1
|
Perrone S, Manti S, Petrolini C, Dell'Orto VG, Boscarino G, Ceccotti C, Bertini M, Buonocore G, Esposito SMR, Gitto E. Oxygen for the Newborn: Friend or Foe? CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10030579. [PMID: 36980137 PMCID: PMC10047080 DOI: 10.3390/children10030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023]
Abstract
Oxygen supplementation is widely used in neonatal care, however, it can also cause toxic effects if not used properly. Therefore, it appears crucial to find a balance in oxygen administration to avoid damage as a consequence of its insufficient or excessive use. Oxygen toxicity is mainly due to the production of oxygen radicals, molecules normally produced in humans and involved in a myriad of physiological reactions. In the neonatal period, an imbalance between oxidants and antioxidant defenses, the so-called oxidative stress, might occur, causing severe pathological consequences. In this review, we focus on the mechanisms of the production of oxygen radicals and their physiological functions in determining a set of diseases grouped together as "free radical diseases in the neonate". In addition, we describe the evolution of the oxygenation target recommendations during neonatal resuscitation and post-stabilization phases with the aim to define the best oxygen administration according to the newest evidence.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Manti
- Pediatric Unit, Department of Human Pathology "Gaetano Barresi", University of Messina, 98122 Messina, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Giovanna Dell'Orto
- Neonatology Unit, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children's Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Ceccotti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Mattia Bertini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | | - Eloisa Gitto
- Neonatal Intensive Care Unit, Department of Human Pathology "Gaetano Barresi", University of Messina, 98122 Messina, Italy
| |
Collapse
|
2
|
Badugu R, Szmacinski H, Reece EA, Jeng BH, Lakowicz JR. Sodium-Sensitive Contact Lens for Diagnostics of Ocular Pathologies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 331:129434. [PMID: 33551571 PMCID: PMC7861470 DOI: 10.1016/j.snb.2021.129434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to measure all the electrolyte concentrations in tears would be valuable in ophthalmology for research and diagnosis of dry eye disease (DED) and other ocular pathologies. However, tear samples are difficult to collect and analyze because the total volume is small and the chemical composition changes rapidly. Measurements of electrolytes in tears is challenging because typical clinical assays for proteins and other biomarkers cannot be used to detect ion concentrations tears. Here, we report the contact lens which is sensitive to sodium ion (Na+), one of the dominant electrolytes in tears. The Na ions in tears is diagnostic for DED. Three sodium-sensitive fluorophores (SG-C16, SG-LPE and SG-PL) were synthesized by derivatizing the sodium green with 1-hexadecyl amine, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine or poly-L-lysine, respectively. These probes were bound to modern silicone hydrogel (SiHG) contact lens, Biofinity from Cooper Vision. Doped lenses were tested for sodium ion dependent spectral properties of probes within the contact lens. The probes displayed changes in intensity and lifetime in response to Na+ concentration, were completely reversible, no significant probe wash-out from the lenses, were not affected by proteins in tears and were not removed after repeated washing. These results are the first step to our long-term goal, which is a lens sensitive to all the electrolytes in tears. We presented design, synthesis and implementation of three new sodium sensitive probes within a silicon hydrogel lens. Contact lenses to measure the other electrolytes in tears can be developed using the same approach by synthesis and testing of new ion-sensitive fluorophores.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md 21201, USA
| | - Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Baltimore, Md 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Badugu R, Jeng BH, Reece EA, Lakowicz JR. Contact lens to measure individual ion concentrations in tears and applications to dry eye disease. Anal Biochem 2017; 542:84-94. [PMID: 29183834 DOI: 10.1016/j.ab.2017.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022]
Abstract
Dry eye disease (DED) affects millions of individuals in the United States and worldwide, and the incidence is increasing with an aging population. There is widespread agreement that the measurement of total tear osmolarity is the most reliable test, but this procedure provides only the total ionic strength and does not provide the concentration of each ionic species in tears. Here, we describe an approach to determine the individual ion concentrations in tears using modern silicone hydrogel (SiHG) contact lenses. We made pH (or H3O+, hydronium cation,/OH-, hydroxyl ion) and chloride ion (two of the important electrolytes in tear fluid) sensitive SiHG contact lenses. We attached hydrophobic C18 chains to water-soluble fluorescent probes for pH and chloride. The resulting hydrophobic ion sensitive fluorophores (H-ISF) bind strongly to SiHG lenses and could not be washed out with aqueous solutions. Both H-ISFs provide measurements which are independent of total intensity by use of wavelength-ratiometric measurements for pH or lifetime-based sensing for chloride. Our approach can be extended to fabricate a contact lens which provides measurements of the six dominant ionic species in tears. This capability will be valuable for research into the biochemical processes causing DED, which may improve the ability to diagnose the various types of DED.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA.
| | - Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Suite 420, Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA; Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 W. Lombard Street, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
El Chemaly A, Demaurex N. Do Hv1 proton channels regulate the ionic and redox homeostasis of phagosomes? Mol Cell Endocrinol 2012; 353:82-7. [PMID: 22056415 DOI: 10.1016/j.mce.2011.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/06/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022]
Abstract
Recent work on animal models has revealed the important role played by the voltage-gated proton channel Hv1 during bacterial killing by innate immune cells. Studies from mice lacking Hv1 channels showed that Hv1 proton channels are required for high-level production of reactive oxygen species (ROS) by the NADPH oxidase of phagocytes (NOX2) in two ways. First, Hv1 channels maintain a physiological membrane potential during the respiratory burst of neutrophils by providing a compensating charge for the electrons transferred by NOX2 from NADPH to superoxide. Second, Hv1 channels maintain a physiological cytosolic pH by extruding the acid generated by the NOX2-dependent consumption of NADPH. The two mechanisms directly sustain the activity of the NOX2 enzyme and indirectly sustain other neutrophil functions by enhancing the driving force for the entry of calcium into cells, thereby boosting cellular calcium signals. The increased depolarization of Hv1-deficient neutrophils aborted calcium responses to chemoattractants and revealed adhesion and migration defects that were associated with an impaired depolymerization of the cortical actin cytoskeleton. Current research aims to transpose these findings to phagosomes, the phagocytic vacuoles where bacterial killing takes place. However, the mechanisms that control the phagosomal pH appear to vary greatly between phagocytes: phagosomes rapidly acidify in macrophages but remain neutral for several minutes in neutrophils following ingestion of solid particles, whereas in dendritic cells phagosomes alkalinize, a mechanism thought to promote antigen cross-presentation. In this review, we discuss how the knowledge gained on the role of Hv1 channels at the plasma membrane of neutrophils can be used to study the regulation of the phagosomal pH, ROS, membrane potential, and calcium fluxes in different phagocytic cells.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
5
|
Daou S, El Chemaly A, Christofilopoulos P, Bernard L, Hoffmeyer P, Demaurex N. The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphyloccocus epidermidis killing by human neutrophils. Biomaterials 2011; 32:1769-77. [DOI: 10.1016/j.biomaterials.2010.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 12/01/2022]
|
6
|
Abstract
Immune cells kill microbes by engulfing them in a membrane-enclosed compartment, the phagosome. Phagocytosis is initiated when foreign particles bind to receptors on the membrane of phagocytes. The best-studied phagocytic receptors, those for Igs (FcgammaR) and for complement proteins (CR), activate PLC and PLD, resulting in the intracellular production of the Ca(2+)-mobilizing second messengers InsP3 and S1P, respectively. The ensuing release of Ca(2+) from the ER activates SOCE channels in the plasma and/or phagosomal membrane, leading to sustained or oscillatory elevations in cytosolic Ca(2+) concentration. Cytosolic Ca(2+) elevations are required for efficient ingestion of foreign particles by some, but not all, phagocytic receptors and stringently control the subsequent steps involved in the maturation of phagosomes. Ca(2+) is required for the solubilization of the actin meshwork that surrounds nascent phagosomes, for the fusion of phagosomes with granules containing lytic enzymes, and for the assembly and activation of the superoxide-generating NADPH oxidase complex. Furthermore, Ca(2+) entry only occurs at physiological voltages and therefore, requires the activity of proton channels that counteract the depolarizing action of the phagocytic oxidase. The molecules that mediate Ca(2+) ion flux across the phagosomal membrane are still unknown but likely include the ubiquitous SOCE channels and possibly other types of Ca(2+) channels such as LGCC and VGCC. Understanding the molecular basis of the Ca(2+) signals that control phagocytosis might provide new, therapeutic tools against pathogens that subvert phagocytic killing.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
7
|
VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 2010; 31:227-85. [PMID: 20346371 DOI: 10.1016/j.mam.2010.03.002] [Citation(s) in RCA: 562] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/17/2010] [Indexed: 01/22/2023]
Abstract
