1
|
Smits JPH, Qu J, Pardow F, van den Brink NJM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, van Heeringen SJ, Zeeuwen PLJM, Schalkwijk J, Zhou H, van den Bogaard EH. The Aryl Hydrocarbon Receptor Regulates Epidermal Differentiation through Transient Activation of TFAP2A. J Invest Dermatol 2024; 144:2013-2028.e2. [PMID: 38401701 DOI: 10.1016/j.jid.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as an indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multiomics analyses using human skin keratinocytes revealed that upon ligand activation, AHR binds open chromatin to induce expression of transcription factors, for example, TFAP2A, as a swift response to environmental stimuli. The terminal differentiation program, including upregulation of barrier genes, FLG and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides additional insights into the molecular mechanism behind AHR-mediated barrier function and identifies potential targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P H Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands; Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J M van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands; Department of Human Genetics, Radboudumc, Nijmegen, The Netherlands.
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Takahagi S, Tanaka A. A Case of Graham-Little-Piccardi-Lasseur Syndrome Successfully Treated with Minocycline. Acta Derm Venereol 2024; 104:adv40008. [PMID: 38813743 PMCID: PMC11161807 DOI: 10.2340/actadv.v104.40008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Abstract is missing (Short communication)
Collapse
Affiliation(s)
- Shunsuke Takahagi
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; Department of Dermatology, JA Hiroshima General Hospital,1-3-3 Jigozen, Hatsukaichi, Hiroshima 738-8503, Japan.
| | - Akio Tanaka
- Department of Dermatology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Li Q, Cui Y, Wang Z, Li Y, Yang H. Toxicity assessment of dioxins and their transformation by-products from inferred degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173416. [PMID: 38795989 DOI: 10.1016/j.scitotenv.2024.173416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
Due to the significant POPs characteristics, dioxins caused concern in public health and environmental protection. Evaluating the toxicity risk of dioxin degradation pathways is critical. OCDD, 1,2,3,4,6,7,8-HpCDD, and 1,2,3,4,6,7,8-HpCDF, which are highly abundant in the environment and have strong biodegradation capabilities, were selected as precursor molecules in this study. Firstly, their transformation pathways were deduced during the metabolism of biometabolism, microbial aerobic, microbial anaerobic, and photodegradation pathways, and density function theory (DFT) was used to calculate the Gibbs free energy to infer the possibility of the occurrence of the transformation pathway. Secondly, the carcinogenic potential of the precursors and their degradation products was evaluated using the TOPKAT modeling method. With the help of the positive indicator (0-1) normalization method and heat map analysis, a significant increase in the toxic effect of some of the transformation products was found, and it was inferred that it was related to the structure of the transformation products. Meanwhile, the strength of the endocrine disrupting effect of dioxin transformation products was quantitatively assessed using molecular docking and subjective assignment methods, and it was found that dioxin transformation products with a higher content of chlorine atoms and molecules similar to those of thyroid hormones exhibited a higher risk of endocrine disruption. Finally, the environmental health risks caused by each degradation pathway were comprehensively assessed with the help of the negative indicator (1-2) standardization method, which provides a theoretical basis for avoiding the toxicity risks caused by dioxin degradation transformation. In addition, the 3D-QSAR model was used to verify the necessity and rationality of this study. This paper provides theoretical support and reference significance for the toxicity assessment of dioxin degradation by-products from inferred degradation pathways.
Collapse
Affiliation(s)
- Qing Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yuhan Cui
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhonghe Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
4
|
Rahul CM, Gayathri K, Kesavachandran CN. Global trends of dioxin and dioxin-like PCBs in animal-origin foods: a systematic review and gap areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:529. [PMID: 38724861 DOI: 10.1007/s10661-024-12690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/30/2024] [Indexed: 06/06/2024]
Abstract
Dioxins and dioxin-like polychlorinated biphenyls are a group of lipophilic compounds classified under persistent environmental pollutants (POPs). Significant sources of dioxin emissions include industrial effluents, open burning practices, and biomedical and municipal waste incinerators. These emissions will enter the food chain and accumulate in animal-origin foods (AOFs). A systematic review was conducted to analyze the global levels of dioxins and dioxin-like PCBs in AOFs using PRISMA guidelines 2020. The data on the dioxin contamination in AOFs were extracted from 53 publications based on their presence in eggs, meat and meat products, milk and dairy products, marine fish and fish products, and freshwater fish and crabs. A gap analysis was conducted based on the systematic review to understand the grey areas to be focused on the future. No trend of dioxin contamination in AOFs was observed. A significant gap area was found in the need for nationwide data generation in countries without periodic monitoring of AOFs for dioxin contamination. Source apportionment studies need to be explored for the dioxin contamination of AOFs. Large-scale screening tests of AOFs using DR-CALUX based on market surveys are required for data generation. The outcomes of the study will be helpful for stakeholders and policyholders in framing new policies and guidelines for food safety in AOFs.
Collapse
Affiliation(s)
- Chirackal Muraleedharan Rahul
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, CSIR, Govt of India, Thiruvananthapuram, Kerala, 695019, India
| | - Krishnan Gayathri
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, CSIR, Govt of India, Thiruvananthapuram, Kerala, 695019, India
| | - Chandrasekharan Nair Kesavachandran
- Environmental Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, CSIR, Govt of India, Thiruvananthapuram, Kerala, 695019, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
5
|
Lin X, Meng X, Lin J. The Role of Aryl Hydrocarbon Receptor in the Pathogenesis and Treatment of Psoriasis. J Cutan Med Surg 2024; 28:276-286. [PMID: 38497283 DOI: 10.1177/12034754241239050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The pathogenesis of psoriasis is complex. Aryl hydrocarbon receptor (AhR) is a transcription factor that can be bound and activated by structurally diverse ligands and plays an important role in a range of biological processes and in the pathogenesis of different diseases. Recently, the role of AhR in psoriasis has attracted attention. AhR has toxicological functions and physiological functions. The overexpression and activation of AhR induced by the environmental pollutant and exogenous AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can drive the development of psoriasis. This TCDD-mediated toxicological response disrupts the physiological functions of AhR resulting in skin barrier disorders and the release of inflammatory cytokines, 2 of the pivotal factors of psoriasis. In addition, highly upregulated kynureninase in psoriasis decreases endogenous AhR agonists, thereby weakening the physiological functions of AhR. Activating AhR physiological signalling should be useful in the treatment of psoriasis. Studies have demonstrated that physiological activation of AhR can dampen the severity of psoriasis. The oldest and effective treatment for psoriasis coal tar works by activating AhR, and both new anti-psoriasis drugs tapinarof and benvitimod are formulations of AhR agonist, supporting that activation of AhR can be used as a new strategy for the treatment of psoriasis. Preclinical and preliminary clinical studies have revealed the anti-psoriasis effects of a number of AhR agonists, providing potential candidates for the development of new drugs for the treatment of psoriasis.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, Oaks, PA, USA
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Mandal A, Biswas N, Alam MN. Implications of xenobiotic-response element(s) and aryl hydrocarbon receptor in health and diseases. Hum Cell 2023; 36:1638-1655. [PMID: 37329424 DOI: 10.1007/s13577-023-00931-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
The effect of air pollution on public health is severely detrimental. In humans; the physiological response against pollutants is mainly elicited via the activation of aryl hydrocarbon receptor (AhR). It acts as a prime sensor of xenobiotic chemicals, also functioning as a transcription factor regulating a variety of gene expressions. Along with AhR, another pivotal element of the pollution stress pathway is Xenobiotic Response Elements (XREs). XRE, as studied are some conserved sequences in the DNA, responsible for the physiological response against pollutants. XRE is present at the upstream of the inducible target genes of AhR and it regulates the function of the AhR. XRE(s) are highly conserved in species as it has only eight specific sequences found so far in humans, mice, and rats. Inhalation of toxicants like dioxins, gaseous industrial effluents, and smoke from burning fuel and tobacco leads to predominant damage to the lungs. However, scientists are exploring the involvement of AhR in chronic diseases for example chronic obstructive pulmonary disease (COPD) and also other lethal diseases like lung cancer. In this review, we summarise what is known at this time about the roles played by the XRE and AhR in our molecular systems that have a defined control in the normal maintenance of homeostasis as well as dysfunctions.
