1
|
Debnath P, Bangi SL, Hussain MF, Rafiq S, Tousifulla S, Abdu M, Gupta S. The Evaluation of Gingival Crevicular Fluid Biomarkers as Predictors of Gingival Enlargement in Patients Undergoing Fixed Orthodontic Treatment: A Prospective Study. Cureus 2024; 16:e74281. [PMID: 39717295 PMCID: PMC11664225 DOI: 10.7759/cureus.74281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Gingival enlargement (GE) poses a significant problem during fixed orthodontic treatment (FOT). Thus, the primary aim of the current study was to evaluate the concentrations of biomarkers present in the gingival crevicular fluid (GCF) of individuals receiving FOT. The ancillary aim was to examine and compare biomarker levels among patients exhibiting GE undergoing FOT, those without GE undergoing FOT, and a control group comprising individuals not undergoing FOT and to assess the predictors for GE in patients undergoing orthodontic treatment. Materials and methods A cross-sectional observational study was conducted on 129 patients who were divided into three groups: group 1, controls (n=18); group 2, patients who underwent FOT without GE (n=89); and group 3, patients who underwent FOT with GE (n=22). The gingival index (GI), periodontal index (PI), and inflammatory biomarkers such as interleukin 6 (IL-6), transforming growth factor-beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase 9 (MMP-9), and prostaglandin E2 (PGE2) were estimated by enzyme-linked immunosorbent assay (ELISA) analysis at baseline (T0) and after one year of orthodontic treatment (T1). Results GE was observed in 22 (19.81%) of the 111 patients who were undergoing orthodontic treatment. No statistically significant differences were observed between the groups for GI, PI, and biomarkers at T0 (p>0.05), whereas there was a statistically significant increase in the levels of inflammatory biomarkers, GI, and PI in group 3, followed by group 2, compared to group 1 (p<0.05). Group 3 showed the greatest increase in the biomarker levels from T0 to T1 (IL-6, 3.66±1.91 pg/mL; TGF-β1, 7.52±3.85 pg/mL; TNF-α, 16.96±3.82 pg/mL; MMP-9, 30.72±7.07 pg/mL; PGE2, 78.29±20.53 pg/mL). GI and PI were strong predictors of GE, whereas biomarkers were weak predictors. Conclusion GE in patients with FOT was significantly associated with an increase in GI and PI due to insufficient oral hygiene, leading to increased levels of inflammatory biomarkers in the GCF.
Collapse
Affiliation(s)
- Puja Debnath
- Department of Periodontics, Agartala Government Dental College, Agartala, IND
| | - Sayeeda Laeque Bangi
- Department of Orthodontics and Dentofacial Orthopedics, Al Badar Rural Dental College and Hospital, Gulbarga, IND
| | | | - Shabir Rafiq
- Department of Orthodontics and Dentofacial Orthopedics, Kalka Dental College, Meerut, IND
| | - Syed Tousifulla
- Department of Orthodontics and Dentofacial Orthopedics, Kolar Gold Fields (KGF) College of Dental Sciences and Hospital, Kolar Gold Fields, IND
| | - Mufeed Abdu
- Department of Orthodontics, Aashraya Dental Clinic, Kozhikode, IND
| | - Seema Gupta
- Department of Orthodontics and Dentofacial Orthopedics, Kothiwal Dental College and Research Centre, Moradabad, IND
| |
Collapse
|
2
|
Kamel AM, Badr BM, Ali AI, El-dydamoni OA, Gaber AH, El-Hagrasy HA. Expression of Regulatory T Cell and Related Interleukins in Gingivitis Versus Stage 3, Grade B Generalized Periodontitis: Synergy or Cacophony—A Cross-Sectional Study. J Int Oral Health 2024; 16:325-334. [DOI: 10.4103/jioh.jioh_108_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Aim:
To raise “personalized periodontal diagnosis and prognosis” knowledge, Tregs, pro/anti-inflammatory interleukins (ILs) beside vitamin D-binding protein (VDBP) in serum and gingival cervical exudate of periodontally healthy individuals, plaque-induced gingivitis, and stage 3, grade B periodontitis patients were evaluated.
Materials and Methods:
An observational trial of different periodontal statuses according to 2018 periodontal classification was established from 60 subjects segregated into three equivalent groups (control periodontally healthy, gingivitis, and stage 3, grade B periodontitis). Peripheral blood and gingival crevicular fluid (GCF) were collected, to get GCF samples, inserted paper point in the pocket of the patient's teeth then the samples were placed with phosphate-buffered saline in Eppendorf. The peripheral blood was collected in ethylenediaminetetraacetic acid-coated vacutainer tubes. Frequency of CD4+ CD25+High Tregs was detected using flow cytometry. Cytokines were measured using an enzyme-linked immunosorbent assay. Mann–Whitney U test analysis was manipulated to distinguish the statistical discrepancies. Pearson’s correlation coefficient test was utilized to tie in the studied parameters.
Result:
Frequency of CD4+ CD25+High T cells were significantly ascendant in periodontitis than gingivitis and healthy (P ≤ 0.01; P = 0.04) and significantly superior in gingivitis than healthy (P = 0.01). There was no interdependence between systemic IL-21, IL-33, IL-22, IL-35, and the periodontal conditions except systemic VDBP, which significantly increased with the progression of the periodontal tissue inflammation. GCF compartments of IL-21, IL-33, and VDBP significantly increased with progression inflammation and GCF compartments of IL-22 and IL-35 significantly decreased with periodontal breakdown.
Conclusion:
Local increase of Treg is positively associated with increased local pro-inflammatory cytokines. This increment is more aggravated in periodontitis. Therefore, Tregs may have synergistic effects with periodontal disease progression.
Collapse
Affiliation(s)
- Asem M. Kamel
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, Al-Azhar University Assiut Branch, Assiut, Egypt
| | - Bahaa M. Badr
- Department of Basic Medical and Dental Science, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Abdullah I. Ali
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, Al-Azhar University Assiut Branch, Assiut, Egypt
| | - Omnia A. El-dydamoni
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| | - Ahmed H. Gaber
- Department of Oral Pathology, Faculty of Dental Medicine, Al-Azhar University Assiut Branch, Assiut, Egypt
| | - Hanan A. El-Hagrasy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University for Girls, Cairo, Egypt
| |
Collapse
|
3
|
Ahmad P, Escalante-Herrera A, Marin LM, Siqueira WL. Progression from healthy periodontium to gingivitis and periodontitis: Insights from bioinformatics-driven proteomics - A systematic review with meta-analysis. J Periodontal Res 2024. [PMID: 38873831 DOI: 10.1111/jre.13313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
AIM The current study aimed to: (1) systematically review the published literature regarding the proteomics analyses of saliva and gingival crevicular fluid (GCF) in healthy humans and gingivitis and/or periodontitis patients; and (2) to identify the differentially expressed proteins (DEPs) based on the systematic review, and comprehensively conduct meta-analyses and bioinformatics analyses. METHODS An online search of Web of Science, Scopus, and PubMed was performed without any restriction on the year and language of publication. After the identification of the DEPs reported by the included human primary studies, gene ontology (GO), the Kyoto encyclopedia of genes and genomes pathway (KEGG), protein-protein interaction (PPI), and meta-analyses were conducted. The risk of bias among the included studies was evaluated using the modified Newcastle-Ottawa quality assessment scale. RESULTS The review identified significant differences in protein expression between healthy individuals and those with gingivitis and periodontitis. In GCF, 247 proteins were upregulated and 128 downregulated in periodontal diseases. Saliva analysis revealed 79 upregulated and 70 downregulated proteins. There were distinct protein profiles between gingivitis and periodontitis, with 159 and 31 unique upregulated proteins in GCF, respectively. Meta-analyses confirmed significant upregulation of various proteins in periodontitis, including ALB and MMP9, while CSTB and GSTP1 were downregulated. AMY1A and SERPINA1 were upregulated in periodontitis saliva. HBD was upregulated in gingivitis GCF, while DEFA3 was downregulated. PPI analysis revealed complex networks of interactions among DEPs. GO and KEGG pathway analyses provided insights into biological processes and pathways associated with periodontal diseases. CONCLUSION The ongoing MS-based proteomics studies emphasize the need for a highly sensitive and specific diagnostic tool for periodontal diseases. Clinician acceptance of the eventual diagnostic method relies on its ability to provide superior or complementary information to current clinical assessment procedures. Future research should prioritize the multiplex measurement of multiple biomarkers simultaneously to enhance diagnostic accuracy and large study cohorts are necessary to ensure the validity and reliability of research findings.
Collapse
Affiliation(s)
- Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Lina M Marin
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Walter L Siqueira
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Nguyen MN, Yeo SJ, Park H. Identification of novel biomarkers for anti- Toxoplasma gondii IgM detection and the potential application in rapid diagnostic fluorescent tests. Front Microbiol 2024; 15:1385582. [PMID: 38894968 PMCID: PMC11184589 DOI: 10.3389/fmicb.2024.1385582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
Toxoplasmosis, while often asymptomatic and prevalent as a foodborne disease, poses a considerable mortality risk for immunocompromised individuals during pregnancy. Point-of-care serological tests that detect specific IgG and IgM in patient sera are critical for disease management under limited resources. Despite many efforts to replace the T. gondii total lysate antigens (TLAs) by recombinant antigens (rAgs) in commercial kits, while IgG detection provides significant specificity and sensitivity, IgM detection remains comparatively low in sensitivity. In this study, we attempted to identify novel antigens targeting IgM in early infection, thereby establishing an IgM on-site detection kit. Using two-dimensional gel electrophoresis (2DE) and mouse serum immunoblotting, three novel antigens, including EF1γ, PGKI, and GAP50, were indicated to target T. gondii IgM. However, rAg EF1γ was undetectable by IgM of mice sera in Western blotting verification experiments, and ELISA coated with PGKI did not eliminate cross-reactivity, in contrast to GAP50. Subsequently, the lateral flow reaction employing a strip coated with 0.3 mg/mL purified rAg GAP50 and exhibited remarkable sensitivity compared with the conventional ELISA based on tachyzoite TLA, which successfully identified IgM in mouse sera infected with tachyzoites, ranging from 103 to 104 at 5 dpi and 104 at 7 dpi, respectively. Furthermore, by using standard T. gondii-infected human sera from WHO, the limit of detection (LOD) for the rapid fluorescence immunochromatographic test (FICT) using GAP50 was observed at 0.65 IU (international unit). These findings underline the particular immunoreactivity of GAP50, suggesting its potential as a specific biomarker for increasing the sensitivity of the FICT in IgM detection.