Research over the past decade has extended the prevailing view of the mitochondrion to include functions well beyond the generation of cellular energy. It is now recognized that mitochondria play a crucial role in cell signaling events, inter-organellar communication, aging, cell proliferation, diseases and cell death. Thus, mitochondria play a central role in the regulation of apoptosis (programmed cell death) and serve as the venue for cellular decisions leading to cell life or death. One of the mitochondrial proteins controlling cell life and death is the voltage-dependent anion channel (VDAC), also known as mitochondrial porin. VDAC, located in the mitochondrial outer membrane, functions as gatekeeper for the entry and exit of mitochondrial metabolites, thereby controlling cross-talk between mitochondria and the rest of the cell. VDAC is also a key player in mitochondria-mediated apoptosis. Thus, in addition to regulating the metabolic and energetic functions of mitochondria, VDAC appears to be a convergence point for a variety of cell survival and cell death signals mediated by its association with various ligands and proteins. In this article, we review what is known about the VDAC channel in terms of its structure, relevance to ATP rationing, Ca(2+) homeostasis, protection against oxidative stress, regulation of apoptosis, involvement in several diseases and its role in the action of different drugs. In light of our recent findings and the recently solved NMR- and crystallography-based 3D structures of VDAC1, the focus of this review will be on the central role of VDAC in cell life and death, addressing VDAC function in the regulation of mitochondria-mediated apoptosis with an emphasis on structure-function relations. Understanding structure-function relationships of VDAC is critical for deciphering how this channel can perform such a variety of functions, all important for cell life and death. This review also provides insight into the potential of VDAC1 as a rational target for new therapeutics.
Collapse
|
8
|
De Pinto V, Messina A, Lane DJ, Lawen A. Voltage-dependent anion-selective channel (VDAC) in the plasma membrane. FEBS Lett 2010; 584:1793-9. [DOI: 10.1016/j.febslet.2010.02.049] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
9
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4973] [Impact Index Per Article: 292.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
10
|
Petheo GL, Girardin NC, Goossens N, Molnár GZ, Demaurex N. Role of nucleotides and phosphoinositides in the stability of electron and proton currents associated with the phagocytic NADPH oxidase. Biochem J 2006; 400:431-8. [PMID: 16842239 PMCID: PMC1698601 DOI: 10.1042/bj20060578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 07/07/2006] [Accepted: 07/14/2006] [Indexed: 11/17/2022]
Abstract
The phagocytic NADPH oxidase (phox) moves electrons across cell membranes to kill microbes. The activity of this lethal enzyme is tightly regulated, but the mechanisms that control phox inactivation are poorly understood for lack of appropriate assays. The phox generates measurable electron currents, I(e), that are associated with inward proton currents, I(H). To study the inactivation of the phox and of its associated proton channel, we determined which soluble factors can stabilize I(e) (induced by the addition of NADPH) and I(H) (initiated by small depolarizing voltage steps) in inside-out patches from PMA-activated human eosinophils. I(e) decayed rapidly in the absence of nucleotides (tau approximately 6 min) and was maximally stabilized by the combined addition of 5 mM ATP and 50 microM of the non-hydrolysable GTP analogue GTP[S] (guanosine 5'-[gamma-thio]triphosphate) (tau approximately 57 min), but not by either ATP or GTP[S] alone. I(H) also decayed rapidly and was stabilized by the ATP/GTP[S] mixture, but maximal stabilization of I(H) required further addition of 25 muM PI(3,4)P2 (phosphoinositide 3,4-bisphosphate) to the cytosolic side of the patch. PI(3,4)P2 had no effect on I(e) and its stabilizing effect on I(H) could not be mimicked by other phosphoinositides. Reducing the ATP concentration below millimolar levels decreased I(H) stability, an effect that was not prevented by phosphatase inhibitors but by the non-hydrolysable ATP analogue ATP[S] (adenosine 5'-[gamma-thio]triphosphate). Our data indicate that the assembled phox complex is very stable in eosinophil membranes if both ATP and GTP[S] are present, but inactivates within minutes if one of the nucleotides is removed. Stabilization of the phox-associated proton channel in a highly voltage-sensitive conformation does not appear to involve phosphorylation but ATP binding, and requires not only ATP and GTP[S] but also PI(3,4)P2, a protein known to anchor the cytosolic phox subunit p47(phox) to the plasma membrane.
