both groups. Using a case-control study design, the authors examined 32 individuals with Down syndrome (DS) and matched each with a participant from the control group (CG) according to age and gender. Researchers determined the Simplified Oral Hygiene Index, Gingival Index, and measured the level of gingival attachment for each participant. The authors found that the relationship between the presence of dental plaque and the severity of gingivitis was moderate among participants with DS. While the overall characteristics of the periodontal and gingival health status were not markedly different between the two groups, the extent and severity of gingivitis and the extent of periodontitis were greater in the group with DS than in the CG.
Collapse
Affiliation(s)
- Rubén López-Pérez
- Department of Dental Public Health, Dental School, Universidad Nacional Autónoma de México, D.F., México.
| | | | | | | |
Collapse
|
11
|
Abstract
Systemic diseases affecting the host response as primary immunodeficiencies or secondary defects caused by lack of nutrients or changes in the local tissues are very often accompanied by early-onset prepubertal periodontitis. Local treatment in combination with systemic antibiotics may in milder forms improve the situation, but in many cases the success is questionable and premature loss of teeth occurs. Since the genetic basis of many of the diseases has been identified, future developments permit the correction of at least some of these defects by gene therapy.
Collapse
Affiliation(s)
- J Meyle
- Department of Periodontology, Zentrum für Zahn-, Mund und Kieferheilkunde, Universität Giessen, Giessen, Germany
| | | |
Collapse
|
12
|
Komatsu T, Kubota E, Sakai N. Enhancement of matrix metalloproteinase (MMP)-2 activity in gingival tissue and cultured fibroblasts from Down's syndrome patients. Oral Dis 2001. [DOI: 10.1034/j.1601-0825.2001.70110.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Astbäck J, Arvidson K, Johansson O. Neurochemical markers of human fungiform papillae and taste buds. REGULATORY PEPTIDES 1995; 59:389-98. [PMID: 8577944 DOI: 10.1016/0167-0115(95)00107-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The presence of distribution of several neurochemical markers in human fungiform papillae and taste buds were investigated by the immunohistochemical technique. The gustatory cells of the taste buds are in synaptic contact with sensory nerve endings, and considering the taste buds strictly as specialized sensory organs, the amounts and distribution of some of the neurochemical markers were different to what we expected. For example, few structures showed immunoreactivity to the tachykinins substance P (SP), calcitonin gene-related peptide (CGRP), and neurokinin A (NKA) also for the peptides vasoactive intestinal polypeptide (VIP), neuropeptide tyrosine (NPY) and galanin, low amounts of immunoreactivity occurred. On the other hand, using antibodies to protein gene product 9.5 (PGP 9.5), protein S-100, and glutamate, numerous nerve fibres and/or immunoreactive cells were found in the fungiform papillae, in the epithelium, in the connective tissue and around blood vessels, as well as in or near taste buds. Incubation with the antibodies against somatostatin, enkephalin, bombesin, peptide histidine isoleucine amide (PHI), cholecystokinin (CCK)/gastrin and dopamine-beta-hydroxylase (DBH) was negative for the fungiform papillae. In conclusion, the present study has shown several immunoreactive structures using antibodies against certain neurochemical markers. Further investigations will hopefully correlate these morphological findings with functional taste perception data. Future studies of patients with taste disorders or other pathological changes correlated with taste and tongue will also be of utmost importance.
Collapse
Affiliation(s)
- J Astbäck
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|