Collapse
Affiliation(s)
- Minh-Ngoc Nguyen
- Department of Infection Biology, School of Medicine, Zoonosis Research Center, Wonkwang University, Iksan, Republic of Korea
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Tropical Medicine and Parasitology, Medical Research Center, Institute of Endemic Diseases, Seoul National University, Seoul, Republic of Korea
| | - Hyun Park
- Department of Infection Biology, School of Medicine, Zoonosis Research Center, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
5
|
Buduneli N, Bıyıkoğlu B, Kinane DF. Utility of gingival crevicular fluid components for periodontal diagnosis. Periodontol 2000 2024; 95:156-175. [PMID: 39004819 DOI: 10.1111/prd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Periodontal diseases are highly prevalent chronic diseases, and severe periodontitis creates functional and esthetic problems and decreases self-esteem for a large percentage of the older population worldwide. In many cases of periodontitis, there is no distinct tell-tale pain that motivates a patient to seek treatment, rather the signs become clinically detectable late, and typically when the disease has progressed to a problematic level for the life of the dentition. Early periodontal screening and diagnostics tools will provide early recognition of periodontal diseases and facilitate timely management of the disease to reduce tooth loss. To this goal, gingival crevicular fluid is easily sampled, can be repeatedly and non-invasively collected, and can be tested for potential biomarkers. Moreover, the site specificity of periodontal diseases enhances the usefulness of gingival crevicular fluid sampled from specific sites as a biofluid for diagnosis and longitudinal monitoring of periodontal diseases. The present review aimed to provide up-to-date information on potential diagnostic biomarkers with utility that can be assayed from gingival crevicular fluid samples, focusing on what is new and useful and providing only general historic background textually and in a tabulated format.
Collapse
Affiliation(s)
- Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Başak Bıyıkoğlu
- Department of Periodontology, School Dentistry, Altinbas University, Istanbul, Turkey
| | - Denis F Kinane
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Torres A, Michea MA, Végvári Á, Arce M, Pérez V, Alcota M, Morales A, Vernal R, Budini M, Zubarev RA, González FE. A multi-platform analysis of human gingival crevicular fluid reveals ferroptosis as a relevant regulated cell death mechanism during the clinical progression of periodontitis. Int J Oral Sci 2024; 16:43. [PMID: 38802345 PMCID: PMC11130186 DOI: 10.1038/s41368-024-00306-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Valentina Pérez
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Cellular and Molecular Pathology, Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile.
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile.
| |
Collapse
|
7
|
Halstenbach T, Topitsch A, Schilling O, Iglhaut G, Nelson K, Fretwurst T. Mass spectrometry-based proteomic applications in dental implants research. Proteomics Clin Appl 2024; 18:e2300019. [PMID: 38342588 DOI: 10.1002/prca.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
Dental implants have been established as successful treatment options for missing teeth with steadily increasing demands. Today, the primary areas of research in dental implantology revolve around osseointegration, soft and hard tissue grafting as well as peri-implantitis diagnostics, prevention, and treatment. This review provides a comprehensive overview of the current literature on the application of MS-based proteomics in dental implant research, highlights how explorative proteomics provided insights into the biology of peri-implant soft and hard tissues and how proteomics facilitated the stratification between healthy and diseased implants, enabling the identification of potential new diagnostic markers. Additionally, this review illuminates technical aspects, and provides recommendations for future study designs based on the current evidence.
Collapse
Affiliation(s)
- Tim Halstenbach
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Annika Topitsch
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Blanco-Pintos T, Regueira-Iglesias A, Seijo-Porto I, Balsa-Castro C, Castelo-Baz P, Nibali L, Tomás I. Accuracy of periodontitis diagnosis obtained using multiple molecular biomarkers in oral fluids: A systematic review and meta-analysis. J Clin Periodontol 2023; 50:1420-1443. [PMID: 37608638 DOI: 10.1111/jcpe.13854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023]
Abstract
AIM To determine the accuracy of biomarker combinations in gingival crevicular fluid (GCF) and saliva through meta-analysis to diagnose periodontitis in systemically healthy subjects. METHODS Studies on combining two or more biomarkers providing a binary classification table, sensitivity/specificity values or group sizes in subjects diagnosed with periodontitis were included. The search was performed in August 2022 through PUBMED, EMBASE, Cochrane, LILACS, SCOPUS and Web of Science. The methodological quality of the articles selected was evaluated using the QUADAS-2 checklist. Hierarchical summary receiver operating characteristic modelling was employed to perform the meta-analyses (CRD42020175021). RESULTS Twenty-one combinations in GCF and 47 in saliva were evaluated. Meta-analyses were possible for six salivary combinations (median sensitivity/specificity values): IL-6 with MMP-8 (86.2%/80.5%); IL-1β with IL-6 (83.0%/83.7%); IL-1β with MMP-8 (82.7%/80.8%); MIP-1α with MMP-8 (71.0%/75.6%); IL-1β, IL-6 and MMP-8 (81.8%/84.3%); and IL-1β, IL-6, MIP-1α and MMP-8 (76.6%/79.7%). CONCLUSIONS Two-biomarker combinations in oral fluids show high diagnostic accuracy for periodontitis, which is not substantially improved by incorporating more biomarkers. In saliva, the dual combinations of IL-1β, IL-6 and MMP-8 have an excellent ability to detect periodontitis and a good capacity to detect non-periodontitis. Because of the limited number of biomarker combinations evaluated, further research is required to corroborate these observations.
Collapse
Affiliation(s)
- T Blanco-Pintos
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - A Regueira-Iglesias
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - I Seijo-Porto
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - C Balsa-Castro
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - P Castelo-Baz
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - L Nibali
- Periodontology Unit, Centre for Host-Microbiome Interactions, Dental Institute, King's College London, London, UK
| | - I Tomás
- Oral Sciences Research Group, Special Needs Unit, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
9
|
Torres A, Michea MA, Végvári Á, Arce M, Morales A, Lanyon E, Alcota M, Fuentes C, Vernal R, Budini M, Zubarev RA, González FE. Proteomic profile of human gingival crevicular fluid reveals specific biological and molecular processes during clinical progression of periodontitis. J Periodontal Res 2023; 58:1061-1081. [PMID: 37522282 DOI: 10.1111/jre.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND AND OBJECTIVE There is no clear understanding of molecular events occurring in the periodontal microenvironment during clinical disease progression. Our aim was to explore qualitative and quantitative differences in gingival crevicular fluid (GCF) protein profiles from patients diagnosed with periodontitis between non-progressive and progressive periodontal sites. METHODS Five systemically healthy patients diagnosed with periodontitis were monitored weekly in their progression of the disease and GCF samples from 10 candidate sites were obtained. Two groups of five sites, matched from an equal number of teeth, were selected from the five patients: Progression (PG) and Non-Progression (NP). Global protein identification was performed with high-throughput proteomic approaches and label-free analysis determined their relative abundances. Proteins were identified by Proteome Discoverer v2.4 and searched against human SwissProt protein databases. Enrichment bioinformatic analyses were performed in STRING-DB and ShinyGO environment. RESULTS 1504 and 1500 proteins were identified in NP and PG respectively. Forty-eight proteins were exclusively identified in PG, while 52 were identified in NP. Moreover, 35 proteins were more abundant in PG and 29 proteins in NP (twofold change, p < .05). The NP group was mainly represented by proteins from "response to biotic stimuli and other organisms," "processes of cell death regulation," "peptidase regulation," "protein ubiquitination," and "ribosomal activity" GO categories. The most represented GO categories of the PG group were "assembly of multiprotein complexes," "catabolic processes," "lipid metabolism," and "binding to hemoglobin and haptoglobin." CONCLUSIONS There are quantitative and qualitative differences in the proteome of GCF from periodontal sites according to the status of clinical progression of periodontitis. Progressive periodontitis sites are characterized by a protein profile associated with catabolic processes, immune response, and response to cellular stress, while stable periodontitis sites show a protein profile mainly related to wound repair and healing processes, cell death regulation, and chaperone-mediated autophagy. Understanding the etiopathogenic role of these profiles in progressive periodontitis may help to develop new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Alfredo Torres
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - M Angélica Michea
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marion Arce
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Alicia Morales
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Elías Lanyon
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Marcela Alcota
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Camila Fuentes
- Laboratory of Cancer Immunoregulation, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rolando Vernal
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
- Periodontal Biology Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Mauricio Budini
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fermín E González
- Laboratory of Experimental Immunology & Cancer, Faculty of Dentistry, University of Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Halstenbach T, Nelson K, Iglhaut G, Schilling O, Fretwurst T. Impact of peri-implantitis on the proteome biology of crevicular fluid: A pilot study. J Periodontol 2023; 94:835-847. [PMID: 36585920 DOI: 10.1002/jper.22-0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The proteome of the peri-implant crevicular fluid (PICF) has not been systematically investigated. The aim of the present study was to reveal the proteome biology of dental implants affected with peri-implantitis. METHODS Patients with at least one diseased implant were included (probing depth ≥6 mm, ≥3 mm peri-implant radiological bone loss). Using sterile paper strips, samples were collected from healthy implants (I), healthy teeth (T) and peri-implantitis affected implants (P). Proteome analysis was performed using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and data independent acquisition, allowing the identification and quantification of human and bacterial proteins as well as semi-specific peptides. RESULTS A total of 38 samples from 14 patients were included in the study; 2332 different human proteins were identified across all samples. No differentially expressed proteins between T and I were found. Comparing P to I, 59 proteins were found upregulated and 31 downregulated in P with significance. Upregulated proteins included proinflammatory proteins such as immunoglobulins, dysferlin, and S100P, as well as antimicrobial proteins, for example, myeloperoxidase or azurocidin. Gene ontology analysis further revealed higher activity of immunological pathways. Proteolytic patterns indicated the activity of inflammatory proteins such as cathepsin G. A total of 334 bacterial proteins were identified and quantified. Peri-implantitis showed elevated proteolytic activity. CONCLUSION I and T share similarities in their proteome, while diseased implants deviate strongly from healthy conditions. The PICF proteome of peri-implantitis affected sites exhibits an inflammatory fingerprint, dominated by neutrophil activity when compared with healthy implants.