Collapse
Key Words
- cytochrome
- eosinophil
- nadph oxidase
- patch-clamp
- proton channel
- phosphoinositide
- atp[s], adenosine 5′-[γ-thio]triphosphate
- cgd, chronic granulomatous disease
- dpi, diphenyleneiodonium
- gap, gtpase-activating protein
- gtp[s], guanosine 5′-[γ-thio]triphosphate
- hv1/vsop, voltage-gated hydrogen channel 1/voltage sensor domain-only protein
- pi(3,4)p2, phosphoinositide 3,4-bisphosphate
- pip, phosphoinositide phosphate
- px domain, phox homology domain
Collapse
Affiliation(s)
- Gábor L Petheo
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
11
|
Bankers-Fulbright JL, Gleich GJ, Kephart GM, Kita H, O'Grady SM. Regulation of eosinophil membrane depolarization during NADPH oxidase activation. J Cell Sci 2003; 116:3221-6. [PMID: 12829741 DOI: 10.1242/jcs.00627] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC) activation in human eosinophils increases NADPH oxidase activity, which is associated with plasma membrane depolarization. In this study, membrane potential measurements of eosinophils stimulated with phorbol ester (phorbol 12-myristate 13-acetate; PMA) were made using a cell-permeable oxonol membrane potential indicator, diBAC4(3). Within 10 minutes after PMA stimulation, eosinophils depolarized from -32.9+/-5.7 mV to +17.3+/-1.8 mV. The time courses of depolarization and proton channel activation were virtually identical. Blocking the proton conductance with 250 microM ZnCl2 (+43.0+/-4.2 mV) or increasing the proton channel activation threshold by reducing the extracellular pH to 6.5 (+44.4+/-1.4 mV) increased depolarization compared with PMA alone. Additionally, the protein kinase C (PKC) delta-selective blocker, rottlerin, inhibited PMA-stimulated depolarization, indicating that PKCdelta was involved in regulating depolarization associated with eosinophil NADPH oxidase activity. Thus, the membrane depolarization that is associated with NADPH oxidase activation in eosinophils is sufficient to produce marked proton channel activation under physiological conditions.
Collapse
|
12
|
Maturana A, Krause KH, Demaurex N. NOX family NADPH oxidases: do they have built-in proton channels? J Gen Physiol 2002; 120:781-6. [PMID: 12451048 PMCID: PMC2229569 DOI: 10.1085/jgp.20028713] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Andrés Maturana
- Department of Physiology, University of Geneva, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
13
|
Abstract
There is accumulating evidence that two aspects of the innate immune response, the respiratory burst and secretion of proteases, are intimately intertwined. A recent study suggests that K(+) may be the missing link. Is it time to merge signal transduction with biophysics?
Collapse
Affiliation(s)
- Rene E Harrison
- Cell Biology Programme, The Hospital for Sick Children Research Institute, 555 University Avenue, Ontario, M5G 1X8, Toronto, Canada
| | | | | |
Collapse
|
14
|
Vuorte J, Jansson SE, Repo H. Evaluation of red blood cell lysing solutions in the study of neutrophil oxidative burst by the DCFH assay. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1097-0320(20010401)43:4<290::aid-cyto1061>3.0.co;2-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Schwingshackl A, Moqbel R, Duszyk M. Involvement of ion channels in human eosinophil respiratory burst. J Allergy Clin Immunol 2000; 106:272-9. [PMID: 10932070 DOI: 10.1067/mai.2000.107752] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human eosinophils possess a variety of ion channels that play a crucial role in the regulation of cellular activity. During eosinophil respiratory burst, efflux of H(+) ions through H(+) channels provides an efficient mechanism of H(+) extrusion and charge compensation. Interestingly, recent studies suggest that other ion channels may also be involved in this process. OBJECTIVE We sought to investigate the role of ion channels in phorbol 12-myristate 13-acetate-induced superoxide (O(2)(*-)) generation by human eosinophils. METHODS O(2)(*-) production was measured by using the superoxide dismutase-inhibitable reduction of cytochrome c. Ion channel expression and function were studied by using RT-PCR and the patch clamp technique, respectively. RESULTS O(2)(*-) generation was affected by several ion channel blockers, especially 4,4-diisothio-cyanostilbene-2,2'-disulfonic acid. The involvement of Cl(-) channels in this process was confirmed by replacement of Cl(-) with gluconate or other anions. The halide dependence of O(2)(*-) production could be described by the sequence Cl(-)> or =Br(-)>I(-), which is similar to the selectivity sequence of several members of the chloride channel (ClC) family. RT-PCR studies performed with primers for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, and the cystic fibrosis transmembrane conductance regulator showed only the expression of ClC-3. The presence of phorbol 12-myristate 13-acetate-sensitive Cl(-) channels in human eosinophils with biophysical properties similar to the ClC-3 channel has been studied. CONCLUSION Cl(-) channels play an important role in the regulation of O(2)(*-) production by human eosinophils.