Collapse
Affiliation(s)
- Avijit Mandal
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Md Nur Alam
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| |
Collapse
|
7
|
Sorg O, Saurat JH. Development of skin diseases following systemic exposure: example of dioxins. FRONTIERS IN TOXICOLOGY 2023; 5:1243192. [PMID: 37711212 PMCID: PMC10498119 DOI: 10.3389/ftox.2023.1243192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
Most skin manifestations of exposure to toxic compounds are a consequence of a direct contact with the toxicants. However, some toxicants may reach the skin following systemic exposure, and promote skin diseases. Good examples of such chemicals are dioxin-like compounds. This family of lipophilic molecules comprises polychlorinated (dibenzodioxins, dibenzofurans and biphenyls). The most potent member of this family is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Following oral ingestion of as little as a few mg TCDD, skin lesions appear in a couple of weeks, starting from the face and diffuse then on the trunk and limbs. This syndrome was historically called "chloracne" and the skin lesions have now been shown to be skin hamartoma induced by TCDD. Sweat glands release their lipid content on the surface of the skin by a holocrine secretion, and so any lost sebocyte should be transmitted to progenitor cells to differentiate and migrate to the sebaceous gland to replace the lost sebocyte. TCDD acts by inducing a switch in this signal and skin hamartoma develop in place of new sebocytes.
Collapse
Affiliation(s)
- Olivier Sorg
- Clinical Pharmacology and Toxicology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
8
|
Smits JP, Qu J, Pardow F, van den Brink NJ, Rodijk-Olthuis D, van Vlijmen-Willems IM, van Heeringen SJ, Zeeuwen PL, Schalkwijk J, Zhou H, van den Bogaard EH. The aryl hydrocarbon receptor regulates epidermal differentiation through transient activation of TFAP2A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544032. [PMID: 37333234 PMCID: PMC10274772 DOI: 10.1101/2023.06.07.544032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is an evolutionary conserved environmental sensor identified as indispensable regulator of epithelial homeostasis and barrier organ function. Molecular signaling cascade and target genes upon AHR activation and their contribution to cell and tissue function are however not fully understood. Multi-omics analyses using human skin keratinocytes revealed that, upon ligand activation, AHR binds open chromatin to induce expression of transcription factors (TFs), e.g., Transcription Factor AP-2α (TFAP2A), as a swift response to environmental stimuli. The terminal differentiation program including upregulation of barrier genes, filaggrin and keratins, was mediated by TFAP2A as a secondary response to AHR activation. The role of AHR-TFAP2A axis in controlling keratinocyte terminal differentiation for proper barrier formation was further confirmed using CRISPR/Cas9 in human epidermal equivalents. Overall, the study provides novel insights into the molecular mechanism behind AHR-mediated barrier function and potential novel targets for the treatment of skin barrier diseases.
Collapse
Affiliation(s)
- Jos P.H. Smits
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jieqiong Qu
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Felicitas Pardow
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Noa J.M. van den Brink
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | | | - Simon J. van Heeringen
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Patrick L.J.M. Zeeuwen
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Joost Schalkwijk
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Molecular Developmental Biology, Faculty of Science, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc
| | - Ellen H. van den Bogaard
- Department of Dermatology, Radboud Research Institute for Medical Innovation, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Rudyak SG, Usakin LA, Tverye EA, Robertson ED, Panteleyev AA. Aryl hydrocarbon receptor is regulated via multiple mechanisms in human keratinocytes. Toxicol Lett 2023:S0378-4274(23)00185-6. [PMID: 37217010 DOI: 10.1016/j.toxlet.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix transcription factor activated by polycyclic aromatic hydrocarbons of synthetic and natural origin. While a number of novel AhR ligands have been recently identified, little is known about their possible influence on AhR levels and stability. We used western blot, qRT-PCR and immunocytochemistry to determine the effects of AhR ligands on AhR expression in N-TERT (N-TERT1) immortalized human keratinocytes, and immunohistochemistry to assess patterns of AhR expression in human and mouse skin and skin appendages. While AhR was highly expressed in cultured keratinocytes and in the skin, it was found primarily in the cytoplasm, but not in the nucleus, suggesting its inactivity. At the same time, treatment of N-TERT cells with proteasomal inhibitor MG132 and eventual inhibition of AhR degradation resulted in nuclear AhR accumulation. Treatment of keratinocytes with AhR ligands such as TCDD, FICZ, caused near-complete disappearance of AhR, and treatment with I3C resulted in substantially diminished level of AhR possibly due to ligand-induced AhR degradation. The AhR decay was blocked by proteasome inhibition, indicating degradation-based mechanism of regulation. Additionally, AhR decay was blocked by ligand-selective AhR antagonist CH223191, implying substrate-induced mechanism of degradation. Furthermore, degradation of AhR was blocked in N-TERT cells with knockdown of AhR dimerization partner ARNT (HIF1β), suggesting that ARNT is required for AhR proteolysis. However, addition of hypoxia mimetics (HIF1 pathway activators) CoCl2 and DMOG had only minor effects on degradation of AhR. Additionally, inhibition of HDACs with Trichostatin A resulted in enhanced expression of AhR in both untreated and ligand-treated cells. These results demonstrate that in immortalized epidermal keratinocytes AhR is primarily regulated post-translationally via proteasome-mediated degradation, and suggest potential means to manipulate AhR levels and signaling in the skin. Overall, the AhR is regulated via multiple mechanisms, including proteasomal ligand- and ARNT-dependent degradation, and transcriptional regulation by HDACs, implying complex system of balancing its expression and protein stability.
Collapse
Affiliation(s)
- S G Rudyak
- Pirogov Russian National Research Medical University, Moscow, Russia.
| | - L A Usakin
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - E A Tverye
- National Research Center "Kurchatov Institute", Moscow, Russia
| | | | - A A Panteleyev
- National Research Center "Kurchatov Institute", Moscow, Russia; A.V. Vishnevsky National Medical Research Center of Surgery, Moscow, Russia.
| |
Collapse
|
10
|
Yu YY, Jin H, Lu Q. Effect of polycyclic aromatic hydrocarbons on immunity. J Transl Autoimmun 2022; 5:100177. [PMID: 36561540 PMCID: PMC9763510 DOI: 10.1016/j.jtauto.2022.100177] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/06/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Nearly a quarter of the total number of deaths in the world are caused by unhealthy living or working environments. Therefore, we consider it significant to introduce the effect of a widely distributed component of air/water/food-source contaminants, polycyclic aromatic hydrocarbons (PAHs), on the human body, especially on immunity in this review. PAHs are a large class of organic compounds containing two or more benzene rings. PAH exposure could occur in most people through breath, smoke, food, and direct skin contact, resulting in both cellular immunosuppression and humoral immunosuppression. PAHs usually lead to the exacerbation of autoimmune diseases by regulating the balance of T helper cell 17 and regulatory T cells, and promoting type 2 immunity. However, the receptor of PAHs, aryl hydrocarbon receptor (AhR), appears to exhibit duality in the immune response, which seems to explain some seemingly opposite experimental results. In addition, PAH exposure was also able to exacerbate allergic reactions and regulate monocytes to a certain extent. The specific regulation mechanisms of immune system include the assistance of AhR, the activation of the CYP-ROS axis, the recruitment of intracellular calcium, and some epigenetic mechanisms. This review aims to summarize our current understanding on the impact of PAHs in the immune system and some related diseases such as cancer, autoimmune diseases (rheumatoid arthritis, type 1 diabetes, multiple sclerosis, and systemic lupus erythematosus), and allergic diseases (asthma and atopic dermatitis). Finally, we also propose future research directions for the prevention or treatment on environmental induced diseases.
Collapse
Affiliation(s)
- Yang-yiyi Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China,Research Unit of Key Technologies of Immune-related Skin Diseases Diagnosis and Treatment, Chinese Academy of Medical Sciences (2019RU027), Changsha, China,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China,Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China,Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, 210042, China,Corresponding author. Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
11
|
Rosmarinus officinalis L. Leaf Extracts and Their Metabolites Inhibit the Aryl Hydrocarbon Receptor (AhR) Activation In Vitro and in Human Keratinocytes: Potential Impact on Inflammatory Skin Diseases and Skin Cancer. Molecules 2022; 27:molecules27082499. [PMID: 35458697 PMCID: PMC9029298 DOI: 10.3390/molecules27082499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) activation by environmental agents and microbial metabolites is potentially implicated in a series of skin diseases. Hence, it would be very important to identify natural compounds that could inhibit the AhR activation by ligands of microbial origin as 6-formylindolo[3,2-b]carbazole (FICZ), indirubin (IND) and pityriazepin (PZ) or the prototype ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Five different dry Rosmarinus officinalis L. extracts (ROEs) were assayed for their activities as antagonists of AhR ligand binding with guinea pig cytosol in the presence of [3H]TCDD. The methanolic ROE was further assayed towards CYP1A1 mRNA induction using RT-PCR in human keratinocytes against TCDD, FICZ, PZ, and IND. The isolated metabolites, carnosic acid, carnosol, 7-O-methyl-epi-rosmanol, 4′,7-O-dimethylapigenin, and betulinic acid, were assayed for their agonist and antagonist activity in the presence and absence of TCDD using the gel retardation assay (GRA). All assayed ROE extracts showed similar dose-dependent activities with almost complete inhibition of AhR activation by TCDD at 100 ppm. The methanol ROE at 10 ppm showed 99%, 50%, 90%, and 85% inhibition against TCDD, FICZ, IND, and PZ, respectively, in human keratinocytes. Most assayed metabolites exhibited dose-dependent antagonist activity. ROEs inhibit AhR activation by TCDD and by the Malassezia metabolites FICZ, PZ, and IND. Hence, ROE could be useful for the prevention or treatment of skin diseases mediated by activation of AhR.