Collapse
Affiliation(s)
- Tim Halstenbach
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
11
|
Moore GC, Smith KT, Christiansen MM, Anderson L, Moravec LJ, Okano DK, Samson KK, Ramer-Tait A, Beede K, Reinhardt RA, Killeen AC. Effect of interproximal home oral hygiene on clinical parameters and inflammatory biomarkers in patients receiving periodontal maintenance. J Periodontol 2023. [PMID: 36799307 DOI: 10.1002/jper.22-0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND The purpose of this 6-week, single-blinded, randomized clinical trial was to determine if the use of an interproximal brush, with or without a tracking device, is more effective than an oral irrigator in improving interproximal probing depth (PD), clinical attachment level (CAL), plaque index (PI), gingival index (GI), bleeding on probing (BOP), and inflammatory markers. METHODS Seventy-six patients with Stages III-IV, Grade B periodontitis and a 5-7 mm posterior interproximal PD with BOP were randomized: (1) interproximal brush alone (IB; n = 26), (2) interproximal brush with tracking device (TD; n = 23), (3) oral irrigator (OI; n = 27). Participants used devices once daily for 6 weeks. Clinical measurements (PD, CAL, PI, BOP, GI) and gingival crevicular fluid (GCF) samples were collected at baseline and 6 weeks. RESULTS All groups showed a significant reduction in PD and CAL (≥1.1 mm, p < 0.0001) and improvement in BOP (≥56%, p < 0.0001) and GI (≥82%, p < 0.001) at the experimental site with no differences among groups. The IB and IB+TD groups showed a significant reduction in PI (≥0.9, p ≤ 0.01). Interleukin (IL)-1β was reduced in all groups (p = 0.006), but IB+TB more than OI (p ≤ 0.05). IL-10 was reduced among all groups (p = 0.01), while interferon-gamma significantly increased (p = 0.01) in all groups. CONCLUSIONS IB and OI improved clinical parameters of PD and CAL and reduced inflammatory markers (BOP, GI, GCF IL-1β). IB had better interproximal plaque reduction. Tracking did not significantly improve clinical parameters compared with the IB and OI groups, suggesting future modifications are needed.
Collapse
Affiliation(s)
- Grace C Moore
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| | - Kevin T Smith
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| | - Mary M Christiansen
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| | - Laura Anderson
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| | - Lisa J Moravec
- Department of Dental Hygiene, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| | - David K Okano
- Department of Periodontics, University of Utah School of Dentistry, Salt Lake City, Utah, USA
| | - Kaeli K Samson
- Department of Biostatistics, University of Nebraska Medical Center College of Public Health, Omaha, Nebraska, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Kristin Beede
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska, USA
| | - Richard A Reinhardt
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| | - Amy C Killeen
- Department of Surgical Specialties, University of Nebraska Medical Center College of Dentistry, Lincoln, Nebraska, USA
| |
Collapse
|
12
|
Foratori-Junior GA, Ventura TMO, Grizzo LT, Carpenter GH, Buzalaf MAR, Sales-Peres SHDC. Label-Free Quantitative Proteomic Analysis Reveals Inflammatory Pattern Associated with Obesity and Periodontitis in Pregnant Women. Metabolites 2022; 12:1091. [PMID: 36355174 PMCID: PMC9692340 DOI: 10.3390/metabo12111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 07/30/2023] Open
Abstract
Obesity and pregnancy may have synergistic effects on periodontal condition, and proteomics could be an ideal approach to highlight the pathophysiological mechanisms associated with these outcomes. This study analyzed the salivary proteomics related to obesity and periodontitis in women during pregnancy (T1) and after delivery (T2). Initially, 126 women were recruited and forty were allocated into groups: with obesity and periodontitis (OP); with obesity, but without periodontitis (OWP); with normal BMI, but with periodontitis (NP); with normal BMI and without periodontitis (NWP). Whole-mouth saliva was collected in T1 and T2, and proteins were extracted and individually processed by label-free proteomics (nLC-ESI-MS/MS). The up-regulations of Heat shock 70 kDa protein 1A, 1B, and 1-like were related to both obesity and periodontitis, separately. Albumin and Thioredoxin were up-regulated in periodontitis cases, while Cystatins (mainly S, SA, SN) and Lactotransferrin were down-regulated. The high abundances of Submaxillary gland androgen-regulated protein 3B, Protein S100-A8, Matrix metalloproteinase-9, Heat shock 70 kDa protein 2 and 6, Putative Heat shock 70 kDa protein 7, Heat shock 71 kDa protein, Haptoglobin and Plastin-1 were significant in the combination of obesity and periodontitis. Obesity and periodontitis remarkably altered the proteome of the saliva during pregnancy with substantial alterations after delivery.
Collapse
Affiliation(s)
- Gerson Aparecido Foratori-Junior
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | - Larissa Tercilia Grizzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil
| | - Guy Howard Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, Guy’s Campus, King’s College London, London SE1 1UL, UK
| | | | | |
Collapse
|
13
|
Sao P, Chand Y, Al-Keridis LA, Saeed M, Alshammari N, Singh S. Classifying Integrated Signature Molecules in Macrophages of Rheumatoid Arthritis, Osteoarthritis, and Periodontal Disease: An Omics-Based Study. Curr Issues Mol Biol 2022; 44:3496-3517. [PMID: 36005137 PMCID: PMC9406916 DOI: 10.3390/cimb44080241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene–gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that “apoptotic regulation” and “inflammasomes” were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.
Collapse
Affiliation(s)
- Prachi Sao
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.A.A.-K.); (S.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur 522213, Andhra Pradesh, India
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
- Correspondence: (L.A.A.-K.); (S.S.)
| |
Collapse
|
14
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Proteomics Disclose the Potential of Gingival Crevicular Fluid (GCF) as a Source of Biomarkers for Severe Periodontitis. MATERIALS 2022; 15:ma15062161. [PMID: 35329612 PMCID: PMC8950923 DOI: 10.3390/ma15062161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023]
Abstract
Periodontal disease is a widespread disorder comprising gingivitis, a mild early gum inflammation, and periodontitis, a more severe multifactorial inflammatory disease that, if left untreated, can lead to the gradual destruction of the tooth-supporting apparatus. To date, effective etiopathogenetic models fully explaining the clinical features of periodontal disease are not available. Obviously, a better understanding of periodontal disease could facilitate its diagnosis and improve its treatment. The purpose of this study was to employ a proteomic approach to analyze the gingival crevicular fluid (GCF) of patients with severe periodontitis, in search of potential biomarkers. GCF samples, collected from both periodontally healthy sites (H-GCF) and the periodontal pocket (D-GCF), were subjected to a comparison analysis using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). A total of 26 significantly different proteins, 14 up-regulated and 12 down-regulated in D-GCF vs. H-GCF, were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The main expressed proteins were inflammatory molecules, immune responders, and host enzymes. Most of these proteins were functionally connected using the STRING analysis database. Once validated in a large scale-study, these proteins could represent a cluster of promising biomarkers capable of making a valuable contribution for a better assessment of periodontitis.
Collapse
|
16
|
A comparative proteomic analysis to define the influencing factors on gingival crevicular fluid using LC-MS/MS. J Proteomics 2022; 252:104421. [PMID: 34801745 DOI: 10.1016/j.jprot.2021.104421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
Gingival crevicular fluid (GCF) is a promising biofluid for disease identification and biomarker searching in periodontology. This study aimed to investigate the possible influencing factors, including tooth site, sex and age, on the normal GCF proteome. Forty periodontal healthy adults were randomly divided into a training group and a testing group. In the training group, GCF samples from 12 adults were analyzed using the iTRAQ 2D LC-MS/MS method. The influencing factors, tooth site (including periodontitis-susceptible and -insusceptible tooth sites), sex and age, and related differential proteins were defined and functionally annotated. The important differential proteins from 28 adults in the testing group were then validated by PRM analysis. An average of approximately 5 differential proteins were found between tooth sites of periodontitis-susceptible and -insusceptible sites. Eighty-five differentially expressed proteins were obtained between sexes in the young group, while only 7 sex-associated proteins were found in the old group. A total of 203 and 235 age-associated proteins were found in the male and female groups, respectively. The differential protein functional annotation showed that sex-related proteins were mainly related to immune function and metabolism, and age-related proteins were primarily associated with inflammation, lipid metabolism and immune function. In the testing group, a total of 4 sex-related proteins and 12 age-related proteins were validated by PRM analysis. SIGNIFICANCE: The influences of tooth site, sex and age in GCF proteomics in periodontal health were firstly analyzed using LC-MS/MS. Tooth site showed a small influence on the GCF proteome. The sex effect was significant in young adults, but its influence in old adults is small. Age is an important impact factor for the GCF proteome. These findings enrich the knowledge about the normal GCF proteome and might benefit future disease analyses.
Collapse
|
17
|
Xiao X, Song T, Xiao X, Liu Y, Sun H, Guo Z, Liu X, Shao C, Li Q, Sun W. A qualitative and quantitative analysis of the human gingival crevicular fluid proteome and metaproteome. Proteomics 2021; 21:e2000321. [PMID: 34464030 DOI: 10.1002/pmic.202000321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 11/08/2022]
Abstract
Gingival crevicular fluid (GCF) is an integral part of oral fluid that plays a special role in maintaining the structure of junctional epithelium and defending against bacterial infection. In this study, we comprehensively analysed the composition of the human GCF proteome and metaproteome simultaneously to obtain multidimensional information about GCF. A total of 3680 human proteins (2540 with at least two unique peptides) were identified in the normal GCF sample, and their functions were mainly associated with immune function and inflammation. Among these proteins, 1874 proteins could be quantified by the iBAQ algorithm, and their abundances spanned a dynamic range of six orders of magnitude. For the GCF metaproteome, a total of 3082 proteins and 69 genera were found. In addition, 16 genera were not identified by GCF metagenomic analysis. Compared to the saliva metaproteome, 32 genera were found to be in common. The protein quantitative analysis showed that the abundance of GCF metaproteome contributed to approximately 4.17% of the total GCF proteome. The top three most abundant genera were Fusobacterium, Corynebacterium, and Leptotrichia. The above data will be useful for future research on GCF-related diseases.
