1
|
Wang S, Tong S, Jin X, Li N, Dang P, Sui Y, Liu Y, Wang D. Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure. Neural Regen Res 2024; 19:2522-2531. [PMID: 38526288 PMCID: PMC11090430 DOI: 10.4103/1673-5374.389363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00032/figure1/v/2024-03-08T184507Z/r/image-tiff High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases, yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown. Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel (Healaflow®). Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure. Our results identified a total of 12 cell types, namely retinal pigment epithelial cells, rod-photoreceptor cells, bipolar cells, Müller cells, microglia, cone-photoreceptor cells, retinal ganglion cells, endothelial cells, retinal progenitor cells, oligodendrocytes, pericytes, and fibroblasts. The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells, with ganglion cells decreased by 23%. Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure. We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression. We found upregulation of the B3gat2 gene, which is associated with neuronal migration and adhesion, and downregulation of the Tsc22d gene, which participates in inhibition of inflammation. This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure. These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
Collapse
Affiliation(s)
- Shaojun Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Siti Tong
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Xin Jin
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Na Li
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Pingxiu Dang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Yang Sui
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Dajiang Wang
- Division of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
3
|
Shi J, Jiao T, Guo Q, Weng W, Ma L, Zhang Q, Wang L, Zhang J, Chen C, Huang Y, Wang M, Pan R, Tang Y, Hu W, Meng T, Liu SH, Guo J, Kong Y, Meng X. A Cell Surface-Binding Antibody Atlas Nominates a MUC18-Directed Antibody-Drug Conjugate for Targeting Melanoma. Cancer Res 2023; 83:3783-3795. [PMID: 37668527 PMCID: PMC10646479 DOI: 10.1158/0008-5472.can-23-1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Recent advances in targeted therapy and immunotherapy have substantially improved the treatment of melanoma. However, therapeutic strategies are still needed for unresponsive or treatment-relapsed patients with melanoma. To discover antibody-drug conjugate (ADC)-tractable cell surface targets for melanoma, we developed an atlas of melanoma cell surface-binding antibodies (pAb) using a proteome-scale antibody array platform. Target identification of pAbs led to development of melanoma cell killing ADCs against LGR6, TRPM1, ASAP1, and MUC18, among others. MUC18 was overexpressed in both tumor cells and tumor-infiltrating blood vessels across major melanoma subtypes, making it a potential dual-compartment and universal melanoma therapeutic target. AMT-253, an MUC18-directed ADC based on topoisomerase I inhibitor exatecan and a self-immolative T moiety, had a higher therapeutic index compared with its microtubule inhibitor-based counterpart and favorable pharmacokinetics and tolerability in monkeys. AMT-253 exhibited MUC18-specific cytotoxicity through DNA damage and apoptosis and a strong bystander killing effect, leading to potent antitumor activities against melanoma cell line and patient-derived xenograft models. Tumor vasculature targeting by a mouse MUC18-specific antibody-T1000-exatecan conjugate inhibited tumor growth in human melanoma xenografts. Combination therapy of AMT-253 with an antiangiogenic agent generated higher efficacy than single agent in a mucosal melanoma model. Beyond melanoma, AMT-253 was also efficacious in a wide range of MUC18-expressing solid tumors. Efficient target/antibody discovery in combination with the T moiety-exatecan linker-payload exemplified here may facilitate discovery of new ADC to improve cancer treatment. SIGNIFICANCE Discovery of melanoma-targeting antibodies using a proteome-scale array and use of a cutting-edge linker-payload system led to development of a MUC18-targeting antibody-exatecan conjugate with clinical potential for treating major melanoma subtypes.