Collapse
|
12
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Xin X, Lei B, Zhang J, Cai Z. Lipid metabolism disorders associated with dioxin exposure in a cohort of Chinese male workers revealed by a comprehensive lipidomics study. ENVIRONMENT INTERNATIONAL 2021; 155:106665. [PMID: 34098336 DOI: 10.1016/j.envint.2021.106665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Dioxins, environmentally stable and ubiquitous, have been found to induce metabolic changes especially in lipids and be related to multiple diseases. However, limited study is available on lipid alternations related to human exposure to dioxins. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of adverse health risks associated with dioxin exposure. A lipidomic study integrating nontargeted lipidomics, and targeted free fatty acid (FFA) and acyl-coenzyme A (acyl-CoA) analyses were conducted to investigate the 94 serum samples from two groups of male workers with remarkably different dioxin concentrations. The obtained results exhibited distinct lipidomic signatures between the high and low exposed groups. A total of 37 lipids were identified with the significant changes. The results revealed that dioxin exposure caused accumulations of triglyceride (TG), ceramide (Cer) and sphingoid (So), remodeling of glycerophospholipid (GP), imbalanced FFA metabolism, as well as upregulation of platelet-activating factor (PAF). These findings implied the associations between dioxin exposure and potential adverse health risks including inflammation, apoptosis, cardiovascular diseases (CVDs), and liver diseases. This study is the first to explain the associations between dioxin exposure and health effects at the level of lipid metabolism.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, 518105, China
| | - Xiong Xin
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Bo Lei
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
13
|
Leijs M, Fietkau K, Merk HF, Schettgen T, Kraus T, Esser A. Upregulation of CCL7, CCL20, CXCL2, IL-1β, IL-6 and MMP-9 in Skin Samples of PCB Exposed Individuals-A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189711. [PMID: 34574641 PMCID: PMC8468641 DOI: 10.3390/ijerph18189711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
Polychlorinated biphenyls (PCBs) are well known immunotoxic and carcinogenic compounds. Although cutaneous symptoms are the hallmark of exposure to these compounds, exact pathophysiologic mechanisms are not well understood. We took skin biopsies from moderately high PCB exposed workers (n = 25) after an informed consent and investigated the expression of immunological markers such as CCL-7, CCL-20, CXCL2, IL-1β and IL-6, as well as the matrix metalloproteinase MMP-9, EPGN and NRF2 by RT-qPCR, and compared expression levels with plasma PCB levels. Statistical analyses showed a significant correlation between CCL-20, CXCL2, IL-6, IL-1β, CCL-7 and MMP-9 and PCB serum levels. EPGN and NRF2 were not correlated to PCB levels in the blood. We found a significant correlation of genes involved in autoimmune, auto-inflammatory and carcinogenesis in skin samples of PCB exposed individuals with elevated plasma PCB levels. Confirmation of these findings needs to be performed in bigger study groups and larger gen-sets, including multiple housekeeping genes. Further study needs to be performed to see whether a chronical exposure to these and similar compounds can cause higher incidence of malignancies and inflammatory disease.
Collapse
Affiliation(s)
- Marike Leijs
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (K.F.); (H.F.M.)
- Department of Dermatology, St. Nikolaus Hospital Eupen, 4700 Eupen, Belgium
- Correspondence:
| | - Katharina Fietkau
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (K.F.); (H.F.M.)
| | - Hans F. Merk
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (K.F.); (H.F.M.)
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (T.S.); (T.K.); (A.E.)
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (T.S.); (T.K.); (A.E.)
| | - André Esser
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52072 Aachen, Germany; (T.S.); (T.K.); (A.E.)
| |
Collapse
|
14
|
Bhuju J, Olesen KM, Muenyi CS, Patel TS, Read RW, Thompson L, Skalli O, Zheng Q, Grice EA, Sutter CH, Sutter TR. Cutaneous Effects of In Utero and Lactational Exposure of C57BL/6J Mice to 2,3,7,8-Tetrachlorodibenzo- p-dioxin. TOXICS 2021; 9:toxics9080192. [PMID: 34437510 PMCID: PMC8402454 DOI: 10.3390/toxics9080192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023]
Abstract
To determine the cutaneous effects of in utero and lactational exposure to the AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), pregnant C57BL/6J mice were exposed by gavage to a vehicle or 5 μg TCDD/kg body weight at embryonic day 12 and epidermal barrier formation and function were studied in their offspring from postnatal day 1 (P1) through adulthood. TCDD-exposed pups were born with acanthosis. This effect was AHR-dependent and subsided by P6 with no evidence of subsequent inflammatory dermatitis. The challenge of adult mice with MC903 showed similar inflammatory responses in control and treated animals, indicating no long-term immunosuppression to this chemical. Chloracne-like sebaceous gland hypoplasia and cyst formation were observed in TCDD-exposed P21 mice, with concomitant microbiome dysbiosis. These effects were reversed by P35. CYP1A1 and CYP1B1 expression in the skin was increased in the exposed mice until P21, then declined. Both CYP proteins co-localized with LRIG1-expressing progenitor cells at the infundibulum. CYP1B1 protein also co-localized with a second stem cell niche in the isthmus. These results indicate that this exposure to TCDD causes a chloracne-like effect without inflammation. Transient activation of the AhR, due to the shorter half-life of TCDD in mice, likely contributes to the reversibility of these effects.
Collapse
Affiliation(s)
- Jyoti Bhuju
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Kristin M Olesen
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Clarisse S Muenyi
- Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN 38104, USA
| | - Tejesh S Patel
- Kaplan-Amonette Department of Dermatology, University of Tennessee Health Sciences Center, Memphis, TN 38104, USA
| | - Robert W Read
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
| | - Lauren Thompson
- Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- Integrated Microscopy Center, University of Memphis, Memphis, TN 38152, USA
| | - Qi Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carrie Hayes Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
| | - Thomas R Sutter
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
- W. Harry Feinstone Center for Genomic Research, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
15
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
16
|
Wang L, Xue J, Wei F, Zheng G, Cheng M, Liu S. Chemopreventive effect of galangin against benzo(a)pyrene-induced stomach tumorigenesis through modulating aryl hydrocarbon receptor in Swiss albino mice. Hum Exp Toxicol 2021; 40:1434-1444. [PMID: 33663268 DOI: 10.1177/0960327121997979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was aimed to evaluate the chemopreventive potential of galangin against benzo(a)pyrene (BaP)-induced stomach carcinogenesis in Swiss albino mice. Stomach cancer was induced in experimental mice using BaP oral administration. The mice were treated with galangin (10 mg/kg b.wt.) before and during BaP administration. Oral administration of galangin at a dose of 10 mg/kg b.wt. significantly (p < 0.05) prevented the tumor incidence, tumor volume in the experimental animals. Further, galangin pretreatment prevents BaP-induced lipid peroxidation and restores BaP-mediated loss of cellular antioxidants status. It has also been found that galangin prevents BaP-induced activation of phase I detoxification enzymes. Furthermore, galangin pretreatment prevented the BaP-induced overexpression of cytochrome P450s isoform genes (CYP1A1, CYP1B1), aryl hydrocarbon receptor system (AhR, ARNT), transcriptional activators (CBP/p300, NF-kB), tumor growth factors, proto-oncogenes, invasion markers (TGFB, SRC-1, MYC, iNOS, MMP2, MMP9) and Phase II metabolic isoenzyme genes (GST) in the stomach tissue homogenate when compared to the control groups. The western blot results confirm that galangin (10 mg/kg. b.wt.) treatment significantly prevented the BaP-mediated expression of ArR, ARNT, and CYP1A1 proteins in the mouse stomach tissue. Therefore, the present results confirm that galangin prevents BaP-induced stomach carcinogenesis probably through modulating ArR and ARNT expression in the experimental mice.