Collapse
Affiliation(s)
- Xiaoping Xiao
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tingting Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, China
| | - Xiaolian Xiao
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yaoran Liu
- Department of Dentistry, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhengguang Guo
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chen Shao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing, China
| | - Qian Li
- Department of Dentistry, Chinese Academy of Medical Sciences Peking Union Medical College Hospital, Beijing, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Millard AR, Annis RG, Caffell AC, Dodd LL, Fischer R, Gerrard CM, Graves CP, Hendy J, Mackenzie L, Montgomery J, Nowell GM, Radini A, Beaumont J, Koon HEC, Speller CF. Scottish soldiers from the Battle of Dunbar 1650: A prosopographical approach to a skeletal assemblage. PLoS One 2020; 15:e0243369. [PMID: 33347451 PMCID: PMC7751964 DOI: 10.1371/journal.pone.0243369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
After the Battle Dunbar between English and Scottish forces in 1650, captured Scottish soldiers were imprisoned in Durham and many hundreds died there within a few weeks. The partial skeletal remains of 28 of these men were discovered in 2013. Building on previous osteological work, here we report wide-ranging scientific studies of the remains to address the following questions: Did they have comparable diet, health and disease throughout their lives? Did they have common histories of movement (or lack of movement) during their childhoods? Can we create a collective biography of these men? Strontium and oxygen isotope analysis of tooth enamel investigated childhood movement. Carbon and nitrogen isotope analysis of incrementally sampled dentine addressed childhood diet and nutrition. Metaproteomic analysis of dental calculus investigated oral microbiomes and food residues; this was complemented by microscopic analysis of debris in calculus from ingested materials. Selected individuals were examined for dental microwear. The extent of hydroxylation of proline in collagen was examined as a potential biomarker for scurvy. An osteobiography for each man was created using the full range of data generated about him, and these were synthesised using an approach based on the historical method for a collective biography or prosopography. The childhood residences of the men were primarily within the Midland Valley of Scotland, though some spent parts of their childhood outside the British Isles. This is concordant with the known recruitment areas of the Scottish army in 1650. Their diets included oats, brassicas and milk but little seafood, as expected for lowland rather than highland diets of the period. Childhood periods of starvation or illness were almost ubiquitous, but not simultaneous, suggesting regionally variable food shortages in the 1620s and 1630s. It is likely there was widespread low-level scurvy, ameliorating in later years of life, which suggests historically unrecorded shortages of fruit and vegetables in the early 1640s. Almost all men were exposed to burnt plant matter, probably as inhaled soot, and this may relate to the high proportion of them with of sinusitis. Interpersonal violence causing skeletal trauma was rare. Based on commonalities in their osteobiographies, we argue that these men were drawn from the same stratum of society. This study is perhaps the most extensive to date of individuals from 17th century Scotland. Combined with a precise historical context it allows the lives of these men to be investigated and compared to the historical record with unprecedented precision. It illustrates the power of archaeological science methods to confirm, challenge and complement historical evidence.
Collapse
Affiliation(s)
- Andrew R. Millard
- Department of Archaeology, Durham University, Durham, United Kingdom
- * E-mail:
| | - Richard G. Annis
- Archaeological Services, Durham University, Durham, United Kingdom
| | - Anwen C. Caffell
- Department of Archaeology, Durham University, Durham, United Kingdom
| | - Laura L. Dodd
- Department of Archaeology, Durham University, Durham, United Kingdom
- KDK Archaeology Ltd, Leighton Buzzard, United Kingdom
| | - Roman Fischer
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | | | - C. Pamela Graves
- Department of Archaeology, Durham University, Durham, United Kingdom
| | - Jessica Hendy
- Department of Archaeology, University of York, York, United Kingdom
| | - Lisa Mackenzie
- Department of Archaeology, University of York, York, United Kingdom
| | - Janet Montgomery
- Department of Archaeology, Durham University, Durham, United Kingdom
| | - Geoff M. Nowell
- Department of Earth Sciences, Durham University, Durham, United Kingdom
| | - Anita Radini
- Department of Archaeology, University of York, York, United Kingdom
| | - Julia Beaumont
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, United Kingdom
| | - Hannah E. C. Koon
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, United Kingdom
| | - Camilla F. Speller
- Department of Anthropology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Vitkov L, Minnich B, Knopf J, Schauer C, Hannig M, Herrmann M. NETs Are Double-Edged Swords with the Potential to Aggravate or Resolve Periodontal Inflammation. Cells 2020; 9:E2614. [PMID: 33291407 PMCID: PMC7762037 DOI: 10.3390/cells9122614] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a general term for diseases characterised by inflammatory destruction of tooth-supporting tissues, gradual destruction of the marginal periodontal ligament and resorption of alveolar bone. Early-onset periodontitis is due to disturbed neutrophil extracellular trap (NET) formation and clearance. Indeed, mutations that inactivate the cysteine proteases cathepsin C result in the massive periodontal damage seen in patients with deficient NET formation. In contrast, exaggerated NET formation due to polymorphonuclear neutrophil (PMN) hyper-responsiveness drives the pathology of late-onset periodontitis by damaging and ulcerating the gingival epithelium and retarding epithelial healing. Despite the gingival regeneration, periodontitis progression ends with almost complete loss of the periodontal ligament and subsequent tooth loss. Thus, NETs help to maintain periodontal health, and their dysregulation, either insufficiency or surplus, causes heavy periodontal pathology and edentulism.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (B.M.)
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Bernd Minnich
- Department of Biosciences, Vascular & Exercise Biology Unit, University of Salzburg, 5020 Salzburg, Austria; (L.V.); (B.M.)
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, 66424 Homburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (J.K.); (C.S.); (M.H.)
| |
Collapse
|
20
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Gingival Crevicular Fluid Peptidome Profiling in Healthy and in Periodontal Diseases. Int J Mol Sci 2020; 21:ijms21155270. [PMID: 32722327 PMCID: PMC7432128 DOI: 10.3390/ijms21155270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Given its intrinsic nature, gingival crevicular fluid (GCF) is an attractive source for the discovery of novel biomarkers of periodontal diseases. GCF contains antimicrobial peptides and small proteins which could play a role in specific immune-inflammatory responses to guarantee healthy gingival status and to prevent periodontal diseases. Presently, several proteomics studies have been performed leading to increased coverage of the GCF proteome, however fewer efforts have been done to explore its natural peptides. To fill such gap, this review provides an overview of the mass spectrometric platforms and experimental designs aimed at GCF peptidome profiling, including our own data and experiences gathered from over several years of matrix-assisted laser desorption ionization/time of flight mass spectrometry (MALDI-TOF MS) based approach in this field. These tools might be useful for capturing snapshots containing diagnostic clinical information on an individual and population scale, which may be used as a specific code not only for the diagnosis of the nature or the stage of the inflammatory process in periodontal disease, but more importantly, for its prognosis, which is still an unmet medical need. As a matter of fact, current peptidomics investigations suffer from a lack of standardized procedures, posing a serious problem for data interpretation. Descriptions of the efforts to address such concerns will be highlighted.
Collapse
|
22
|
Lucena S, Coelho AV, Muñoz-Prieto A, Anjo SI, Manadas B, Capela E Silva F, Lamy E, Tvarijonaviciute A. Changes in the salivary proteome of beagle dogs after weight loss. Domest Anim Endocrinol 2020; 72:106474. [PMID: 32361424 DOI: 10.1016/j.domaniend.2020.106474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/07/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Being overweight or obese represents an important health issue in humans and pets. The aim of this study was to investigate changes in the salivary proteome of overweight beagles after induced weight loss to better understand the physiological changes involved in this process. Five overweight/obese neutered males of pure breed beagles were evaluated. During the 3-mo period of weight loss, each animal received a strictly controlled amount of a low fat commercial diet per day. Body condition scores (BCS), body weight (BW), and serum biochemical parameters (total cholesterol, triglycerides, and C-reactive protein) were assessed weekly. Quantitative proteomics analysis by SWATH was used to evaluate the salivary proteome changes induced by weight loss treatment. BCS, BW, serum total cholesterol concentration, and abundances of 23 salivary proteins differed significantly between before and after treatment. Some of the altered protein amounts, namely of peptidyl-prolyl cis-trans isomerase, fructose-bisphosphate aldolase C, and 78-kDa glucose-regulated protein, increased after weight loss. These proteins are related with the immune system, inflammatory status, oxidative stress, and glucose metabolism. The results obtained suggest a potential use of salivary proteins in monitoring physiological changes in dogs subjected to weight loss. Moreover, the type of changes identified reinforces the postulated physiological improvements, which weight loss induces. Further research is needed to determine whether the changes observed in this study are due to weight loss, dietary changes, or a combination of both.
Collapse
Affiliation(s)
- S Lucena
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal; Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Evora, Portugal
| | - A V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A Muñoz-Prieto
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain
| | - S I Anjo
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - B Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - F Capela E Silva
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal; Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Evora, Portugal
| | - E Lamy
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade de Évora, Évora, Portugal.
| | - A Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum", University of Murcia, Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
23
|
Rizal MI, Soeroso Y, Sulijaya B, Assiddiq BF, Bachtiar EW, Bachtiar BM. Proteomics approach for biomarkers and diagnosis of periodontitis: systematic review. Heliyon 2020; 6:e04022. [PMID: 32529063 PMCID: PMC7276445 DOI: 10.1016/j.heliyon.2020.e04022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/12/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023] Open
Abstract
Quantitative proteomic workflow based on mass spectrometry (MS) is recently developed by the researchers to screen for biomarkers in periodontal diseases comprising periodontitis. Periodontitis is known for chronic inflammatory disease characterized by progressive destruction of the tooth-supporting apparatus, yet has a lack of clear pathobiology based on a discrepancy between specified categories and diagnostic vagueness. The objective of this review was to outlined the accessible information related to proteomics studies on periodontitis. The Preferred Reporting Items for Systematical Reviews and Meta-Analysis (PRISMA) statement guides to acquaint proteomic analysis on periodontal diseases was applied. Three databases were used in this study, such as Pubmed, ScienceDirect and Biomed Central from 2009 up to November 2019. Proteomics analysis platforms that used in the studies were outlined. Upregulated and downregulated proteins findings data were found, in which could be suitable as candidate biomarkers for this disease.
Collapse
Affiliation(s)
- Muhammad Ihsan Rizal
- Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | | | - Endang W. Bachtiar
- Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Boy M. Bachtiar
- Oral Science Research Center, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
24
|
An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int J Mol Sci 2020; 21:ijms21113829. [PMID: 32481582 PMCID: PMC7312805 DOI: 10.3390/ijms21113829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Several investigators have reported about the intricate molecular mechanism underlying periodontal diseases (PD). Nevertheless, the role of specific genes, cells, or cellular mechanisms involved in the pathogenesis of periodontitis are still unclear. Although periodontitis is one of the most prevalent oral diseases globally, there are no pre-diagnostic markers or therapeutic targets available for such inflammatory lesions. A pivotal role is played by pro- and anti-inflammatory markers in modulating pathophysiological and physiological processes in repairing damaged tissues. In addition, effects on osteoimmunology is ever evolving due to the ongoing research in understanding the molecular mechanism lying beneath periodontal diseases. The aim of the current review is to deliver an evidence-based update on the molecular mechanism of periodontitis with a particular focus on recent developments. Reports regarding the molecular mechanism of these diseases have revealed unforeseen results indicative of the fact that significant advances have been made to the periodontal medicine over the past decade. There is integrated hypothesis-driven research going on. Although a wide picture of association of periodontal diseases with immune response has been further clarified with present ongoing research, small parts of the puzzle remain a mystery and require further investigations.