Collapse
Affiliation(s)
- Jing Shi
- Multitude Therapeutics, Shanghai, China
| | - Tao Jiao
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Qian Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Weining Weng
- Multitude Therapeutics, Shanghai, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linjie Ma
- Multitude Therapeutics, Shanghai, China
| | | | | | | | | | | | | | | | - Yanfang Tang
- Multitude Therapeutics, Shanghai, China
- Abmart, Shanghai, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Meng
- MabCare Therapeutics, Shanghai, China
- HySlink Therapeutics, Shanghai, China
| | | | - Jun Guo
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yan Kong
- Department of Renal Cancer and Melanoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xun Meng
- Multitude Therapeutics, Shanghai, China
- Abmart, Shanghai, China
| |
Collapse
|
4
|
Li R, Wang Y, Liu Y, Li D, Tian Y, Liu X, Kang X, Li Z. Effects of SLC45A2 and GPNMB on Melanin Deposition Based on Transcriptome Sequencing in Chicken Feather Follicles. Animals (Basel) 2023; 13:2608. [PMID: 37627399 PMCID: PMC10451703 DOI: 10.3390/ani13162608] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
As an essential genetic and economic trait, chicken feather color has long been an important research topic. To further understand the mechanism of melanin deposition associated with coloration in chicken feathers, we selected feather follicle tissues from the neck and wings of chickens with differently colored feathers (yellow, sub-Columbian, and silver) for transcriptome analysis. We focused on genes that were expressed in both the wings and neck and were expressed with the same trends in breeds with two different plumage colors, specifically, SLC45A2, GPNMB, MLPH, TYR, KIT, WNT11, and FZD1. GO and KEGG enrichment analyses showed the DEGs were enriched in melanin-related pathways, such as tyrosine metabolic pathway and melanogenesis, and PPI analysis highlighted the genes SLC45A2 and GPNMB as associated with melanin deposition. Verification experiments in chicken melanocytes demonstrated that these two genes promote melanocyte melanin deposition. These data enrich our knowledge of the mechanisms that regulate chicken feather color.
Collapse
Affiliation(s)
- Ruiting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yihan Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
- The Shennong Laboratory, Zhengzhou 450000, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (R.L.); (Y.W.); (Y.L.); (D.L.)
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
5
|
Huo D, Liu YY, Zhang C, Zeng LT, Fan GQ, Zhang LQ, Pang J, Wang Y, Shen T, Li XF, Li CB, Zhang TM, Cai JP, Cui J. Serum glycoprotein non-metastatic melanoma protein B (GPNMB) level as a potential biomarker for diabetes mellitus-related cataract: A cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1110337. [PMID: 36875463 PMCID: PMC9978497 DOI: 10.3389/fendo.2023.1110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM), a metabolic disease that has attracted significant research and clinical attention over the years, can affect the eye structure and induce cataract in patients diagnosed with DM. Recent studies have indicated the relationship between glycoprotein non-metastatic melanoma protein B (GPNMB) and DM and DM-related renal dysfunction. However, the role of circulating GPNMB in DM-associated cataract is still unknown. In this study, we explored the potential of serum GPNMB as a biomarker for DM and DM-associated cataract. METHODS A total of 406 subjects were enrolled, including 60 and 346 subjects with and without DM, respectively. The presence of cataract was evaluated and serum GPNMB levels were measured using a commercial enzyme-linked immunosorbent assay kit. RESULTS Serum GPNMB levels were higher in diabetic individuals and subjects with cataract than in those without DM or cataract. Subjects in the highest GPNMB tertile group were more likely to have metabolic disorder, cataract, and DM. Analysis performed in subjects with DM elucidated the correlation between serum GPNMB levels and cataract. Receiver operating characteristic (ROC) curve analysis also indicated that GPNMB could be used to diagnose DM and cataract. Multivariable logistic regression analysis illustrated that GPNMB levels were independently associated with DM and cataract. DM was also found to be an independent risk factor for cataract. Further surveys revealed the combination of serum GPNMB levels and presence of DM was associated with a more precise identification of cataract than either factor alone. CONCLUSIONS Increased circulating GPNMB levels are associated with DM and cataract and can be used as a biomarker of DM-associated cataract.