Collapse
Affiliation(s)
- A Schwingshackl
- Department of Physiology, Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
16
|
Nolan DP, Voorheis HP. Factors that determine the plasma-membrane potential in bloodstream forms of Trypanosoma brucei. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4615-23. [PMID: 10903493 DOI: 10.1046/j.1432-1327.2000.01477.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plasma-membrane potential (Delta(psi)p) in bloodstream forms of Trypanosoma brucei was studied using several different radiolabelled probes: 86Rb+ and [14C]SCN- were used to report Delta(psi)p directly because they distribute in easily measured quantities across the plasma membrane only, and [3H]methyltriphenylphosphonium (MePh3P+) was used to report Delta(psi)p only when Delta(psi)m had been abolished with FCCP because it reports the algebraic sum of the two potentials when used alone. The unperturbed Delta(psi)p had a value of -82 mV and was found to be essentially identical with, and determined almost completely by, the potassium diffusion potential, as evidenced by: (a) the lack of effect of valinomycin on the value obtained under appropriate conditions when any of these probes were used; (b) the close agreement of this measured value with that predicted from the measured distribution of K+ across the plasma membrane (-76 mV); (c) the large effect of changes in the extracellular K+ concentration by substitution with Na+ on Delta(psi)p together with the complete lack of effect of substitution of extracellular Na+ by the choline cation or substitution of extracellular Cl- by the gluconate anion on Delta(psi)p. The contribution to Delta(psi)p by electrogenic pumping of Na+/K+-ATPase was found to be small (of the order of 6 mV). H+ was not found to be pumped across the plasma membrane or to contribute to Delta(psi)p.
Collapse
Affiliation(s)
- D P Nolan
- Department of Biochemistry, Trinity College, University of Dublin, Ireland
| | | |
Collapse
|
17
|
Coakley RJ, Taggart C, Canny G, Greally P, O'Neill SJ, McElvaney NG. Altered intracellular pH regulation in neutrophils from patients with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2000; 279:L66-74. [PMID: 10893204 DOI: 10.1152/ajplung.2000.279.1.l66] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF) is a condition characterized by neutrophil-mediated lung damage and bacterial colonization. The physiological basis for reported functional alterations in CF neutrophils, including increased release of neutrophil elastase, myeloperoxidase, and oxidants, is unknown. These processes are, however, regulated by intracellular pH (pH(i)). We demonstrate here that pH(i) regulation is altered in neutrophils from CF patients. Although resting pH(i) is similar, pH(i) after acid loading and activation (N-formyl-methionyl-leucyl-phenylalanine and phorbol 12-myristate 13-acetate) is more acidic in CF cells than in normal cells. Furthermore, patients with non-CF-related bronchiectasis handle acid loading and activation in a fashion similar to subjects with normal neutrophils, suggesting that chronic pulmonary inflammation alone does not explain the difference in pH(i). This is further supported by data showing that normal neutrophils exposed to the CF pulmonary milieu respond by increasing pH(i) as opposed to decreasing pH(i) as seen in activated CF neutrophils. These pH(i) differences in activated or acid-loaded CF neutrophils are abrogated by ZnCl(2) but not by amiloride and bafilomycin A(1), suggesting that passive proton conductance is abnormal in CF. In addition, DIDS, which inhibits HCO(3)(-)/Cl(-) exchange, causes alkalinization of control but not of CF neutrophils, suggesting that anion transport is also abnormal in CF neutrophils. In summary, we have shown that pH(i) regulation in CF neutrophils is intrinsically abnormal, potentially contributing to the pulmonary manifestations of the condition.
