Hamada H, Bruze M, Zimerson E, Isaksson M, Engfeldt M. Sensitization and cross-reactivity patterns of contact allergy to diisocyanates and corresponding amines: investigation of diphenylmethane-4,4'-diisocyanate, diphenylmethane-4,4'-diamine, dicyclohexylmethane-4,4'-diisocyanate, and dicylohexylmethane-4,4'-diamine.
Contact Dermatitis 2017;
77:231-241. [PMID:
28555927 PMCID:
PMC5599955 DOI:
10.1111/cod.12809]
[Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/30/2022]
Abstract
Background
Isocyanates are used in polyurethane production. Dermal exposure to isocyanates can induce contact allergy. The most common isocyanate is diphenylmethane diisocyanate used for industrial purposes. The isomer diphenylmethane‐4,4′‐diisocyanate (4,4′‐MDI) is used in patch testing. Diphenylmethane‐4,4′‐diamine (4,4′‐MDA) is its corresponding amine. Concurrent reactions to 4,4′‐MDI and 4,4′‐MDA have been reported, as have concurrent reactions to 4,4′‐MDI and dicyclohexylmethane‐4,4′‐diisocyanate (4,4′‐DMDI).
Objectives
To investigate the sensitization capacities and the cross‐reactivity of 4,4′‐MDI, 4,4′‐MDA, 4,4′‐DMDI, and dicyclohexylmethane‐4,4′‐diamine (4,4′‐DMDA).
Methods
The guinea‐pig maximization test (GPMT) was used.
Results
The GPMT showed sensitizing capacities for all investigated substances: 4,4′‐MDI, 4,4′‐MDA, 4,4′‐DMDI, and 4,4′‐DMDA (all p < 0.001). 4,4′‐MDI‐sensitized animals showed cross‐reactivity to 4,4′‐MDA (p < 0.001) and 4,4′‐DMDI (all p < 0.05). 4,4′‐MDA‐sensitized animals showed cross‐reactivity to 4,4′‐DMDA (p = 0.008).
Conclusion
All of the investigated substances were shown to be strong sensitizers. Animals sensitized to 4,4′‐MDI showed cross‐reactivity to 4,4′‐MDA and 4,4′‐DMDI, supporting previous findings in the literature. The aromatic amine 4,4′‐MDA showed cross‐reactivity to the aliphatic amine 4,4′‐DMDA.
Collapse