Collapse
Affiliation(s)
- Da Huo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yuan-Yuan Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Chi Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lv-Tao Zeng
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Li-Qun Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jing Pang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xue-Fei Li
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chuan-Bao Li
- Department of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Tie-Mei Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Ju Cui, ; ; Jian-Ping Cai,
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Ju Cui, ; ; Jian-Ping Cai,
| |
Collapse
|
6
|
Kawakami T. Surgical procedures and innovative approaches for vitiligo regenerative treatment and melanocytorrhagy. J Dermatol 2022; 49:391-401. [PMID: 35178747 DOI: 10.1111/1346-8138.16316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
Surgical treatments for vitiligo are a safe and effective treatment modality for select patients with vitiligo. Many techniques of vitiligo surgery exist, each with unique advantages and disadvantages. We reviewed the various surgical therapies and innovative approaches for vitiligo regenerative treatment reported in the literature. Surgical therapies can be subdivided into tissue grafting methods and cellular grafting methods. Tissue grafting methods mainly include mini punch grafts, suction blister roof grafts, and hair follicle grafts. Cellular grafting methods include cultured and non-cultured treatments. The efficacy needs to be improved largely due to the poor proliferation and quality of the autologous melanocytes. Rho-associated protein kinase inhibitor enhances primary melanocyte culture proliferation from vitiligo patients to prevent apoptosis. Innovative approaches using stem cell methods could prove invaluable in developing a novel cell therapy for patients suffering from vitiligo. We succeeded in inducing melanin pigmentation in mice skin in vivo using our human induced pluripotent stem cell-derived melanocytes. In addition, we reviewed melanocytorrhagy, detachment and transepidermal loss of melanocytes, and melanocyte-related adhesion molecules. These adhesion molecules include epithelial cadherin, discoidin domain receptor tyrosine kinase 1, glycoprotein non-metastatic melanoma protein B, macrophage migration inhibiting factor, 17β-hydroxysteroid dehydrogenase 1, and E26 transformation-specific 1.
Collapse
Affiliation(s)
- Tamihiro Kawakami
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
7
|
Kim SH, Kim JH, Lee SJ, Jung MS, Jeong DH, Lee KH. Minimally invasive skin sampling and transcriptome analysis using microneedles for skin type biomarker research. Skin Res Technol 2022; 28:322-335. [PMID: 35007372 PMCID: PMC9907599 DOI: 10.1111/srt.13135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/18/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Minimally invasive skin sampling is used in various fields. In this study, we examined whether it was possible to obtain skin specimens using biocompatible microneedles composed of sodium hyaluronate and performed transcriptome analysis. MATERIALS AND METHODS Thirty-three subjects with different skin conditions, such as skin aging, skin hydration, skin pigmentation, oily skin and sensitive skin, were recruited. Skin types were evaluated based on age, non-invasive measurement devices, 10% lactic acid stinging test and visual assessment; the skin specimens were sampled from the face using microneedles. Total RNA was extracted, and microarray was performed. Correlations between various biomarkers and skin condition parameters were analysed. RESULTS Several skin-type biomarkers are correlated with age, non-invasive device measurements, LAST score and visual assessment of acne lesions. Representatively, COL1A1 (Collagen type 1 alpha 1 chain), FN1 (Fibronectin 1) and PINK1 (PTEN-induced putative kinase protein 1) for skin aging, FLG (Filaggrin), KLF4 (Kruppel-like factor 4) and LOR (Loricrin) for skin hydration, GPNMB (Glycoprotein non-metastatic melanoma protein B), MLANA (Melan-A) and TYR (Tyrosinase) for skin pigmentation, IGF1 (insulin-like growth factor-1), MPZL3 (Myelin protein zero like 3) and AQP3 (Aquaporin 3) for oily skin and PGF (placental growth factor), CYR61 (cysteine-rich angiogenic inducer 61), RBP4 (retinol-binding protein 4), TAC1 (Tachykinin precursor 1), CAMP (Cathelicidin antimicrobial peptide), MMP9 (Matrix metallopeptidase 9), MMP3, MMP12 and CCR1 (C-C motif chemokine receptor 1) for sensitive skin. CONCLUSION Microneedle skin sampling is a new and minimally invasive option for transcriptome analysis of human skin and can be applied for diagnosis and treatment efficacy evaluation, as well as skin type classification.