Collapse
Affiliation(s)
- L Wang
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of 91593Xinjiang Medical University, Urumqi, Xinjiang, China.,Contributed equally
| | - J Xue
- Department of Blood Transfusion, The Fifth Affiliated Hospital, 26469Sun Yat-sen University, Zhuhai, Guangdong, China.,Contributed equally
| | - F Wei
- Department of Gastroenterology, Central Hospital of Haining, Haining City, Zhejiang, China
| | - G Zheng
- Department of Gastrointestinal Surgery, the Fifth Affiliated Hospital of 91593Xinjiang Medical University, Urumqi, Xinjiang, China
| | - M Cheng
- Department of General Surgery, Shanghai Tianyou Hospital, 12476Tongji University, Shanghai, China
| | - S Liu
- Department of Gastrointestinal Surgery, 499782Shengli Oilfield Central Hospital, Dongying City, Shandong, China
| |
Collapse
|
17
|
Ma Y, Cao X, Zhang L, Zhang JY, Qiao ZS, Feng WL. Neuropathy and chloracne induced by 3,5,6-trichloropyridin-2-ol sodium: Report of three cases. World J Clin Cases 2021; 9:1079-1086. [PMID: 33644170 PMCID: PMC7896668 DOI: 10.12998/wjcc.v9.i5.1079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloracne is a rare skin condition that is caused by systemic exposure to halogenated aromatic compounds. The main characteristic of chloracne is blackhead, and in severe cases, it can be accompanied by systemic symptoms. Sodium 3,5,6-trichloropyridin-2-ol (STCP) is a necessary precursor compound for the production of chlorpyrifos and triclopyr, which are extensively used as a pesticide and herbicide, respectively. STCP is also a chlorophenol that has been associated with chloracne. STCP poisoning could induce mild myelin sheath damage. We herein report three cases with chloracne due to exposure to STCP.
CASE SUMMARY Three young men, aged 29, 33, and 26 years, respectively, in the same workplace had polymorphic skin lesions, characterized mainly by comedones and cysts, and one of them also had acne like lesions in the genital area. These clinical manifestations appeared when they were exposed to STCP for 3 d, 1 wk, and 2 wk, respectively. Among them, polyneuropathy and liver damage occurred. We performed dermoscopy and clinical and laboratory tests on these patients. Additionally, histopathology was used for further diagnosis in the serious patient. These patients were diagnosed with chloracne and separated from STCP. The patients were prescribed oral viaminate capsules, topical adapalene gel, and regular hematologic follow-up for aspartate transaminase and lipids. They are still under follow-up. There was no new lesions and the laboratory tests returned to normal in two patients. Pigmentation and shallow scars remained in the original areas of papules. However, in the most serious patient, new papules still appeared intermittently. All these remind us that the treatment of chloracne caused by STCP is difficult, and we should attach great importance to this new compound related with the neuropathy and chloracne.
CONCLUSION STCP is becoming a new chemical product to induce chloracne, which should attract the attention of all medical professionals, especially dermatologists. Due to the lack of knowledge on the new chemical, the diagnosis of chloracne cannot be made in time. Chloracne still deserves our attention.
Collapse
Affiliation(s)
- Yan Ma
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Xue Cao
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Li Zhang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Yu Zhang
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zu-Sha Qiao
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Wen-Li Feng
- Department of Dermatology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
18
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
19
|
Zouboulis CC, Benhadou F, Byrd AS, Chandran NS, Giamarellos‐Bourboulis EJ, Fabbrocini G, Frew JW, Fujita H, González‐López MA, Guillem P, Gulliver WPF, Hamzavi I, Hayran Y, Hórvath B, Hüe S, Hunger RE, Ingram JR, Jemec GB, Ju Q, Kimball AB, Kirby JS, Konstantinou MP, Lowes MA, MacLeod AS, Martorell A, Marzano AV, Matusiak Ł, Nassif A, Nikiphorou E, Nikolakis G, Nogueira da Costa A, Okun MM, Orenstein LA, Pascual JC, Paus R, Perin B, Prens EP, Röhn TA, Szegedi A, Szepietowski JC, Tzellos T, Wang B, van der Zee HH. What causes hidradenitis suppurativa ?—15 years after. Exp Dermatol 2020; 29:1154-1170. [DOI: 10.1111/exd.14214] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Christos C. Zouboulis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - Farida Benhadou
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Hôpital Erasme Universite Libre de Bruxelles Bruxelles Belgium
| | - Angel S. Byrd
- Department of Dermatology Howard University College of Medicine Washington DC USA
| | - Nisha S. Chandran
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Division of Dermatology Department of Medicine National University Hospital Singapore
| | - Evangelos J. Giamarellos‐Bourboulis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- 4th Department of Internal Medicine National and Kapodistrian University of Athens Medical School Athens Greece
| | - Gabriella Fabbrocini
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Section of Dermatology Department of Clinical Medicine and Surgery University of Naples Federico II Naples Italy
| | | | - Hideki Fujita
- Division of Cutaneous Science Department of Dermatology Nihon University School of Medicine Tokyo Japan
| | - Marcos A. González‐López
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Division of Dermatology Hospital Universitario Marqués de Valdecilla University of Cantabria IDIVAL Santander Spain
| | - Philippe Guillem
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Surgery Clinique du Val d’Ouest (Lyon), ResoVerneuil (Paris) and Groupe de Recherche en Proctologie de la Société Nationale Française de ColoProctologie Paris France
| | - Wayne P. F. Gulliver
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Faculty of Medicine Memorial University of Newfoundland, and NewLab Clinical Research Inc St. John's Canada
| | - Iltefat Hamzavi
- Department of Dermatology Henry Ford Hospital Wayne State University Detroit MI USA
| | - Yildiz Hayran
- Department of Dermatology Ankara Numune Training and Research Hospital Ankara Turkey
| | - Barbara Hórvath
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology University Medical Centre Groningen University of Groningen Groningen The Netherlands
| | | | - Robert E. Hunger
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Inselspital Bern University Hospital Bern Switzerland
| | - John R. Ingram
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology & Academic Wound Healing Division of Infection and Immunity Cardiff University Cardiff UK
| | - Gregor B.E. Jemec
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| | - Qiang Ju
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology RenJi Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Alexa B. Kimball
- Department of Dermatology Beth Israel Deaconess Medical Center and Harvard Medical School Boston MA USA
| | - Joslyn S. Kirby
- Department of Dermatology Penn State Milton S. Hershey Medical Center Hershey PA USA
| | - Maria P. Konstantinou
- Dermatology Department Paul Sabatier University University Hospital of Toulouse Toulouse France
| | | | - Amanda S. MacLeod
- Department of Dermatology Department of Immunology Department of Molecular Genetics and Microbiology Duke University Durham NC USA
| | - Antonio Martorell
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Hospital of Manises Valencia Spain
| | - Angelo V. Marzano
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Dermatology Unit Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan Italy
- Department of Pathophysiology and Transplantation Università degli Studi di Milano Milan Italy
| | - Łukasz Matusiak
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Venereology and Allergology Wrocław Medical University Wrocław Poland
| | - Aude Nassif
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Institut Pasteur Paris France
| | - Elena Nikiphorou
- Centre for Rheumatic Diseases King’s College London, and Department of Rheumatology King’s College Hospital London UK
| | - Georgios Nikolakis
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - André Nogueira da Costa
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Translational Science and Experimental Medicine Early Respiratory and Immunology Biopharmaceuticals R&D AstraZeneca Gothenburg Sweden
| | | | | | - José Carlos Pascual
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - Ralf Paus
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Benjamin Perin
- Division of Dermatology University of Washington Seattle WA USA
| | - Errol P. Prens
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Erasmus University Medical Center Rotterdam The Netherlands
| | - Till A. Röhn
- Autoimmunity, Transplantation and Inflammation Novartis Institutes for BioMedical Research Novartis Pharma AG Basel Switzerland
| | - Andrea Szegedi
- Division of Dermatological Allergology Department of Dermatology Faculty of Medicine University of Debrecen Debrecen Hungary
| | - Jacek C. Szepietowski
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology, Venereology and Allergology Wrocław Medical University Wrocław Poland
| | - Thrasyvoulos Tzellos
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Nordland Hospital Trust Bodø Norway
| | - Baoxi Wang
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Plastic Surgery Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hessel H. van der Zee
- European Hidradenitis Suppurativa Foundation e.V. Dessau Germany
- Department of Dermatology Erasmus University Medical Center Rotterdam The Netherlands
| |
Collapse
|
20
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
21
|
Furue M, Tsuji G. Chloracne and Hyperpigmentation Caused by Exposure to Hazardous Aryl Hydrocarbon Receptor Ligands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234864. [PMID: 31816860 PMCID: PMC6926551 DOI: 10.3390/ijerph16234864] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
Abstract
Dioxins and dioxin-like compounds are environmental pollutants that are hazardous to human skin. They can be present in contaminated soil, water, and air particles (such as ambient PM2.5). Exposure to a high concentration of dioxins induces chloracne and hyperpigmentation. These chemicals exert their toxic effects by activating the aryl hydrocarbon receptor (AHR) which is abundantly expressed in skin cells, such as keratinocytes, sebocytes, and melanocytes. Ligation of AHR by dioxins induces exaggerated acceleration of epidermal terminal differentiation (keratinization) and converts sebocytes toward keratinocyte differentiation, which results in chloracne formation. AHR activation potently upregulates melanogenesis in melanocytes by upregulating the expression of melanogenic enzymes, which results in hyperpigmentation. Because AHR-mediated oxidative stress contributes to these hazardous effects, antioxidative agents may be potentially therapeutic for chloracne and hyperpigmentation.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan;