Collapse
|
25
|
Nguyen T, Sedghi L, Ganther S, Malone E, Kamarajan P, Kapila YL. Host-microbe interactions: Profiles in the transcriptome, the proteome, and the metabolome. Periodontol 2000 2020; 82:115-128. [PMID: 31850641 DOI: 10.1111/prd.12316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periodontal studies using transcriptomics, proteomics, and metabolomics encompass the collection of mRNA transcripts, proteins, and small-molecule chemicals in the context of periodontal health and disease. The number of studies using these approaches has significantly increased in the last decade and they have provided new insight into the pathogenesis and host-microbe interactions that define periodontal diseases. This review provides an overview of current molecular findings using -omic approaches that underlie periodontal disease, including modulation of the host immune response, tissue homeostasis, and complex metabolic processes of the host and the oral microbiome. Integration of these -omic approaches will broaden our perspective of the molecular mechanisms involved in periodontal disease, advancing and improving the diagnosis and treatment of various stages and forms of periodontal disease.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Lea Sedghi
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
26
|
Kasai S, Onizuka S, Katagiri S, Nakamura T, Hanatani T, Kudo T, Sugata Y, Ishimatsu M, Usui M, Nakashima K. Associations of cytokine levels in gingival crevicular fluid of mobile teeth with clinical improvement after initial periodontal treatment. J Oral Sci 2020; 62:189-196. [PMID: 32132326 DOI: 10.2334/josnusd.19-0056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Studies suggest that analysis of gingival crevicular fluid (GCF) is useful for evaluating periodontal status. In this study, clinical variables related to tooth mobility, and multiple cytokine levels in proximate GCF, were measured at four time points during initial periodontal treatment: before treatment (baseline), after supragingival scaling, after occlusal adjustment, and after scaling and root planing (SRP); 20 teeth from 13 patients with periodontitis were included. Baseline interleukin (IL)-10 level in GCF was significantly higher around teeth that showed substantial improvement in periodontal epithelial surface area (PESA) after SRP than around teeth without PESA improvement. IL-3 and IL-16 levels in GCF at baseline were significantly higher around teeth with a periodontal inflamed surface area (PISA) of 0 mm2 after SRP than around teeth without PISA improvement. In addition, baseline IL-7, IL-11, and IL-12p40 levels in GCF were significantly lower around teeth with decreased mobility after occlusal adjustment than around teeth without decreased mobility. These results suggest that pre-treatment cytokine levels in GCF are useful in predicting the effects of initial periodontal treatment.
Collapse
Affiliation(s)
- Shingo Kasai
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Satoru Onizuka
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Taiji Nakamura
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Tomoya Hanatani
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Takahiro Kudo
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Yuou Sugata
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Michie Ishimatsu
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Michihiko Usui
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| | - Keisuke Nakashima
- Division of Periodontology, Department of Oral Functions, Kyushu Dental University
| |
Collapse
|
27
|
Rosa N, Campos B, Esteves AC, Duarte AS, Correia MJ, Silva RM, Barros M. Tracking the functional meaning of the human oral-microbiome protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:199-235. [PMID: 32312422 DOI: 10.1016/bs.apcsb.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interactome - the network of protein-protein interactions (PPIs) within a cell or organism - is technically difficult to assess. Bioinformatic tools can, not only, identify potential PPIs that can be later experimentally validated, but also be used to assign functional meaning to PPIs. Saliva's potential as a non-invasive diagnostic fluid is currently being explored by several research groups. But, in order to fully attain its potential, it is necessary to achieve the full characterization of the mechanisms that take place within this ecosystem. The onset of omics technologies, and specifically of proteomics, delivered a huge set of data that is largely underexplored. Quantitative information relative to proteins within a given context (for example a given disease) can be used by computational algorithms to generate information regarding PPIs. These PPIs can be further analyzed concerning their functional meaning and used to identify potential biomarkers, therapeutic targets, defense and pathogenicity mechanisms. We describe a computational pipeline that can be used to identify and analyze PPIs between human and microbial proteins. The pipeline was tested within the scenario of human PPIs of systemic (Zika Virus infection) and of oral conditions (Periodontal disease) and also in the context of microbial interactions (Candida-Streptococcus) and showed to successfully predict functionally relevant PPIs. The pipeline can be applied to different scientific areas, such as pharmacological research, since a functional meaningful PPI network can provide insights on potential drug targets, and even new uses for existing drugs on the market.
Collapse
Affiliation(s)
- Nuno Rosa
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Bruno Campos
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Ana Cristina Esteves
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Ana Sofia Duarte
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Maria José Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Raquel M Silva
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| | - Marlene Barros
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Viseu, Portugal
| |
Collapse
|
28
|
Hartenbach FARR, Velasquez É, Nogueira FCS, Domont GB, Ferreira E, Colombo APV. Proteomic analysis of whole saliva in chronic periodontitis. J Proteomics 2019; 213:103602. [PMID: 31809901 DOI: 10.1016/j.jprot.2019.103602] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/18/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022]
Abstract
Periodontitis is a chronic inflammatory disease resulting from a dysbiosis of the dental biofilm and a dysregulated host response in susceptible individuals. It is characterized by periodontal attachment destruction, bone resorption and eventual tooth loss. Salivary biomarkers have been sought to predict and prevent periodontitis. This comparative study analyzed the salivary proteome of individuals with chronic periodontitis (CP) and periodontal health (PH) and correlated specific proteins with clinical parameters of disease by using mass spectrometry. Stimulated whole saliva was obtained 10 PH and 30 CP patients and pooled into 5 healthy control samples and 15 CP samples. After precipitation with TCA, samples were digested enzymatically with trypsin and analyzed by a LTQ Orbitrap Velos equipped with a nanoelectrospray ion source. A wide range of salivary proteins of various functions was significantly reduced in CP individuals, whereas salivary acidic proline-rich phosphoprotein, submaxillary gland androgen-regulated protein, histatin-1, fatty acid binding protein, thioredoxin and cystatin-SA were predominant in diseased patients and correlated significantly with signs of periodontal attachment loss and inflammation. In conclusion, few specific salivary proteins were associated with CP. These findings may contribute to the identification of disease indicators or signatures for the improvement of periodontal diagnosis. SIGNIFICANCE: Periodontitis is a chronic inflammatory disease that results in periodontal attachment destruction, bone resorption and eventual tooth loss. Salivary biomarkers have been sought to predict periodontitis. The analysis of the salivary proteome of individuals with chronic periodontitis indicated that several proteins of various functions were significantly reduced in these individuals, except for salivary acidic proline-rich phosphoprotein, submaxillary gland androgen-regulated protein, histatin, fatty acid binding protein, thioredoxin and cystatin. Differences in salivary proteome profiles between periodontal health and periodontitis may contribute to the identification of disease indicators and to the improvement of periodontal diagnosis and treatment.
Collapse
Affiliation(s)
- Fátima Aparecida Rocha Resende Hartenbach
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Brazil; Department of MedicalMicrobiology, Institute of Microbiology, FederalUniversity of Rio de Janeiro, Brazil
| | - Érika Velasquez
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil; Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Gilberto B Domont
- Proteomics Unit, Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Eliane Ferreira
- Department of MedicalMicrobiology, Institute of Microbiology, FederalUniversity of Rio de Janeiro, Brazil
| | - Ana Paula Vieira Colombo
- School of Dentistry, Department of Clinics, Federal University of Rio de Janeiro, Brazil; Department of MedicalMicrobiology, Institute of Microbiology, FederalUniversity of Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Batista TBD, Chaiben CL, Penteado CAS, Nascimento JMC, Ventura TMO, Dionizio A, Rosa EAR, Buzalaf MAR, Azevedo-Alanis LR. Salivary proteome characterization of alcohol and tobacco dependents. Drug Alcohol Depend 2019; 204:107510. [PMID: 31494441 DOI: 10.1016/j.drugalcdep.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol and substances found in tobacco may alter salivary flow and amount of saliva proteins. This study aimed to compare salivary proteins between alcohol dependent smokers and controls. METHODS This is a case-control study with men older than 18 years of age, matched by age. The alcohol-dependent group was composed by heavy smokers and alcohol consumers. Unstimulated whole saliva was collected from all subjects. Analysis of digested peptides was performed in mass spectrometer. Data were processed using ProteinLynx GlobalServer software. Results were obtained by searching theHomo sapiens database from the UniProt catalog. The search tool IBI-IMIM was used to identify candidate proteins for biomarkers. RESULTS Alcohol-dependent and control groups were composed of nine participants each, with mean age of 36.89 ± 2.57 and 35.78 ± 1.64 years, respectively. 404 salivary proteins were found in both groups; 282 in the alcohol-dependent. Among the 96 proteins presented in both groups, 32 were up-regulated in the alcohol dependents (i.e. "Hemoglobin subunit beta" and "Forkhead box protein P2" were up-regulated at least 10-fold), 23 were down-regulated (i.e. "Statherin" and "RNA-binding protein 25" were down-regulated at least 10-fold), and 41 presented similar expression in both groups. 71 proteins were candidates for biomarkers of disorders 58 presented in alcohol dependents' saliva. The most common disorders were neoplasms, genetic, cardiovascular, metabolic and glandular diseases. CONCLUSIONS Salivary protein profile undergoes strong changes in alcohol and tobacco dependents. 34% of salivary proteins present in alcohol and tobacco dependents were present in controls; 14.5% of them were expressed in similar quantity.