Collapse
Affiliation(s)
- R J Coakley
- Pulmonary Research Division, Beaumont Hospital, Dublin 9, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Ruaux CG, Williams DA. The effect of ex vivo refrigerated storage and cell preservation solution (Cyto-Chex II) on CD11b expression and oxidative burst activity of dog neutrophils. Vet Immunol Immunopathol 2000; 74:59-69. [PMID: 10760390 DOI: 10.1016/s0165-2427(00)00159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The expression of CD11b and oxidative burst activity of dog neutrophils undergoing ex vivo refrigerated storage was studied using flow-cytometry . Additionally, the effect of a proprietary cell stabilization reagent (Cyto-Chex) on the expression of CD11b and oxidative burst activity was studied. Expression of CD11b was very high (>90% positive) on dog neutr ophils isolated from peripheral blood. Dog neutrophils showed a rapid and sustained increase in CD11b antigen density (P<0.01) during refrigerated storage, this increase was prevented by treatment with Cyto-Chex but was not completely blocked on the first day. There were no significant differences in mean antigen density between any days in the non-preserved group or between Days 1 to 4 in the Cyto-Chex treated group. The non-treated group showed significantly greater mean antigen density at all time points when compared to the preservative treated group (P<0.0001). Treatment with Cyto-Chex did not interfere with measurement of oxidative burst function on the first 2 days. Alterations of both resting oxidative activity and stimulated response were observed over time in both treated and untreated blood samples. Cyto-Chex treated samples showed a dramatic, significant decline in stimulated response after the third day of storage (P<0.001), while non-treated cells showed steadily increasing, but non-significant differences in stimulated response. Cyto-Chex was demonstrated to be a useful reagent for stabilization of dog neutrophil membrane antigens during storage, however this reagent is not recommended for preservation of cells for functional assays.
Collapse
Affiliation(s)
- C G Ruaux
- The Gastrointestinal Laboratory, Small Animal Medicine and Surgery, Texas A&M University, College Station, TX 77843-4474, USA.
| | | |
Collapse
|
19
|
Bánfi B, Schrenzel J, Nüsse O, Lew DP, Ligeti E, Krause KH, Demaurex N. A novel H(+) conductance in eosinophils: unique characteristics and absence in chronic granulomatous disease. J Exp Med 1999; 190:183-94. [PMID: 10432282 PMCID: PMC2195580 DOI: 10.1084/jem.190.2.183] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient mechanisms of H(+) ion extrusion are crucial for normal NADPH oxidase function. However, whether the NADPH oxidase-in analogy with mitochondrial cytochromes-has an inherent H(+) channel activity remains uncertain: electrophysiological studies did not find altered H(+) currents in cells from patients with chronic granulomatous disease (CGD), challenging earlier reports in intact cells. In this study, we describe the presence of two different types of H(+) currents in human eosinophils. The "classical" H(+) current had properties similar to previously described H(+) conductances and was present in CGD cells. In contrast, the "novel" type of H(+) current had not been described previously and displayed unique properties: (a) it was absent in cells from gp91- or p47-deficient CGD patients; (b) it was only observed under experimental conditions that allowed NADPH oxidase activation; (c) because of its low threshold of voltage activation, it allowed proton influx and cytosolic acidification; (d) it activated faster and deactivated with slower and distinct kinetics than the classical H(+) currents; and (e) it was approximately 20-fold more sensitive to Zn(2+) and was blocked by the histidine-reactive agent, diethylpyrocarbonate (DEPC). In summary, our results demonstrate that the NADPH oxidase or a closely associated protein provides a novel type of H(+) conductance during phagocyte activation. The unique properties of this conductance suggest that its physiological function is not restricted to H(+) extrusion and repolarization, but might include depolarization, pH-dependent signal termination, and determination of the phagosomal pH set point.