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Division of Skin Surface Sensing, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
| | - Gaku Tsuji
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan;
- Research and Clinical Center for Yusho and Dioxin, Kyushu University, Maidashi 3-1-1, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
22
|
Bock KW. Aryl hydrocarbon receptor (AHR): From selected human target genes and crosstalk with transcription factors to multiple AHR functions. Biochem Pharmacol 2019; 168:65-70. [PMID: 31228464 DOI: 10.1016/j.bcp.2019.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Accumulating evidence including studies of AHR-deficient mice and TCDD toxicity suggests multiple physiologic AHR functions. Challenges to identify responsible mechanisms are due to marked species differences and dependence upon cell type and cellular context. Transient AHR modulation is often necessary for physiologic functions whereas TCDD-mediated sustained receptor activation has been demonstrated to be responsible for toxic outcomes. To stimulate studies on responsible action mechanisms the commentary is focused on human AHR target genes and crosstalk with transcription factors. Discussed AHR functions include chemical and microbial defense, organ development, modulation of immunity and inflammation, reproduction, and NAD+-dependent energy metabolism. Obviously, much more work is needed to elucidate action mechanisms. In particular, studies of pathways leading to NAD+-dependent energy metabolism may shed light on the puzzling species differences of TCDD-mediated lethality and provide options for treatment of obesity and age-related degenerative diseases.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
23
|
Tarnow P, Tralau T, Luch A. Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opin Drug Metab Toxicol 2019; 15:219-229. [PMID: 30644759 DOI: 10.1080/17425255.2019.1569627] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Estrogen receptors (ERs) and the arylhydrocarbon receptor (AHR) are ligand-activated transcription factors that regulate the expression of genes involved in many physiological processes. With both receptors binding a broad range of natural and anthropogenic ligands, they are molecular targets for many substances, raising concerns for possible health effects. Areas covered: This review shall give a brief overview on the physiological functions of both receptors including their underlying molecular mechanisms. It summarizes the interaction of the respective signaling pathways including impacts on metabolism of endogenous estrogens, transcriptional interference, inhibitory crosstalk, and proteasomal degradation. Also addressed are the AHR dependent formation of estrogenic metabolites from polycyclic aromatic hydrocarbons and the possible impact of the ER/AHR crosstalk in the context of drug metabolism. Expert opinion: Despite decade-long research, the physiological role of the AHR and ER as well as the implications of their complex mutual crosstalk remain to be determined as do resulting potential impacts on human health. With more and more endogenous AHR ligands being discovered, future research should hence systematically address the potential impact of such substances on estrogen signaling. The intimate link between these two pathways and the genes regulated therein bears the potential for impacts on drug metabolism and human health.
Collapse
Affiliation(s)
- Patrick Tarnow
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Tewes Tralau
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| | - Andreas Luch
- a Department of Chemical & Product Safety , German Federal Institute for Risk Assessment (BfR) , Berlin , Germany
| |
Collapse
|
24
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
25
|
Rudyak SG, Usakin LA, Tverye EA, Orekhov AS, Belushkina NN, Paus R, Paltsev MA, Panteleyev AA. Retinoic acid co-treatment aggravates severity of dioxin-induced skin lesions in hairless mice via induction of inflammatory response. Biochem Biophys Res Commun 2018; 506:854-861. [PMID: 30389142 DOI: 10.1016/j.bbrc.2018.10.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 01/29/2023]
Abstract
Exposure to toxic halogenated polyaromatic hydrocarbons, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent, induces diverse skin pathologies in humans, including chloracne, hyperkeratosis, hamartomas, etc. While the toxic effects of TCDD have been extensively studied, effective approaches to their treatment are still lacking. Retinoids are commonly used in therapy of acneiform skin diseases. In vitro, retinoids elicit antagonistic effects on keratinocyte differentiation and proliferation, as compared to TCDD, suggesting their potential in treatment of TCDD-induced skin lesions. Nevertheless, the modulation of TCDD activity in skin by retinoids in vivo was never reported. We have used N-TERT keratinocyte cell line and hairless (hr) mice to determine if retinoic acid (RA) can lessen or reverse TCDD-induced effects in vitro and in vivo. RA co-treatment suppressed TCDD-induced changes in the expression of differentiation-associated genes and N-TERT keratinocyte viability in vitro. However, in hairless mice (in vivo), RA/TCDD co-treatment produced more severe effects, than treatment with either of the two compounds individually. RA/TCDD co-application to mouse skin strongly stimulated keratinocyte proliferation, resulting in dramatic epidermal hyperplasia. It has also led to massive immune cell infiltration into the dermis, and increased mRNA expression of inflammation markers, including IL1β, IL6 and S100A7. Thus, retinoids not only appeared ineffective in treatment of TCDD-induced skin lesions in hairless mice, but also resulted in their exaggeration. These in vivo results question previous cell culture-based claims that RA may reduce TCDD-induced skin effects and caution against the reliance on in vitro data in TCDD toxicology research.
Collapse
Affiliation(s)
- Stanislav G Rudyak
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Lev A Usakin
- NRC Kurchatov Institute, Moscow, Russian Federation
| | | | | | - Natalya N Belushkina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ralf Paus
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mikhail A Paltsev
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
| | | |
Collapse
|
26
|
Merk H. Aryl hydrocarbon receptor signalling in the skin and adverse vemurafenib effects. J Eur Acad Dermatol Venereol 2018; 32:1233-1234. [DOI: 10.1111/jdv.15148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H.F. Merk
- Universitäts-Hautklinik; RWTH Aachen University; Aachen Germany
| |
Collapse
|
27
|
Hou XX, Chen G, Hossini AM, Hu T, Wang L, Pan Z, Lu L, Cao K, Ma Y, Zouboulis CC, Xia L, Ju Q. Aryl Hydrocarbon Receptor Modulates the Expression of TNF-α and IL-8 in Human Sebocytes via the MyD88-p65NF-κB/p38MAPK Signaling Pathways. J Innate Immun 2018; 11:41-51. [PMID: 30056444 DOI: 10.1159/000491029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Activation of Toll-like receptor (TLR)-2 and subsequent inflammatory response contribute to lesion development in acne vulgaris. A cross-talk between aryl hydrocarbon receptor (AhR), a cytosolic receptor protein that responds to environmental and physiological stress, and TLRs has recently been reported. In this study, we explored the possible role of AhR in the effects induced on cultured human SZ95 sebocytes by peptidoglycan (PGN), a classic TLR2 agonist. PGN-induced secretion of inflammatory factors TNF-α and IL-8 in human SZ95 sebocytes was suppressed after knockdown of AhR and pretreatment with the AhR antagonist CH223191. In addition, the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) enhanced TNF-α and IL-8 secretion in PGN-pretreated sebocytes. Furthermore, PGN-induced expression of myeloid differentiation factor 88 (MyD88), phospho-p38MAPK (p-p38MAPK), and p-p65NF-κB was strengthened by TCDD and repressed by CH223191. AhR inhibition by transfecting shRNA blocked the ability of PGN to stimulate phosphorylation of p38MAPK and p65NF-κB in SZ95 sebocytes. Overall, these data demonstrate that AhR is able to modulate PGN-induced expression of TNF-α and IL-8 in human SZ95 sebocytes involving the MyD88-p65NF-κB/p38MAPK signaling pathway, which probably indicates a new mechanism in TLR2-mediated acne.
Collapse
Affiliation(s)
- Xiao-Xiao Hou
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Guangjie Chen
- Department of Immunology and Microbiology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Amir M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Tingting Hu
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lanqi Wang
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhanyan Pan
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lingyi Lu
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ke Cao
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ying Ma
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane, Dessau, Germany
| | - Longqing Xia
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai,
| |
Collapse
|
28
|
Therapeutic Agents with AHR Inhibiting and NRF2 Activating Activity for Managing Chloracne. Antioxidants (Basel) 2018; 7:antiox7070090. [PMID: 30011787 PMCID: PMC6071176 DOI: 10.3390/antiox7070090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Chloracne is the major skin symptom caused by dioxin intoxication. Dioxin activates the aryl hydrocarbon receptor (AHR)–cytochrome p450 1A1 (CYP1A1) system, generates oxidative stress, and induces hyperkeratinization of keratinocytes and sebocytes leading to chloracne. Nuclear factor-erythroid 2-related factor-2 (NRF2) is a master switch that induces the expression of various antioxidative enzymes, such as heme oxygenase-1. Cinnamaldehyde is an antioxidant phytochemical that inhibits AHR–CYP1A1 signaling and activates the NRF2–antioxidative axis. The cinnamaldehyde-containing Kampo herbal medicine Keishibukuryogan is capable of improving chloracne in Yusho patients who are highly contaminated with dioxin. Agents with dual functions in promoting AHR–CYP1A1 inhibition and NRF2 activation may be useful for managing dioxin-related health hazards.