Collapse
Affiliation(s)
- Seo Hyeong Kim
- Cutis Biomedical Research Center Co. Ltd., Seoul, Republic of Korea
| | - Ji Hye Kim
- Cutis Biomedical Research Center Co. Ltd., Seoul, Republic of Korea
| | - Sung Jae Lee
- Cutis Biomedical Research Center Co. Ltd., Seoul, Republic of Korea
| | - Min Sook Jung
- Cutis Biomedical Research Center Co. Ltd., Seoul, Republic of Korea
| | | | - Kwang Hoon Lee
- Cutis Biomedical Research Center Co. Ltd., Seoul, Republic of Korea.,Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
GPNMB Extracellular Fragment Protects Melanocytes from Oxidative Stress by Inhibiting AKT Phosphorylation Independent of CD44. Int J Mol Sci 2021; 22:ijms221910843. [PMID: 34639184 PMCID: PMC8509362 DOI: 10.3390/ijms221910843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein that plays an important role in cancer metastasis and osteoblast differentiation. In the skin epidermis, GPNMB is mainly expressed in melanocytes and plays a critical role in melanosome formation. In our previous study, GPNMB was also found to be expressed in skin epidermal keratinocytes. In addition, decreased GPNMB expression was observed in the epidermis of lesional skin of patients with vitiligo. However, the exact role of keratinocyte-derived GPNMB and its effect on vitiligo is still unknown. In this study, we demonstrated that GPNMB expression was also decreased in rhododendrol-induced leukoderma, as seen in vitiligo. The extracellular soluble form of GPNMB (sGPNMB) was found to protect melanocytes from cytotoxicity and the impairment of melanogenesis induced by oxidative stress. Furthermore, the effect of rGPNMB was not altered by the knockdown of CD44, which is a well-known receptor of GPNMB, but accompanied by the suppressed phosphorylation of AKT but not ERK, p38, or JNK. In addition, we found that oxidative stress decreased both transcriptional GPNMB expression and sGPNMB protein expression in human keratinocytes. Our results suggest that GPNMB might provide novel insights into the mechanisms related to the pathogenesis of vitiligo and leukoderma.
Collapse
|
9
|
Nickl B, Qadri F, Bader M. Anti-inflammatory role of Gpnmb in adipose tissue of mice. Sci Rep 2021; 11:19614. [PMID: 34608215 PMCID: PMC8490452 DOI: 10.1038/s41598-021-99090-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity can cause a chronic, low-grade inflammation, which is a critical step in the development of type II diabetes and cardiovascular diseases. Inflammation is associated with the expression of glycoprotein nonmetastatic melanoma protein b (Gpnmb), which is mainly expressed by macrophages and dendritic cells. We generated a Gpnmb-knockout mouse line using Crispr-Cas9 to assess the role of Gpnmb in a diet-induced obesity. The absence of Gpnmb did not affect body weight gain and blood lipid parameters. While wildtype animals became obese but remained otherwise metabolically healthy, Gpnmb-knockout animals developed, in addition to obesity, symptoms of metabolic syndrome such as adipose tissue inflammation, insulin resistance and liver fibrosis. We observed a strong Gpnmb expression in adipose tissue macrophages in wildtype animals and a decreased expression of most macrophage-related genes independent of their inflammatory function. This was corroborated by in vitro data showing that Gpnmb was mostly expressed by reparative macrophages while only pro-inflammatory stimuli induced shedding of Gpnmb. The data suggest that Gpnmb is ameliorating adipose tissue inflammation independent of the polarization of macrophages. Taken together, the data suggest an immune-balancing function of Gpnmb that could delay the metabolic damage caused by the induction of obesity.