Collapse
Affiliation(s)
- Botond Bánfi
- From the Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
- Department of Physiology, Semmelweis Medical University, H-1444 Budapest, Hungary
| | - Jacques Schrenzel
- From the Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Oliver Nüsse
- From the Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Daniel P. Lew
- From the Division of Infectious Diseases, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Erzsébet Ligeti
- Department of Physiology, Semmelweis Medical University, H-1444 Budapest, Hungary
| | - Karl-Heinz Krause
- From the Department of Geriatrics, Geneva University Hospitals, CH-1211 Geneva 4, Switzerland
| | - Nicolas Demaurex
- Department of Physiology, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
20
|
Schrenzel J, Serrander L, Bánfi B, Nüsse O, Fouyouzi R, Lew DP, Demaurex N, Krause KH. Electron currents generated by the human phagocyte NADPH oxidase. Nature 1998; 392:734-7. [PMID: 9565037 DOI: 10.1038/33725] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electron transport across biological membranes is a well-known feature of bacteria, mitochondria and chloroplasts, where it provides motive forces for vectorial transport processes. In contrast, electron transport is generally not found in the plasma membrane of eukaryotic cells, possibly because it would interfere with electric processes at the plasma membrane. An exception is provided by the phagocyte NADPH oxidase, which generates superoxide (O2.-) through electron transfer from cytosolic NADPH to extracellular oxygen. The enzyme is essential for host defence, and patients with chronic granulomatous disease, who lack the functional enzyme, suffer from severe infections. It has been suggested that electron transfer by the NADPH oxidase might be electrogenic. Here we demonstrate, using the whole-cell patch-clamp technique, the generation of electron currents by the NADPH oxidase in human eosinophil granulocytes. The currents were absent in granulocytes of sufferers of chronic granulomatous disease and under conditions of low oxygen. Generation of electron currents across the plasma membrane of eukaryotic cells has not been observed previously and might be-independently of the generation of superoxide-a physiologically relevant function of the phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- J Schrenzel
- Division of Infectious Diseases, Department of Medicine, University Hospital, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pieri C, Recchioni R, Moroni F, Marcheselli F, Marra M, Marinoni S, Di Primio R. Melatonin regulates the respiratory burst of human neutrophils and their depolarization. J Pineal Res 1998; 24:43-9. [PMID: 9468117 DOI: 10.1111/j.1600-079x.1998.tb00364.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of different doses of melatonin on the respiratory burst as well as on the membrane potential changes of human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA) was investigated. The intracellular production of reactive oxygen species (ROS) in stimulated neutrophils was quantified in individual cells by flow cytometry, measuring the oxidation of nonfluorescent dihydrorhodamine 123 to the green fluorescent rhodamine 123. The transmembrane potential change was measured using the fluorescent probe oxonol. Preincubating the cells with micromolar concentrations of the indole resulted in an increase of the response to PMA. In two of six subjects investigated, the respiratory burst was also increased by a 10 nM concentration of the indole, but when the melatonin concentration was increased to 2 mM the respiratory burst was inhibited. The change in the transmembrane potential of neutrophils paralleled the respiratory burst. Indeed, the treatment of the cells with doses of melatonin up to 0.5 mM increased the depolarization occurring subsequent to PMA stimulation, whereas 2 mM melatonin concentration decreased the extent of depolarization. To investigate whether melatonin could directly affect the transmembrane potential changes of neutrophils, the extent of depolarization, induced by increasing the extracellular potassium concentration, was measured in cells preincubated with 2 mM melatonin. This treatment resulted in a decrease of the extent of depolarization, which suggests that melatonin can directly alter membrane ion conductance in human neutrophils.
Collapse
Affiliation(s)
- C Pieri
- Center of Cytology, Gerontol. Res. Dept. of I.N.R.C.A. N. Masera, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gamaley IA, Kirpichnikova KM, Klyubin IV. Superoxide release is involved in membrane potential changes in mouse peritoneal macrophages. Free Radic Biol Med 1998; 24:168-74. [PMID: 9436627 DOI: 10.1016/s0891-5849(97)00212-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Participation of reactive oxygen species (ROS) in the changes in macrophage membrane potential resulted from effects of different agonists has been studied. Treatment of macrophages with chemotactic peptide fMLP or platelet-activating factor (PAF) caused a brief depolarization followed by a long-lasting hyperpolarization. Lipopolysaccharide and interferon-gamma only depolarized the plasma membrane. Chemiluminescence measurements indicated that only fMLP and PAF activated macrophages to release ROS. The hyperpolarization response of the cell was significantly decreased in the presence of superoxide dismutase (but not catalase). Moreover, the O2.- -generating system, xanthine plus xanthine oxidase, caused a marked hyperpolarization. In all the cases, the hyperpolarization induced by fMLP, PAF and O2.- -generating system was found to depend on the concentration of intracellular Ca2+ and extracellular K+. Furthermore, in the presence of quinidine, a blocker of Ca2+-dependent K+ conductance fMLP and PAF caused only prolonged depolarization while the effect of O2.- was reduced to a minimum. These data suggest that the macrophage hyperpolarization response to fMLP and PAF involves superoxide-mediated Ca2+-dependent alteration of the relative membrane permeability to K+.