Collapse
Affiliation(s)
- Thiago Beltrami Dias Batista
- Graduate student, Graduate Program in Dentistry, School of Life Sciences, Pontifícia, Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil.
| | - Cassiano Lima Chaiben
- Graduate student, Graduate Program in Dentistry, School of Life Sciences, Pontifícia, Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil.
| | - Carlos Antonio Schäffer Penteado
- Graduate student, Graduate Program in Dentistry, School of Life Sciences, Pontifícia, Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil.
| | - Júlia Milena Carvalho Nascimento
- Undergraduate student, Dentistry, School of Life Sciences, Pontifícia Universidade, Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil.
| | - Talita Mendes Oliveira Ventura
- Graduate student, Bauru School of Dentistry, University of São Paulo, Alameda Doutor, Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Aline Dionizio
- Graduate student, Bauru School of Dentistry, University of São Paulo, Alameda Doutor, Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Edvaldo Antonio Ribeiro Rosa
- Full Professor, Graduate Program in Dentistry, School of Life Sciences, Pontifícia, Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil.
| | - Marília Afonso Rabelo Buzalaf
- Full Professor, Bauru School of Dentistry, University of São Paulo, Alameda Doutor, Octávio Pinheiro Brisolla, 9-75, Bauru, SP, 17012-901, Brazil.
| | - Luciana Reis Azevedo-Alanis
- Full Professor, Graduate Program in Dentistry, School of Life Sciences, Pontifícia, Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba, PR, 80215-901, Brazil.
| |
Collapse
|
30
|
Nalmpantis D, Gatou A, Fragkioudakis I, Margariti A, Skoura L, Sakellari D. Azurocidin in gingival crevicular fluid as a potential biomarker of chronic periodontitis. J Periodontal Res 2019; 55:209-214. [PMID: 31608993 DOI: 10.1111/jre.12703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Azurocidin is a neutrophil-derived protein in gingival crevicular fluid (GCF) which, according to relevant studies, might correlate with periodontal disease. The aim of the present study was to evaluate azurocidin as a potential biomarker for chronic periodontitis. MATERIAL AND METHODS One hundred and one patients participated in the study, divided into two groups. Forty-eight were included in the periodontally healthy group (HP) and fifty-three in the chronic periodontitis group (CP). Clinical indices included probing depth (PD), recession (REC), clinical attachment level (CAL), bleeding on probing (BOP) and plaque (PL). Pooled GCF samples were collected with paper strips, freezed in liquid nitrogen (-196°C), stored at -80°C, and the levels of azurocidin were analyzed with ELISA. Values were transformed and expressed for comparisons in pg/30 s sample. Statistical comparisons were performed using non-parametric tests (Mann-Whitney) at the 0.05 level. Furthermore, the diagnostic accuracy of the procedure was assessed with receiver operator characteristic curves (ROC), areas under the curve (AUC), and the Youden's J Index calculated. RESULTS Demographic data were comparable between the two groups. Clinical parameters and the levels of azurocidin were statistically significantly higher in the CP group when compared to the HP group (Mann-Whitney test, P < .05). Quantitative data from ELISA demonstrated a high diagnostic accuracy of azurocidin, with AUC calculated higher than 0.9 at the 0.000 level. CONCLUSION Azurocidin in GCF is a promising biomarker for periodontal disease. The results of the present study agree with previous studies in the literature showing an up-regulated trend in the levels of azurocidin in periodontitis patients.
Collapse
Affiliation(s)
- Dimitrios Nalmpantis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Asimina Gatou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolia Margariti
- Department of Microbiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Dental School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
31
|
Jiang R, Rong C, Ke R, Meng S, Yan X, Ke H, Wu S. Differential proteomic analysis of serum exosomes reveals alterations in progression of Parkinson disease. Medicine (Baltimore) 2019; 98:e17478. [PMID: 31593110 PMCID: PMC6799836 DOI: 10.1097/md.0000000000017478] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Exosomes are nanometer-sized vesicles with intercellular communication functions, and their encapsulated proteins may participate in the pathological process of neurodegenerative disorders. The aim of this study was to identify the protein changes of serum exosomes in Parkinson disease (PD) patients with different disease progress types, and to identify potential biomarkers. The exosomes of PD patients with different severity and healthy control group were isolated from serum. The exosome proteins were analyzed by mass spectrometry with label-free quantitative proteomics. A total of 429 proteins were identified, of which 14 were significantly different in mild and severe PD patients. The expression levels of 7 proteins, including pigmented epithelium-derived factor, afamin, apolipoprotein D and J, were significantly increased in PD patients. The expression levels of 7 proteins, including complement C1q and protein Immunoglobulin Lambda Variable 1-33 (IGLV1-33)Cluster -33, were decreased in PD patients. These differentially expressed proteins were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, which confirmed that the interaction between prion diseases and ECM receptors was the most significant pathways of enrichment. The changes of proteins and pathways may be related to the pathophysiological mechanism of PD. Therefore, some of these proteins could be considered as potential biomarkers for early PD diagnosis.
Collapse
Affiliation(s)
- Ruilai Jiang
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Chunjiao Rong
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Ronghu Ke
- Department of Plastic and Reconstructive Surgery
| | - Shuiyan Meng
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Xiumei Yan
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| | - Honglin Ke
- Department of Emergency, Huashan Hospital, Fudan University School of Medicine, Shanghai, China
| | - Shaochang Wu
- Department of Emergency, the Second People's Hospital of Lishui, Lishui, Zhejiang Province
| |
Collapse
|
32
|
Bostanci N, Bao K, Greenwood D, Silbereisen A, Belibasakis GN. Periodontal disease: From the lenses of light microscopy to the specs of proteomics and next-generation sequencing. Adv Clin Chem 2019; 93:263-290. [PMID: 31655732 DOI: 10.1016/bs.acc.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Periodontal disease entails the inflammatory destruction of the tooth supporting (periodontal) tissues as a result of polymicrobial colonization of the tooth surface in the form of biofilms. Extensive data collected over the past decades on this chronic disease demonstrate that its progression is infrequent and episodic, and the susceptibility to it can vary among individuals. Physical assessments of previously occurring damage to periodontal tissues remain the cornerstone of detection and diagnosis, whereas traditionally used diagnostic procedures do neither identify susceptible individuals nor distinguish between disease-active and disease-inactive periodontal sites. Thus, more sensitive and accurate "measurable biological indicators" of periodontal diseases are needed in order to place diagnosis (e.g., the presence or stage) and management of the disease on a more rational less empirical basis. Contemporary "omics" technologies may help unlock the path to this quest. High throughput nucleic acid sequencing technologies have enabled us to examine the taxonomic distribution of microbial communities in oral health and disease, whereas proteomic technologies allowed us to decipher the molecular state of the host in disease, as well as the interactive cross-talk of the host with the microbiome. The newly established field of metaproteomics has enabled the identification of the repertoire of proteins that oral microorganisms use to compete or co-operate with each other. Vast such data is derived from oral biological fluids, including gingival crevicular fluid and saliva, which is progressively completed and catalogued as the analytical technologies and bioinformatics tools progressively advance. This chapter covers the current "omics"-derived knowledge on the microbiome, the host and their "interactome" with regard to periodontal diseases, and addresses challenges and opportunities ahead.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kai Bao
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Greenwood
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Wen X, Franchi L, Chen F, Gu Y. Proteomic analysis of gingival crevicular fluid for novel biomarkers of pubertal growth peak. Eur J Orthod 2019; 40:414-422. [PMID: 29092020 DOI: 10.1093/ejo/cjx082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Detection of pubertal growth peak is vital in orthodontic treatment timing and planning. Gingival crevicular fluid (GCF) contains abundant proteins from different sources and is an ideal source of biomarkers. The aim of this research is to detect candidate GCF biomarkers of pubertal growth by tandem mass tags (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to help diagnosis and treatment planning of functional treatment. Methods Forty subjects were recruited and were divided into pubertal and post-pubertal groups according to cervical vertebral maturation method. GCF samples were collected by paper points. GCF proteome of pubertal and post-pubertal subjects was compared by TMT labelling coupled with LC-MS/MS. Results A total of 537 proteins were detected in GCF samples, with 183 proteins detected in GCF for the first time. These proteins were involved in processes of immune response, ion transport, and signal transduction. The GCF concentration of vitamin D binding protein (DBP) and seroserotransferrin (Tf) was significantly higher in pubertal than that in post-pubertal subjects. DBP and Tf, therefore, were considered to be candidate biomarkers of pubertal growth. This result was validated using GCF samples from new subjects (P < 0.05). Conclusion Our results indicate that TMT labelling coupled with LC-MS/MS were proved to be a useful method for proteomic analysis of GCF with high accuracy. The expression of DBP and Tf was increased in children at circumpubertal stage and can be considered candidate biomarkers of pubertal growth.
Collapse
Affiliation(s)
- Xi Wen
- Department of orthodontics, Peking University School and Hospital of Stomatology, Haidian District, PR. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, PR. China
| | | | - Feng Chen
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, PR. China.,Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, PR. China
| | - Yan Gu
- Department of orthodontics, Peking University School and Hospital of Stomatology, Haidian District, PR. China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Haidian District, PR. China
| |
Collapse
|
34
|
Shin MS, Kim YG, Shin YJ, Ko BJ, Kim S, Kim HD. Deep sequencing salivary proteins for periodontitis using proteomics. Clin Oral Investig 2018; 23:3571-3580. [PMID: 30554327 DOI: 10.1007/s00784-018-2779-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Saliva is a bodily fluid transuded from gingival crevice fluid and blood and contains many proteins. Proteins in saliva have been studied as markers for periodontal diseases. Mass spectrometric analysis is applied to investigate biomarker proteins that are related to periodontitis. MATERIAL AND METHODS Saliva samples were collected from 207 participants including 36 pairs matched for age, sex, and smoking who joined Yangpyeong health cohort. Periodontitis was defined by 2005 5th European guideline. Shotgun proteomics was applied to detect proteins from saliva samples. Principal component analysis and Ingenuity Pathway Analysis for canonical pathway and protein pathway were applied. Protein-protein interaction was also applied. Enzyme-linked immunosorbent assay (ELISA) was used to verify the candidate protein markers among another matched participants (n = 80). RESULTS Shotgun proteomics indicated that salivary S100A8 and S100A9 were candidate biomarkers for periodontitis. ELISA confirmed that both salivary S100A8 and S100A9 were higher in those with periodontitis compared to those without periodontitis (paired-t test, p < 0.05). CONCLUSION Our proteomics data showed that S100A8 and S100A9 in saliva could be candidate biomarkers for periodontitis. The rapid-test-kit using salivary S100A8 and S100A9 will be a practical tool for reducing the risk of periodontitis and promotion of periodontal health. CLINICAL RELEVANCE A rapid-test-kit using salivary biomarkers, S100A8 and S100A9, could be utilized by clinicians and individuals for screening periodontitis, which might reduce the morbidity of periodontitis and promote periodontal health.
Collapse
Affiliation(s)
- Myung-Seop Shin
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, South Korea
| | - Yoo Jin Shin
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, South Korea
| | - Sungtae Kim
- Department of Periodontology, Seoul National University Dental Hospital, Seoul, South Korea.,Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Hyun-Duck Kim
- Department of Preventive and Social Dentistry, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea. .,Dental Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
35
|
Marinho MC, Pacheco ABF, Costa GCV, Ortiz ND, Zajdenverg L, Sansone C. Quantitative gingival crevicular fluid proteome in type 2 diabetes mellitus and chronic periodontitis. Oral Dis 2018; 25:588-595. [PMID: 30362201 DOI: 10.1111/odi.12996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the proteome of the gingival crevicular fluid comparing the relative abundance of proteins from type 2 diabetes mellitus (2DM) individuals and chronic periodontitis (CP) affected sites, subjects affected by both conditions and healthy individuals. MATERIAL AND METHODS Twenty individuals were equally allocated in four groups, 2DM with CP, 2DM periodontally healthy, CP without 2DM, and periodontally healthy without 2DM. The relative quantification of proteins was accessed with iTRAQ labeling and mass spectrometry. RESULTS AND CONCLUSION A total of 104 proteins showed significant differences in abundance in pairwise comparisons. Some presented different levels in all diseased groups as compared to control, either increasing (rap guanine nucleotide exchange factor, S100A8, S100A9, and immunoglobulins) or decreasing (actins, myristoylated alanine-rich C-kinase substrate, and glutathione S-transferase). Other differences were specific for a given condition: Titin, neutrophil elastase, and myeloperoxidase levels were higher in the DP group, cathelicidin antimicrobial peptide decreased in CP, and annexin decreased in DH. These differences in the proteome can provide clues for further studies that will validate the variation in their levels and their role in both diseases.