Collapse
Affiliation(s)
- Bernadette Nickl
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Str. 10, 13125, Berlin, Germany. .,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany. .,Charité University Medicine, 10117, Berlin, Germany. .,Institute for Biology, University of Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
10
|
Amyloidosis cutis dyschromica cases caused by GPNMB mutations with different inheritance patterns. J Dermatol Sci 2021; 104:48-54. [PMID: 34551863 DOI: 10.1016/j.jdermsci.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/04/2021] [Accepted: 08/08/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Amyloidosis cutis dyschromica (ACD) is a rare form of primary cutaneous amyloidosis featured by reticulate dotted hypo- and hyperpigmentation. Recently, loss-of-function mutations in GPNMB, encoding glycoprotein (transmembrane) nonmetastatic melanoma protein B, were found in autosomal-recessive or semi-dominant ACD. OBJECTIVE This study aims to detect the genetic defect underlying ACD in nine separate cases and to investigate the functional consequences of the mutants. METHODS Nine ACD cases were collected including eight with autosomal-recessive pattern and one with autosomal-dominant pattern. Whole-exome sequencing or Sanger sequencing of the GPNMB gene was performed to detect the pathogenic mutations. Haplotype analysis was employed to determine the origin of mutation c.565C > T using adjacent highly polymorphic SNPs. Immunoblotting and subcellular localization assessments were performed to evaluate the expression of the mutants using HEK293 cells transfected with the GPNMB constructs. RESULTS We detected four recurrent mutations (c.393 T > G, p.Y131*; c.565C > T, p.R189*; c.1056delT, p.P353Lfs*20; c.1238 G > C, p.C413S) and two novel mutations (c.935delA, p.N312Tfs*4; c.969 T > A, p.C323*) in GPNMB. Mutation c.565C > T found in six separate ACD cases shared a common haplotype. The two novel mutations caused a decreased abundance of truncated proteins. The c.1238 G > C mutation, which was detected in the autosomal-dominant case, caused abnormal reticular subcellular localization of the protein. A major percentage of wildtype changed its expression pattern when co-expressed with this mutant. CONCLUSIONS Our findings proved that the recurrent mutation c.565C > T originated from a founder effect. The autosomal-dominant ACD associated mutation p.C413S played its pathogenic role through a dominant-negative effect on wild-type GPNMB. This study expands the genotype and inherited modes of ACD and improves our understanding of the pathogenesis of this disorder.
Collapse
|
11
|
Brendza R, Lin H, Stark K, Foreman O, Tao J, Pierce A, Ngu H, Shen K, Easton AE, Bhangale T, Chang D, Bingol B, Friedman BA. Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiol Dis 2021; 159:105494. [PMID: 34464706 DOI: 10.1016/j.nbd.2021.105494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022] Open
Abstract
The gene GPNMB is known to play roles in phagocytosis and tissue repair, and is upregulated in microglia in many mouse models of neurodegenerative disease as well as in human patients. Nearby genomic variants are associated with both elevated Parkinson's disease (PD) risk and higher expression of this gene, suggesting that inhibiting GPNMB activity might be protective in Parkinson's disease. We tested this hypothesis in three different mouse models of neurological diseases: a remyelination model and two models of alpha-synuclein pathology. We found that Gpnmb deletion had no effect on histological, cellular, behavioral, neurochemical or gene expression phenotypes in any of these models. These data suggest that Gpnmb does not play a major role in the development of pathology or functional defects in these models and that further work is necessary to study its role in the development or progression of Parkinson's disease.
Collapse
Affiliation(s)
- Robert Brendza
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Kimberly Stark
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Janet Tao
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Andrew Pierce
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, CA, USA
| | - Kimberle Shen
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Amy E Easton
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., South San Francisco, CA, USA
| | - Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, USA.
| | - Brad A Friedman
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, CA, USA.
| |
Collapse
|
12
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
13
|
Functional Domains and Evolutionary History of the PMEL and GPNMB Family Proteins. Molecules 2021; 26:molecules26123529. [PMID: 34207849 PMCID: PMC8273697 DOI: 10.3390/molecules26123529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
The ancient paralogs premelanosome protein (PMEL) and glycoprotein nonmetastatic melanoma protein B (GPNMB) have independently emerged as intriguing disease loci in recent years. Both proteins possess common functional domains and variants that cause a shared spectrum of overlapping phenotypes and disease associations: melanin-based pigmentation, cancer, neurodegenerative disease and glaucoma. Surprisingly, these proteins have yet to be shown to physically or genetically interact within the same cellular pathway. This juxtaposition inspired us to compare and contrast this family across a breadth of species to better understand the divergent evolutionary trajectories of two related, but distinct, genes. In this study, we investigated the evolutionary history of PMEL and GPNMB in clade-representative species and identified TMEM130 as the most ancient paralog of the family. By curating the functional domains in each paralog, we identified many commonalities dating back to the emergence of the gene family in basal metazoans. PMEL and GPNMB have gained functional domains since their divergence from TMEM130, including the core amyloid fragment (CAF) that is critical for the amyloid potential of PMEL. Additionally, the PMEL gene has acquired the enigmatic repeat domain (RPT), composed of a variable number of imperfect tandem repeats; this domain acts in an accessory role to control amyloid formation. Our analyses revealed the vast variability in sequence, length and repeat number in homologous RPT domains between craniates, even within the same taxonomic class. We hope that these analyses inspire further investigation into a gene family that is remarkable from the evolutionary, pathological and cell biology perspectives.