Collapse
|
29
|
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. BIOCHIMIE OPEN 2018; 7:1-9. [PMID: 30003042 PMCID: PMC6039966 DOI: 10.1016/j.biopen.2018.05.001] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Ludmila Juricek
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Julien Dairou
- CNRS 8601, 45 rue des Saints-Pères, 75006 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
30
|
Mitoma C, Uchi H, Tsukimori K, Todaka T, Kajiwara J, Shimose T, Akahane M, Imamura T, Furue M. Current state of yusho and prospects for therapeutic strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16472-16480. [PMID: 29197056 DOI: 10.1007/s11356-017-0833-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/23/2017] [Indexed: 05/20/2023]
Abstract
The mass food poisoning incident yusho occurred in Japan in 1968. It was caused by the ingestion of rice bran oil contaminated with polychlorinated biphenyls and various dioxins and dioxin-like compounds including polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDFs). Notably, PCDFs were found to contribute to approximately 65% of the total toxicity equivalent in the blood of yusho patients. Lipophilic dioxins are retained in the body for a longer period than previously estimated. Victims suffered from characteristic skin manifestations associated with non-specific systemic symptoms, neurological symptoms, and respiratory symptoms. The severe symptoms seen in the initial phase subsequently faded, but recently, improvements have scarcely been observed. The Yusho Group has been researching treatments for this condition. Several clinical trials with chelating agents or dietary fibers aimed at accelerating the excretion of compounds. While some treatments increased dioxin excretion, none provided satisfactory symptom relief. Concurrently, various phytochemicals and herbal extracts have been found to possess biological activities that suppress dioxin-induced toxicity via aryl hydrocarbon receptor or activate the antioxidant nuclear factor-erythroid 2-related factor-2 (NRF2) signal pathway, making them promising therapeutic candidates. Here, we summarize the current status of yusho and findings of clinical trials for yusho patients and discuss the treatment prospects.
Collapse
Affiliation(s)
- Chikage Mitoma
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kiyomi Tsukimori
- Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, 813-0017, Japan
| | - Takashi Todaka
- Kitakyushu Life Science Center, Public Interest Incorporated Foundation, Fukuoka, 804-0003, Japan
| | - Jumboku Kajiwara
- Fukuoka Institute of Health and Environmental Sciences, Fukuoka, 818-0135, Japan
| | - Takayuki Shimose
- Clinical Research Support Center Kyushu, Fukuoka, 812-8582, Japan
| | - Manabu Akahane
- Department of Public Health, Health Management and Policy, Nara Medical University School of Medicine, Nara, 634-8521, Japan
| | - Tomoaki Imamura
- Department of Public Health, Health Management and Policy, Nara Medical University School of Medicine, Nara, 634-8521, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
31
|
Bock KW. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated deregulation of myeloid and sebaceous gland stem/progenitor cell homeostasis. Arch Toxicol 2017; 91:2295-2301. [PMID: 28386637 DOI: 10.1007/s00204-017-1965-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Studies of TCDD toxicity stimulated identification of the responsible aryl hydrocarbon receptor (AHR), a multifunctional, ligand-activated transcription factor of the basic helix-loop-helix/Per-Arnt-Sim family. Accumulating evidence suggests a role of this receptor in homeostasis of stem/progenitor cells, in addition to its known role in xenobiotic metabolism. (1) Regulation of myelopoiesis is complex. As one example, AHR-mediated downregulation of human CD34+ progenitor differentiation to monocytes/macrophages is discussed. (2) Accumulation of TCDD in sebum leads to deregulation of sebocyte differentiation via Blimp1-mediated inhibition of c-Myc signaling and stimulation of Wnt-mediated proliferation of interfollicular epidermis. The resulting sebaceous gland atrophy and formation of dermal cysts may explain the pathogenesis of chloracne, the hallmark of TCDD toxicity. (3) TCDD treatment of confluent liver stem cell-like rat WB-F344 cells leads to release from cell-cell contact inhibition via AHR-mediated crosstalk with multiple signaling pathways. Further work is needed to delineate AHR function in crosstalk with other signaling pathways.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Kawajiri K, Fujii-Kuriyama Y. The aryl hydrocarbon receptor: a multifunctional chemical sensor for host defense and homeostatic maintenance. Exp Anim 2016; 66:75-89. [PMID: 27980293 PMCID: PMC5411294 DOI: 10.1538/expanim.16-0092] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal chemical sensor that transduces
extrinsic and intrinsic signals into cellular responses. AHR was originally thought to be
involved in not only drug metabolism but also carcinogenic and toxicological responses
against environmental contaminants, such as
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic
hydrocarbons. However, recent studies demonstrate that the AHR plays multiple intrinsic
roles in host defense and homeostasis as well, including immunity, stem cell maintenance,
and cell differentiation, upon binding with an increasing number of newly defined dietary,
cellular, and microbe-derived ligands. In addition, AHR is a convergence point for several
signaling cascades, which may be involved in the diverse diseases caused by binding of the
persistent ligand TCDD with extremely high affinity to AHR. A comprehensive understanding
of physiological and pathological processes initiated by endogenous AHR agonists and
antagonists may allow for the therapeutic regulation of AHR activity. Thus, the AHR can be
a valuable diagnostic marker and therapeutic target for human diseases.
Collapse
Affiliation(s)
- Kaname Kawajiri
- Research Institute for Clinical Oncology, Saitama Cancer Center, 818 Komuro, Ina-machi, Saitama 362-0806, Japan
| | - Yoshiaki Fujii-Kuriyama
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
33
|
Haas K, Weighardt H, Deenen R, Köhrer K, Clausen B, Zahner S, Boukamp P, Bloch W, Krutmann J, Esser C. Aryl Hydrocarbon Receptor in Keratinocytes Is Essential for Murine Skin Barrier Integrity. J Invest Dermatol 2016; 136:2260-2269. [DOI: 10.1016/j.jid.2016.06.627] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 12/28/2022]
|
34
|
Zouboulis CC, Picardo M, Ju Q, Kurokawa I, Törőcsik D, Bíró T, Schneider MR. Beyond acne: Current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord 2016; 17:319-334. [PMID: 27726049 DOI: 10.1007/s11154-016-9389-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sebaceous gland is most commonly found in association with a hair follicle. Its traditional function is the holocrine production of sebum, a complex mixture of lipids, cell debris, and other rather poorly characterized substances. Due to the gland's central role in acne pathogenesis, early research had focused on its lipogenic activity. Less studied aspects of the sebaceous gland, such as stem cell biology, the regulation of cellular differentiation by transcription factors, the significance of specific lipid fractions, the endocrine and specially the neuroendocrine role of the sebaceous gland, and its contribution to the innate immunity, the detoxification of the skin, and skin aging have only recently attracted the attention of researchers from different disciplines. Here, we summarize recent multidisciplinary progress in sebaceous gland research and discuss how sebaceous gland research may stimulate the development of novel therapeutic strategies targeting specific molecular pathways of the pathogenesis of skin diseases.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ichiro Kurokawa
- Department of Dermatology, Meiwa Hospital, Nishinomiya, Japan
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
35
|
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous compounds that have the ability to disrupt the production and actions of hormones through direct or indirect interaction with hormone receptors, thus acting as agonists or antagonists. Human health is affected after either individual occupation or dietary and environmental exposure to EDCs. On the other hand, skin is one of the largest organs of the body and its main function is protection from noxious substances. EDCs perturb the endocrine system, and they are also carcinogenic, immunotoxic, and hepatotoxic to human skin. In addition, their effects on keratinocytes, melanocytes, sebocytes, inflammatory and immunological cells, and skin stem cells produce inflammatory and allergic skin diseases, chloracne, disorders of skin pigmentation, skin cancer, and skin aging. Mechanisms, which EDCs use to induce these skin disorders are complicated, and involve the interference of endogenous hormones and most importantly the activation of the aryl hydrocarbon receptor signal pathway. Further studies on EDCs and skin diseases are necessary to elucidate these mechanisms.