Collapse
Affiliation(s)
- Marcelo C Marinho
- Department of Dental Clinic, Division of Periodontology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz F Pacheco
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Giovani C V Costa
- Brazilian Doping Control Laboratory (LBCD/LADETEC/IQ), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nina D Ortiz
- Brazilian Doping Control Laboratory (LBCD/LADETEC/IQ), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lenita Zajdenverg
- Department of Internal Medicine, Section of Diabetes and Nutrology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmelo Sansone
- Department of Dental Clinic, Division of Periodontology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Islam F, Chaousis S, Wahab R, Gopalan V, Lam AK. Protein interactions of FAM134B with EB1 and APC/beta‐catenin in vitro in colon carcinoma. Mol Carcinog 2018; 57:1480-1491. [DOI: 10.1002/mc.22871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Farhadul Islam
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- Department of Biochemistry and Molecular BiologyUniversity of RajshahiRajshahiBangladesh
| | - Stephanie Chaousis
- Australian Rivers Institute and School of EnvironmentGriffith UniversityGold CoastQueenslandAustralia
| | - Riajul Wahab
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| | - Vinod Gopalan
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
- School of Medical ScienceMenzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| | - Alfred K.‐Y. Lam
- Cancer Molecular PathologySchool of Medicine Menzies Health Institute QueenslandGriffith UniversityGold CoastQueenslandAustralia
| |
Collapse
|
37
|
Guzman YA, Sakellari D, Papadimitriou K, Floudas CA. High-throughput proteomic analysis of candidate biomarker changes in gingival crevicular fluid after treatment of chronic periodontitis. J Periodontal Res 2018; 53:853-860. [PMID: 29900535 DOI: 10.1111/jre.12575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Untargeted, high-throughput proteomics methodologies have great potential to aid in identifying biomarkers for the diagnosis of periodontal disease. The application of such methods to the discovery of candidate biomarkers for the resolution of periodontal inflammation after periodontal therapy has been investigated. MATERIAL AND METHODS Gingival crevicular fluid samples were collected from 10 patients diagnosed with chronic periodontitis at baseline and 1, 5, 9 and 13 weeks after completion of mechanical periodontal treatment. Clinical indices of periodontal disease, including probing depth, recession, clinical attachment level and bleeding on probing, were recorded at baseline and 13 weeks. Samples were analyzed using an online liquid chromatography-nanoelectrospray-hybrid ion trap-Orbitrap mass spectrometer. Spectra were processed with the PILOT_PROTEIN proteomics software suite. RESULTS Clinical parameters were significantly improved 13 weeks after treatment (Wilcoxon signed ranks test, P < .05). From the substantial number of identified proteins, a small subset was extracted by filter methods that included temporal pattern matching, logistic function fitting and mixed-integer linear optimization. This subset includes azurocidin, lysozyme C and myosin-9 as candidate biomarkers prominent at baseline and alpha-smooth muscle actin as prominent 13 weeks after treatment. Cross-validation studies yielded average predictive accuracy and area under the curve of 0.900 and 0.930, respectively. CONCLUSION High-throughput proteomic analysis can contribute to identifying endpoints of periodontal therapy. These candidate biomarkers should be evaluated for clinical efficacy.
Collapse
Affiliation(s)
- Y A Guzman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA.,Texas A&M Energy Institute, Texas A&M University, College Station, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, USA
| | - D Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - K Papadimitriou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C A Floudas
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, USA.,Texas A&M Energy Institute, Texas A&M University, College Station, USA
| |
Collapse
|
38
|
Preianò M, Maggisano G, Murfuni MS, Villella C, Pelaia C, Montalcini T, Lombardo N, Pelaia G, Savino R, Terracciano R. An Analytical Method for Assessing Optimal Storage Conditions of Gingival Crevicular Fluid and Disclosing a Peptide Biomarker Signature of Gingivitis by MALDI-TOF MS. Proteomics Clin Appl 2018; 12:e1800005. [DOI: 10.1002/prca.201800005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/27/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Mariaimmacolata Preianò
- Department of Health Sciences; Laboratory of Mass Spectrometry and Proteomics; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Giuseppina Maggisano
- Department of Health Sciences; Laboratory of Mass Spectrometry and Proteomics; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Maria Stella Murfuni
- Department of Health Sciences; Laboratory of Mass Spectrometry and Proteomics; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Chiara Villella
- Department of Health Sciences; Laboratory of Mass Spectrometry and Proteomics; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Corrado Pelaia
- Department of Medical and Surgical Sciences; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Tiziana Montalcini
- Department of Experimental and Clinical Medicine; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Nicola Lombardo
- Department of Medical and Surgical Sciences; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Rocco Savino
- Department of Health Sciences; Laboratory of Mass Spectrometry and Proteomics; University “Magna Graecia”; Catanzaro 88100 Italy
| | - Rosa Terracciano
- Department of Health Sciences; Laboratory of Mass Spectrometry and Proteomics; University “Magna Graecia”; Catanzaro 88100 Italy
| |
Collapse
|
39
|
Bostanci N, Selevsek N, Wolski W, Grossmann J, Bao K, Wahlander A, Trachsel C, Schlapbach R, Öztürk VÖ, Afacan B, Emingil G, Belibasakis GN. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol Cell Proteomics 2018; 17:1392-1409. [PMID: 29610270 DOI: 10.1074/mcp.ra118.000718] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Periodontal diseases are among the most prevalent worldwide, but largely silent, chronic diseases. They affect the tooth-supporting tissues with multiple ramifications on life quality. Their early diagnosis is still challenging, due to lack of appropriate molecular diagnostic methods. Saliva offers a non-invasively collectable reservoir of clinically relevant biomarkers, which, if utilized efficiently, could facilitate early diagnosis and monitoring of ongoing disease. Despite several novel protein markers being recently enlisted by discovery proteomics, their routine diagnostic application is hampered by the lack of validation platforms that allow for rapid, accurate and simultaneous quantification of multiple proteins in large cohorts. Here we carried out a pipeline of two proteomic platforms; firstly, we applied open ended label-free quantitative (LFQ) proteomics for discovery in saliva (n = 67, including individuals with health, gingivitis, and periodontitis), followed by selected-reaction monitoring (SRM)-targeted proteomics for validation in an independent cohort (n = 82). The LFQ platform led to the discovery of 119 proteins with at least 2-fold significant difference between health and disease. The 65 proteins chosen for the subsequent SRM platform included 50 functionally related proteins derived from the significantly enriched processes of the LFQ data, 11 from literature-mining, and four house-keeping ones. Among those, 60 were reproducibly quantifiable proteins (92% success rate), represented by a total of 143 peptides. Machine-learning modeling led to a narrowed-down panel of five proteins of high predictive value for periodontal diseases with maximum area under the receiver operating curve >0.97 (higher in disease: Matrix metalloproteinase-9, Ras-related protein-1, Actin-related protein 2/3 complex subunit 5; lower in disease: Clusterin, Deleted in Malignant Brain Tumors 1). This panel enriches the pool of credible clinical biomarker candidates for diagnostic assay development. Yet, the quantum leap brought into the field of periodontal diagnostics by this study is the application of the biomarker discovery-through-verification pipeline, which can be used for validation in further cohorts.
Collapse
Affiliation(s)
- Nagihan Bostanci
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden;
| | - Nathalie Selevsek
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Witold Wolski
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Kai Bao
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Asa Wahlander
- ¶AstraZeneca Translational Biomarkers and Bioanalysis, Drug Safety and Metabolism, Innovative Medicines, Mölndal, Sweden
| | - Christian Trachsel
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Ralph Schlapbach
- §Functional Genomics Center Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Veli Özgen Öztürk
- ‖Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Beral Afacan
- ‖Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Gulnur Emingil
- **Department of Periodontology, School of Dentistry, Ege University, Izmir, Turkey
| | - Georgios N Belibasakis
- From the ‡Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Jourdain ML, Pierrard L, Kanagaratnam L, Velard F, Sergheraert J, Lefèvre B, Gangloff SC, Braux J. Antimicrobial peptide gene expression in periodontitis patients: A pilot study. J Clin Periodontol 2018; 45:524-537. [PMID: 29446150 DOI: 10.1111/jcpe.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
AIM Antimicrobial peptides (AMPs) are one of the most active components of innate immunity and have characteristics that could place them at the heart of the pathogenesis of periodontal disease. This study investigated differences in the expression of AMP coding genes obtained using a simple harvesting technique, gingival smear, between two groups of patients: chronic periodontitis subjects versus healthy ones. MATERIALS AND METHODS Twenty-three patients were enrolled in two groups: 12 were diagnosed with moderate or severe generalized chronic periodontitis, and 11 were diagnosed as clinically healthy. Gingival smears were retrieved and studied using reverse transcription-quantitative PCR (RT-qPCR) after mRNA purification. RESULTS Fifteen gene expressions were obtained using real-time RT-qPCR. Three AMP genes, histatin 3 (HTN3), α-defensin 4 (DEFA4) and lysozyme C (LYZ), presented different expression levels in periodontitis patients compared with healthy subjects. The relative expression level of DEFA4 appeared to be a protective factor against periodontitis. CONCLUSION Gingival smears studied by RT-qPCR may be used to assess the expression of AMPs coding genes. A lack of expression of DEFA4 could be a potential indicator of periodontitis status.