Collapse
Affiliation(s)
- I A Gamaley
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg.
| | | | | |
Collapse
|
23
|
Scharff O, Foder B. Depletion of calcium stores by thapsigargin induces membrane depolarization by cation entry in human neutrophils. Cell Calcium 1996; 20:31-41. [PMID: 8864569 DOI: 10.1016/s0143-4160(96)90048-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of various cations to change the electrical potential of the plasma membrane was examined in human neutrophils by the use of the fluorescent cationic dye 3,3'-dipropylthiadicarbocyanine. When the cells were suspended in 140 mM KCl, the fluorescence was high, indicating depolarized neutrophils. Suspension in 145 mM N-methyl-D-glucamine chloride (NMG), replacing sodium and potassium chloride, resulted in hyperpolarized neutrophils. After depletion of the intracellular calcium stores of the NMG-suspended cells with thapsigargin and EDTA or EGTA, the addition of cations depolarized the neutrophils, suggesting the existence of pathways for cation entry. Besides Na+ and K+, several divalent cations were effective in the sequence: Ca2+ > Mn2+ > Ba2+ > Cd2+ > Mg2+ > Co2+ > Zn2+ > Ni2+. Pretreatment of the neutrophils with 0.5 or 1 mM CaCl2, resulting in loading of calcium stores, reduced the ability of some of the cations to depolarize the NMG-suspended cells. From the depolarizing effects of the cations it is concluded that the entries of Ca2+, Mg2+, Mn2+, Ba2+, probably Co2+, to some extent Na+ and K+, but hardly Cd2+, Zn2+, or Ni2+, are regulated by the filling state of the intracellular calcium stores in human neutrophils. The store-regulated entry pathway may contribute to the control of the membrane potential and become active when the neutrophils are stimulated.
Collapse
Affiliation(s)
- O Scharff
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
24
|
Demaurex N, Downey GP, Waddell TK, Grinstein S. Intracellular pH regulation during spreading of human neutrophils. J Cell Biol 1996; 133:1391-402. [PMID: 8682873 PMCID: PMC2120889 DOI: 10.1083/jcb.133.6.1391] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The regulation of the intracelluar pH (pHi) during spreading of human neutrophils was studied by a combination of fluorescence imaging and video microscopy. Spreading on adhesive substrates caused a rapid and sustained cytosolic alkalinization. This pHi increase was prevented by the omission of external Na+, suggesting that it results from the activation of Na+/H+ exchange. Spreading-induced alkalinization was also precluded by the compound HOE 694 at concentrations that selectively block the NHE-1 isoform of the Na+H+ antiporter. Inhibition of Na+/H+ exchange by either procedure unmasked a sizable cytosolic acidification upon spreading, indicative of intracellular acid production. The excess acid generation was caused, at least in part, by the activation of the respiratory burst, since the acidification closely correlated with superoxide production, measured in single spreading neutrophils with dihydrorhodamine-123, and little acid production was observed in the presence of diphenylene iodonium, a blocker of the NADPH oxidase. Moreover, neutrophils from chronic granulomatous disease patients, which do not produce superoxide, failed to acidify. Comparable pHi changes were observed when beta 2 integrins were selectively activated during spreading on surfaces coated with anti-CD18 antibodies. When integrin engagement was precluded by pretreatment with soluble anti-CD18 antibody, the pHi changes associated with spreading on fibrinogen were markedly reduced. Inhibition of microfilament assembly with cytochalasin D precluded spreading and concomitantly abolished superoxide production and the associated pHi changes, indicating that cytoskeletal reorganization and/or an increase in the number of adherence receptors engaged are required for the responses. Neutrophils spread normally when the oxidase was blocked or when pHi was clamped near physiological values with nigericin. Spreading, however, was strongly inhibited when pHi was clamped at acidic values. Our results indicate that neutrophils release superoxide upon spreading, generating a burst of intracellular acid production. The concomitant activation of the Na+/H+ antiport not only prevents the deleterious effects of the acid released by the NADPH oxidase, but induces a net cytosolic alkalinization. Since several functions of neutrophils are inhibited at an acidic pHi, the coordinated activation of pHi regulatory mechanisms along with the oxidase is essential for sustained microbicidal activity.
Collapse
Affiliation(s)
- N Demaurex
- Division of Cell Biology, Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|