Collapse
Affiliation(s)
- Qiang Ju
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| |
Collapse
|
36
|
Hu T, Wang D, Yu Q, Li L, Mo X, Pan Z, Zouboulis CC, Peng L, Xia L, Ju Q. Aryl hydrocarbon receptor negatively regulates lipid synthesis and involves in cell differentiation of SZ95 sebocytes in vitro. Chem Biol Interact 2016; 258:52-8. [PMID: 27544633 DOI: 10.1016/j.cbi.2016.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/12/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene (BaP) and other exogenous compounds. In human sebocytes, TCDD and BaP were found to activate the expression of multiple genes, including cytochrome P450 1A1 (CYP1A1), and inhibit lipid synthesis via AhR, while little is known about endogenous functions of the AhR. In order to expand this knowledge, we analyzed the impact of AhR knockdown on lipid synthesis as well as on cell differentiation of SZ95 sebocytes in vitro and observed that lipid synthesis was significantly induced in AhR silenced SZ95 sebocytes. In line with this result, expression of lipogenesis-associated genes, such as peroxisome proliferator activated receptor (PPAR) δ and PPARγ, was increased. Morphological changes with smaller cells in size but more abundant cytoplasmic lipids were observed in AhR silenced SZ95 sebocytes compared with the AhR activated cells. Besides, the expression of keratin 7, an early sebaceous differentiation marker, was increased, while the expression of the terminal sebocyte differentiation marker epithelial membrane antigen (EMA) was reduced. Moreover, the terminal keratinocyte differentiation markers keratin 10 and involucrin, and the AhR downstream protein CYP1A1 were reduced after AhR silencing. To the best of our knowledge, we provide evidence that in the absence of exogenous ligands, the AhR inhibits lipid synthesis and involves in cell differentiation of human SZ95 sebocytes, which indicates the physiological function of this receptor in human sebocytes.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Duo Wang
- Research Center for Translational Medicine at East Hospital and Division of Medical Genetics, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Yu
- Shanghai Dermatology Hospital, Shanghai, PR China
| | - Li Li
- Research Center for Translational Medicine at East Hospital and Division of Medical Genetics, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaohui Mo
- Shanghai Dermatology Hospital, Shanghai, PR China
| | - Zhanyan Pan
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Luying Peng
- Research Center for Translational Medicine at East Hospital and Division of Medical Genetics, Tongji University School of Medicine, Shanghai, PR China
| | - Longqing Xia
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiang Ju
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
37
|
Toward elucidation of dioxin-mediated chloracne and Ah receptor functions. Biochem Pharmacol 2016; 112:1-5. [PMID: 26801687 DOI: 10.1016/j.bcp.2016.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/14/2016] [Indexed: 12/13/2022]
Abstract
Target cells and molecular targets responsible for dioxin-mediated chloracne, the hallmark of dioxin toxicity, are reviewed. The dioxin TCDD accumulates in sebum, and thereby persistently activates the Ah receptor (AhR), expressed in bipotential stem/progenitor cells of the sebaceous gland. AhR operates in cooperation with other transcription factors including c-Myc, Blimp1 and ß-Catenin/TCF: c-Myc stimulates exit of stem cells from quiescence to proliferating sebocyte progenitors; Blimp1 is a major c-Myc repressor, and ß-Catenin/TCF represses sebaceous gland differentiation and stimulates differentiation to interfollicular epidermis. TCDD has been demonstrated to induce Blimp1 expression in the sebocyte stem/progenitor cell line SZ95, leading to sebocyte apoptosis and proliferation of interfollicular epidermis cells. These findings explain observations in TCDD-poisoned individuals, and identify target cells and molecular targets of dioxin-mediated chloracne. They clearly demonstrate that the AhR operates in a cell context-dependent manner, and provide hints to homeostatic functions of AhR in stem/progenitor cells.
Collapse
|
38
|
Esser C, Rannug A. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 2015; 67:259-79. [PMID: 25657351 DOI: 10.1124/pr.114.009001] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.
Collapse
Affiliation(s)
- Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| | - Agneta Rannug
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany (C.E.); and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden (A.R.)
| |
Collapse
|
39
|
Fabbrocini G, Kaya G, Caseiro Silverio P, De Vita V, Kaya A, Fontao F, Sorg O, Saurat JH. Aryl Hydrocarbon Receptor Activation in Acne Vulgaris Skin: A Case Series from the Region of Naples, Italy. Dermatology 2015; 231:334-8. [DOI: 10.1159/000439402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/16/2015] [Indexed: 11/19/2022] Open
|
40
|
Mitoma C, Mine Y, Utani A, Imafuku S, Muto M, Akimoto T, Kanekura T, Furue M, Uchi H. Current skin symptoms of Yusho patients exposed to high levels of 2,3,4,7,8-pentachlorinated dibenzofuran and polychlorinated biphenyls in 1968. CHEMOSPHERE 2015; 137:45-51. [PMID: 25985428 DOI: 10.1016/j.chemosphere.2015.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
Yusho was a mass food poisoning event due to the ingestion of rice oil contaminated with polychlorinated biphenyls (PCBs) and various dioxins and dioxin-like compounds. At its outbreak in 1968, Yusho patients suffered severe skin symptoms. Although the blood concentrations of PCBs and dioxins, especially highly toxic 2,3,4,7,8-pentachlorinated dibenzofuran (2,3,4,7,8-PeCDF) remain high in these patients, extensive analysis has not been performed on their current skin symptoms. We categorized and evaluated the specific skin symptoms in Yusho in 2012 by grading their severity using an arbitrary scoring system, and analyzed their correlations with the blood concentrations of 2,3,4,7,8-PeCDF and PCBs. A total of 352 Yusho patients underwent annual dermatological check-ups, in which five skin symptoms: black comedones, acneiform eruptions, scar formation, pigmentation and nail deformity, were evaluated for their distribution and severity. Approximately one-third of Yusho patients still presented with black comedones, acneiform eruptions and scar formation; the distributions of these symptoms were similar to those at the time of the Yusho outbreak. The mean blood concentrations of 2,3,4,7,8-PeCDF and total PCBs in Yusho patients were still higher than those in controls. The prevalence and severity of black comedones were correlated with age. Severity scores of black comedones and scar formation were positively correlated with 2,3,4,7,8-PeCDF blood level, and those of black comedones, scar formation, and pigmentation were positively correlated with total PCBs blood level. This study suggests that 2,3,4,7,8-PeCDF and PCBs remaining in Yusho patients still play crucial roles in the development of skin symptoms in Yusho.
Collapse
Affiliation(s)
- Chikage Mitoma
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan.
| | - Yoshiko Mine
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan
| | - Atsushi Utani
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Masahiko Muto
- Department of Dermatology, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | | | - Takuro Kanekura
- Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Sorg O. Tobacco Smoke and Chloracne: An Old Story Comes to Light. Dermatology 2015; 231:297. [DOI: 10.1159/000439250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022] Open
|
42
|
Patterson AT, Tian FT, Elston DM, Kaffenberger BH. Occluded Cigarette Smoke Exposure Causing Localized Chloracne-Like Comedones. Dermatology 2015; 231:322-5. [PMID: 26360246 DOI: 10.1159/000439046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/27/2015] [Indexed: 11/19/2022] Open
Abstract
Many environmental acne disorders, including chloracne and oil acne, were previously thought to occur predominantly in occupational settings following polycyclic aromatic hydrocarbon exposure. Cigarette smoke has also been shown to contain a large number of these toxic polycyclic aromatic hydrocarbon components and strictly correlates with noninflammatory acneiform lesion development in postadolescent patients. We report a case of localized open comedones associated with occluded cigarette smoke exposure near the nasal cavity due to infrequently changed gauze following rhinectomy. The dermal uptake of polycyclic aromatic hydrocarbon components in cigarette smoke has the potential to function as a contributing factor in chloracne development. Several of these environmental and noninflammatory acne subtypes may share a common molecular propensity for enhanced comedogenesis originating from aryl hydrocarbon receptor pathway effects in the skin. Additional studies are needed to further elucidate the exact mechanistic pathways through which tobacco smoke impacts the integumentary system.
Collapse
|
43
|
Mitoma C, Uchi H, Tsukimori K, Yamada H, Akahane M, Imamura T, Utani A, Furue M. Yusho and its latest findings-A review in studies conducted by the Yusho Group. ENVIRONMENT INTERNATIONAL 2015; 82:41-8. [PMID: 26010306 DOI: 10.1016/j.envint.2015.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 05/20/2023]
Abstract
The Yusho incident is an unprecedented mass food poisoning that occurred in Japan in 1968. It was caused by the ingestion of rice bran oil contaminated with polychlorinated biphenyls (PCBs) and various dioxins and dioxin-like compounds, such as polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The victims of Yusho have suffered from characteristic skin manifestations associated with systemic, ophthalmological, and mucosal symptoms for a long period of time. The Study Group of Yusho (the Yusho Group) has been conducting annual medical check-ups on Yusho victims for more than 45years. Since 2002, when concentrations of dioxins in the blood of Yusho patients started to be measured, the pharmacokinetics of dioxins, relationship between blood levels of dioxins and symptoms/signs in patients directly exposed to dioxins, and the adverse effects on the next generation have become dramatically clear. Herein we review recent findings of studies conducted by the Yusho Group to evaluate chronic dioxin-induced toxicity to the next generation as well as Yusho patients in comparison with a similar food mass poisoning, the Yucheng incident. Additionally, we summarized basic studies carried out by the Yusho Group to re-evaluate the mechanisms of dioxin toxicities in experimental models and various functions of the aryl hydrocarbon receptor (AhR), known as the dioxin receptor, pathway.