Collapse
Affiliation(s)
- Marie-Laure Jourdain
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Loïc Pierrard
- UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France.,EA 3797 Santé Publique, Vieillissement, Qualité de Vie et Réadaptation des Sujets Fragiles, Université de Reims-Champagne-Ardenne, Reims, France
| | - Lukshe Kanagaratnam
- Pôle Odontologie, CHU de Reims, Reims, France.,EA 3797 Santé Publique, Vieillissement, Qualité de Vie et Réadaptation des Sujets Fragiles, Université de Reims-Champagne-Ardenne, Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France
| | - Johan Sergheraert
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Benoît Lefèvre
- UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR de Pharmacie, Reims, France
| | - Julien Braux
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| |
Collapse
|
41
|
Ghallab NA. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Arch Oral Biol 2018; 87:115-124. [DOI: 10.1016/j.archoralbio.2017.12.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 12/04/2017] [Accepted: 12/21/2017] [Indexed: 11/25/2022]
|
42
|
Bostanci N, Belibasakis GN. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontol 2000 2017; 76:68-84. [DOI: 10.1111/prd.12154] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
|
43
|
Pokrowiecki R, Mielczarek A, Zaręba T, Tyski S. Oral microbiome and peri-implant diseases: where are we now? Ther Clin Risk Manag 2017; 13:1529-1542. [PMID: 29238198 PMCID: PMC5716316 DOI: 10.2147/tcrm.s139795] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peri-implant infective diseases (PIIDs) in oral implantology are commonly known as peri-implant mucositis (PIM) and periimplantitis (PI). While PIM is restricted to the peri-implant mucosa and is reversible, PI also affects implant-supporting bone and, therefore, is very difficult to eradicate. PIIDs in clinical outcome may resemble gingivitis and periodontitis, as they share similar risk factors. However, recent study in the field of proteomics and other molecular studies indicate that PIIDs exhibit significant differences when compared to periodontal diseases. This review aims to elucidate the current knowledge of PIIDs, their etiopathology and diversified microbiology as well as the role of molecular studies, which may be a key to personalized diagnostic and treatment protocols of peri-implant infections in the near future.
Collapse
Affiliation(s)
- Rafał Pokrowiecki
- Department of Head and Neck Surgery-Maxillofacial Surgery, Otolaryngology and Ophthalmology, Prof Stanislaw Popowski Voivoid Children Hospital, Olsztyn
| | | | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Mackie M, Hendy J, Lowe AD, Sperduti A, Holst M, Collins MJ, Speller CF. Preservation of the metaproteome: variability of protein preservation in ancient dental calculus. SCIENCE AND TECHNOLOGY OF ARCHAEOLOGICAL RESEARCH 2017; 3:74-86. [PMID: 29098079 PMCID: PMC5633013 DOI: 10.1080/20548923.2017.1361629] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/16/2017] [Indexed: 05/25/2023]
Abstract
Proteomic analysis of dental calculus is emerging as a powerful tool for disease and dietary characterisation of archaeological populations. To better understand the variability in protein results from dental calculus, we analysed 21 samples from three Roman-period populations to compare: 1) the quantity of extracted protein; 2) the number of mass spectral queries; and 3) the number of peptide spectral matches and protein identifications. We found little correlation between the quantity of calculus analysed and total protein identifications, as well as no systematic trends between site location and protein preservation. We identified a wide range of individual variability, which may be associated with the mechanisms of calculus formation and/or post-depositional contamination, in addition to taphonomic factors. Our results suggest dental calculus is indeed a stable, long-term reservoir of proteins as previously reported, but further systematic studies are needed to identify mechanisms associated with protein entrapment and survival in dental calculus.
Collapse
Affiliation(s)
- Meaghan Mackie
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, York, UK
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Abigail D. Lowe
- BioArCh, Department of Archaeology, University of York, York, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | | | - Malin Holst
- BioArCh, Department of Archaeology, University of York, York, UK
- York Osteoarchaeology Ltd
| | - Matthew J. Collins
- BioArCh, Department of Archaeology, University of York, York, UK
- EvoGenomics Section, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
45
|
Barros SP, Williams R, Offenbacher S, Morelli T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontol 2000 2017; 70:53-64. [PMID: 26662482 DOI: 10.1111/prd.12107] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 12/12/2022]
Abstract
In evaluating the pathogenesis of periodontal diseases, the diagnostic potential of gingival crevicular fluid has been extensively explored during the last twenty years, from initially just confirming health and disease states to more recently investigating it as a potential prognostic tool. As host susceptibility is a critical determinant in periodontal disease pathogenesis, the inflammatory mediator levels present in gingival crevicular fluid represent relevant risk indicators for disease activity. Considerable work has been carried out to identify the many different cytokine inflammatory pathways and microbial stimuli that are associated with periodontal disease pathogenesis. Now, 'omics' approaches aim to summarize how these pathways interact and probably converge to create critical inflammatory networks. More recently, gingival crevicular fluid metabolomics appears promising as an additional diagnostic method. Biofilm structure and the host inflammatory response to the microbial challenge may induce specific inflammatory signatures. Host genetics and epigenetics may also modulate microbial colonization, adding to the multiplicity of potential causal pathways. Omics analyses of gingival crevicular fluid, measuring microbial and host interactions in association with the onset and progression of periodontal diseases, still show the potential to expand the landscape for the discovery of diagnostic, prognostic and therapeutic markers.
Collapse
|
46
|
Yaprak E, Kasap M, Akpınar G, Kayaaltı-Yüksek S, Sinanoğlu A, Guzel N, Demirturk Kocasarac H. The prominent proteins expressed in healthy gingiva: a pilot exploratory tissue proteomics study. Odontology 2017; 106:19-28. [DOI: 10.1007/s10266-017-0302-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
|
47
|
Moriya Y, Obama T, Aiuchi T, Sugiyama T, Endo Y, Koide Y, Noguchi E, Ishizuka M, Inoue M, Itabe H, Yamamoto M. Quantitative proteomic analysis of gingival crevicular fluids from deciduous and permanent teeth. J Clin Periodontol 2017; 44:353-362. [DOI: 10.1111/jcpe.12696] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Yumi Moriya
- Department of Periodontology; Showa University School of Dentistry; Ohta-ku Tokyo Japan
- Division of Biological Chemistry; Department of Molecular Biology; Showa University School of Pharmacy; Shinagawa-ku Tokyo Japan
| | - Takashi Obama
- Division of Biological Chemistry; Department of Molecular Biology; Showa University School of Pharmacy; Shinagawa-ku Tokyo Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry; Department of Molecular Biology; Showa University School of Pharmacy; Shinagawa-ku Tokyo Japan
| | - Tomomi Sugiyama
- Department of Pediatric Dentistry; Showa University School of Dentistry; Ohta-ku Tokyo Japan
| | - Yumiko Endo
- Department of Pediatric Dentistry; Showa University School of Dentistry; Ohta-ku Tokyo Japan
| | - Yoko Koide
- Department of Periodontology; Showa University School of Dentistry; Ohta-ku Tokyo Japan
| | - Emiko Noguchi
- Department of Periodontology; Showa University School of Dentistry; Ohta-ku Tokyo Japan
| | - Motonori Ishizuka
- Department of Periodontology; Showa University School of Dentistry; Ohta-ku Tokyo Japan
- Division of Biological Chemistry; Department of Molecular Biology; Showa University School of Pharmacy; Shinagawa-ku Tokyo Japan
| | - Mitsuko Inoue
- Department of Pediatric Dentistry; Showa University School of Dentistry; Ohta-ku Tokyo Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry; Department of Molecular Biology; Showa University School of Pharmacy; Shinagawa-ku Tokyo Japan
| | - Matsuo Yamamoto
- Department of Periodontology; Showa University School of Dentistry; Ohta-ku Tokyo Japan
| |
Collapse
|
48
|
Khurshid Z, Mali M, Naseem M, Najeeb S, Zafar MS. Human Gingival Crevicular Fluids (GCF) Proteomics: An Overview. Dent J (Basel) 2017; 5:dj5010012. [PMID: 29563418 PMCID: PMC5806989 DOI: 10.3390/dj5010012] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/18/2017] [Indexed: 12/31/2022] Open
Abstract
Like other fluids of the human body, a gingival crevicular fluid (GCF) contains proteins, a diverse population of cells, desquamated epithelial cells, and bacteria from adjacent plaque. Proteomic tools have revolutionized the characterization of proteins and peptides and the detection of early disease changes in the human body. Gingival crevicular fluids (GCFs) are a very specific oral cavity fluid that represents periodontal health. Due to their non-invasive sampling, they have attracted proteome research and are used as diagnostic fluids for periodontal diseases and drug analysis. The aim of this review is to explore the proteomic science of gingival crevicular fluids (GCFs), their physiology, and their role in disease detection.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Maria Mali
- Department of Orthodontics, Fatima Jinnah Dental College, Karachi 78650, Pakistan.
| | - Mustafa Naseem
- Preventive Dental Sciences, College of Dentistry, Dar-Al-Uloom University, Riyadh 13314, Saudi Arabia.
| | - Shariq Najeeb
- Department of Dentistry, Riyadh Consultative Clinics, Riyadh 11313, Saudi Arabia.
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Al-Taibah University, Medina Munawwarah 41311, Saudi Arabia.
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan.
| |
Collapse
|
49
|
Bostanci N, Bao K. Contribution of proteomics to our understanding of periodontal inflammation. Proteomics 2017; 17. [DOI: 10.1002/pmic.201500518] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/15/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Nagihan Bostanci
- Department of Dental Medicine; Karolinska Institute; Huddinge Sweden
| | - Kai Bao
- Division of Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich Switzerland
| |
Collapse
|
50
|
Salih E. Qualitative and Quantitative Proteome Analysis of Oral Fluids in Health and Periodontal Disease by Mass Spectrometry. Methods Mol Biol 2016; 1537:37-60. [PMID: 27924587 DOI: 10.1007/978-1-4939-6685-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The significance of protein identification and characterization by classical protein chemistry approaches is clearly highlighted by our detailed understanding of the biological systems assembled over a time period of almost a century. The advent of state-of-the-art mass spectrometry (MS) with sensitivity, speed, and global protein analysis capacity without individual protein purification has transformed the classical protein chemistry with premise to accelerate discovery. These combined with the ability of the oral fluids such as whole saliva (WS) and gingival crevicular fluid (GCF) to reflect both systemic and locally derived proteins have generated significant interest to characterize these fluids more extensively by MS technology. This chapter deals with the experimental details of preanalytical steps using multidimensional protein separation combined with MS analysis of WS and GCF to achieve detailed protein composition at qualitative and quantitative levels. These approaches are interfaced with gold standard "stable-isotope" labeling technologies for large-scale quantitative MS analysis which is a prerequisite to determine accurate alterations in protein levels as a function of disease progression. The latter incorporates two stable-isotope chemistries one specific for cysteine containing proteins and the other universal amine-specific reagent in conjunction with oral fluids in health and periodontal disease to perform quantitative MS analysis. In addition, specific preanalytical steps demanded by the oral fluids such as GCF and WS for sample preparations to overcome limitations and uncertainties are elaborated for reliable large-scale quantitative MS analysis.
Collapse
Affiliation(s)
- Erdjan Salih
- Department of Periodontology, Henry M. Goldman School of Dental Medicine, Boston University, 700 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|