Collapse
Affiliation(s)
- Chikage Mitoma
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan.
| | - Hiroshi Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kiyomi Tsukimori
- Department of Obstetrics, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Hideyuki Yamada
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Manabu Akahane
- Health Management and Policy, Department of Public Health, School of Medicine, Nara Medical University, Nara, Japan
| | - Tomoaki Imamura
- Health Management and Policy, Department of Public Health, School of Medicine, Nara Medical University, Nara, Japan
| | - Atsushi Utani
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masutaka Furue
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, Japan; Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Patterson AT, Kaffenberger BH, Keller RA, Elston DM. Skin diseases associated with Agent Orange and other organochlorine exposures. J Am Acad Dermatol 2015. [PMID: 26210237 DOI: 10.1016/j.jaad.2015.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organochlorine exposure is an important cause of cutaneous and systemic toxicity. Exposure has been associated with industrial accidents, intentional poisoning, and the use of defoliants, such as Agent Orange in the Vietnam War. Although long-term health effects are systematically reviewed by the Institute of Medicine, skin diseases are not comprehensively assessed. This represents an important practice gap as patients can present with cutaneous findings. This article provides a systematic review of the cutaneous manifestations of known mass organochlorine exposures in military and industrial settings with the goal of providing clinically useful recommendations for dermatologists seeing patients inquiring about organochlorine effects. Patients with a new diagnosis of chloracne, porphyria cutanea tarda, cutaneous lymphomas (non-Hodgkin lymphoma), and soft-tissue sarcomas including dermatofibrosarcoma protuberans and leiomyosarcomas should be screened for a history of Vietnam service or industrial exposure. Inconclusive evidence exists for an increased risk of other skin diseases in Vietnam veterans exposed to Agent Orange including benign fatty tumors, melanomas, nonmelanoma skin cancers, milia, eczema, dyschromias, disturbance of skin sensation, and rashes not otherwise specified. Affected veterans should be informed of the uncertain data in those cases. Referral to Department of Veterans Affairs for disability assessment is indicated for conditions with established associations.
Collapse
Affiliation(s)
- Andrew T Patterson
- Division of Dermatology, Ohio State University College of Medicine, Columbus, Ohio; US Air Force, San Antonio Military Medical Center
| | | | - Richard A Keller
- Dermatology, Audie L. Murphy Veterans Hospital, San Antonio, US Air Force, San Antonio, Texas
| | - Dirk M Elston
- Ackerman Academy of Dermatopathology; US Army (Retired)
| |
Collapse
|
45
|
Mandavia C. TCDD-induced activation of aryl hydrocarbon receptor regulates the skin stem cell population. Med Hypotheses 2015; 84:204-8. [DOI: 10.1016/j.mehy.2014.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/27/2014] [Indexed: 11/28/2022]
|
46
|
Noakes R. The aryl hydrocarbon receptor: a review of its role in the physiology and pathology of the integument and its relationship to the tryptophan metabolism. Int J Tryptophan Res 2015; 8:7-18. [PMID: 25733915 PMCID: PMC4327407 DOI: 10.4137/ijtr.s19985] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/04/2015] [Accepted: 01/13/2015] [Indexed: 02/07/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytosolic receptor for low molecular weight molecules, of which the most widely recognized ligand is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the most widely recognized effect, chloracne. Adverse effects of manipulation were most recently and graphically demonstrated by the poisoning of Viktor Yushchenko during the Ukrainian presidential elections of 2004. However, recent research has revealed a receptor with wide-ranging, and at times, paradoxical actions. It was arguably among the first biological receptors to be utilized by dermatologists, dating from the time of topical tar preparations as a therapeutic agent. I provide a review outlining the role AHR plays in the development, cellular oxidation/antioxidation, responses to ultraviolet light, melanogenesis, epidermal barrier function, and immune regulation and its relationship to tryptophan metabolism. Finally, I will review the role of AHR in diseases of the integument.
Collapse
Affiliation(s)
- Rowland Noakes
- Queensland Institute of Dermatology, Holland Park, Queensland, Australia
| |
Collapse
|
47
|
Kędzior M, Seredyński R, Godzik U, Tomczyk D, Gutowicz J, Terlecka E, Całkosiński I, Terlecki G. Inhibition of cathepsin B activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:733-737. [PMID: 25163566 DOI: 10.1007/s11356-014-3482-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/18/2014] [Indexed: 06/03/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is the most potent toxic isomer in the dioxin-like family. Due to its resistance to metabolic degradation, this ubiquitous environmental pollutant readily accumulates in multiple organs. Cathepsin B is a lysosomal cysteine protease playing an essential role in the intracellular protein turnover. Alterations in its expression, activity, and localization may facilitate the development of many pathologies, including cancer. TCDD, due to its extremely lipophilic nature, may diffuse through biological membranes and affect lysosomal enzymes, including cathepsins. Therefore, in this study we performed two enzymatic assays, spectrofluorimetry and gelatin zymography, in order to evaluate the effect of TCDD on purified bovine cathepsin B. We showed that the dioxin decreases the enzyme's activity in a dose-dependent manner. The reversibility of TCDD-induced inhibition of the protease was also examined, suggesting that TCDD does not bind covalently to the enzyme's active site, acting rather as a reversible inhibitor.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
INTRODUCTION Sorafenib is an oral multikinase inhibitor that targets tumor cell angiogenesis and proliferation. Drug-associated cutaneous adverse events, such as alopecia and hand-foot skin reaction, occur frequently. Sorafenib-related side effects affecting hair, nails, and skin are summarized and the characteristics of sorafenib-treated patients who developed acneiform facial lesions are reviewed to present the clinical features of these individuals. CASE REPORT A man with sorafenib-associated facial acneiform lesions mimicking those of chloracne is described. DISCUSSION PubMed was used to search the following terms, separately and in combination: acne, acneiform eruption, chloracne, cutaneous adverse events, hepatocellular carcinoma, renal cell carcinoma, skin side effects, and sorafenib. Inclusion criteria for selecting papers to be reviewed included case reports and studies that described cutaneous and mucosal adverse side effects associated with sorafenib. All papers fulfilling inclusion criteria were reviewed and relevant manuscripts, along with their reference citations, were evaluated. Five patients-a woman with liver epithelioid hemangioendothelioma, three men with metastatic renal cell carcinoma, and a man with hepatocellular carcinoma-have developed sorafenib-associated facial acneiform eruption. The eruption typically occurred after 4 weeks of treatment at a dose of 400 mg twice daily. The lesions presented as either papules and pustules (2 patients) or, similar in appearance and distribution to chloracne, only open and closed comedones (3 patients). The sorafenib-associated facial acneiform eruption partially improved after initiating topical antibiotics, keratolytics, and/or retinoids; however, progressive improvement or resolution occurred after lowering the daily dose or discontinuation of sorafenib. CONCLUSIONS Sorafenib-associated facial acneiform eruption is a rarely occurring cutaneous adverse event that has only been observed in five individuals. The skin lesions usually presented after 4 weeks of sorafenib (at a dose of 400 mg twice daily) treatment. The morphology and distribution of the lesions mimicked those of chloracne in three of the patients. Two of the patients also had other drug-related skin side effects. Topical acne-directed therapy was only partially effective in clearing the lesions; lowering the dose or discontinuation of sorafenib resulted in progressive improvement or resolution of the facial acneiform eruption.
Collapse
|
49
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 648] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
50
|
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt signaling in development, health, and disease. Int J Mol Sci 2014; 15:17852-85. [PMID: 25286307 PMCID: PMC4227194 DOI: 10.3390/ijms151017852] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/04/2014] [Accepted: 09/18/2014] [Indexed: 12/16/2022] Open
Abstract
The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV integration site) signaling pathways have been conserved throughout evolution. Appropriately regulated signaling through each pathway is necessary for normal development and health, while dysregulation can lead to developmental defects and disease. Though both pathways have been vigorously studied, there is relatively little research exploring the possibility of crosstalk between these pathways. In this review, we provide a brief background on (1) the roles of both AHR and Wnt signaling in development and disease, and (2) the molecular mechanisms that characterize activation of each pathway. We also discuss the need for careful and complete experimental evaluation of each pathway and describe existing research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in detail the intersection of AHR and Wnt signaling, we summarize our recent findings which show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt signaling impairs fetal prostate development.
Collapse
Affiliation(s)
- Andrew J Schneider
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Amanda M Branam
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| | - Richard E Peterson
- School of Pharmacy and Molecular and Environmental Toxicology Center University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|