Collapse
|
14
|
Rudakou U, Yu E, Krohn L, Ruskey JA, Asayesh F, Dauvilliers Y, Spiegelman D, Greenbaum L, Fahn S, Waters CH, Dupré N, Rouleau GA, Hassin-Baer S, Fon EA, Alcalay RN, Gan-Or Z. Targeted sequencing of Parkinson's disease loci genes highlights SYT11, FGF20 and other associations. Brain 2021; 144:462-472. [PMID: 33349842 DOI: 10.1093/brain/awaa401] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous loci associated with Parkinson's disease. The specific genes and variants that drive the associations within the vast majority of these loci are unknown. We aimed to perform a comprehensive analysis of selected genes to determine the potential role of rare and common genetic variants within these loci. We fully sequenced 32 genes from 25 loci previously associated with Parkinson's disease in 2657 patients and 3647 controls from three cohorts. Capture was done using molecular inversion probes targeting the exons, exon-intron boundaries and untranslated regions (UTRs) of the genes of interest, followed by sequencing. Quality control was performed to include only high-quality variants. We examined the role of rare variants (minor allele frequency < 0.01) using optimized sequence Kernel association tests. The association of common variants was estimated using regression models adjusted for age, sex and ethnicity as required in each cohort, followed by a meta-analysis. After Bonferroni correction, we identified a burden of rare variants in SYT11, FGF20 and GCH1 associated with Parkinson's disease. Nominal associations were identified in 21 additional genes. Previous reports suggested that the SYT11 GWAS association is driven by variants in the nearby GBA gene. However, the association of SYT11 was mainly driven by a rare 3' UTR variant (rs945006601) and was independent of GBA variants (P = 5.23 × 10-5 after exclusion of all GBA variant carriers). The association of FGF20 was driven by a rare 5' UTR variant (rs1034608171) located in the promoter region. The previously reported association of GCH1 with Parkinson's disease is driven by rare non-synonymous variants, some of which are known to cause dopamine-responsive dystonia. We also identified two LRRK2 variants, p.Arg793Met and p.Gln1353Lys, in 10 and eight controls, respectively, but not in patients. We identified common variants associated with Parkinson's disease in MAPT, TMEM175, BST1, SNCA and GPNMB, which are all in strong linkage disequilibrium with known GWAS hits in their respective loci. A common coding PM20D1 variant, p.Ile149Val, was nominally associated with reduced risk of Parkinson's disease (odds ratio 0.73, 95% confidence interval 0.60-0.89, P = 1.161 × 10-3). This variant is not in linkage disequilibrium with the top GWAS hits within this locus and may represent a novel association. These results further demonstrate the importance of fine mapping of GWAS loci, and suggest that SYT11, FGF20, and potentially PM20D1, BST1 and GPNMB should be considered for future studies as possible Parkinson's disease-related genes.
Collapse
Affiliation(s)
- Uladzislau Rudakou
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Lynne Krohn
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Jennifer A Ruskey
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Farnaz Asayesh
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Yves Dauvilliers
- National Reference Center for Narcolepsy, Sleep Unit, Department of Neurology, Gui-de-Chauliac Hospital, CHU Montpellier, University of Montpellier, Inserm U1061, Montpellier, France
| | - Dan Spiegelman
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Stanley Fahn
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Cheryl H Waters
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Nicolas Dupré
- Division of Neurosciences, CHU de Québec, Université Laval, Québec City, QC, G1V 0A6, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Sharon Hassin-Baer
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| | - Roy N Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, QC, H3A 1A1, Canada.,Montreal Neurological Institute, McGill University, Montréal, QC, H3A 1A1, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, H3A 1A1, Canada
| |
Collapse
|
15
|
Han CL, Chen XR, Lan A, Hsu YL, Wu PS, Hung PF, Hung CL, Pan SH. N-glycosylated GPNMB ligand independently activates mutated EGFR signaling and promotes metastasis in NSCLC. Cancer Sci 2021; 112:1911-1923. [PMID: 33706413 PMCID: PMC8088973 DOI: 10.1111/cas.14872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide. As well as the identified role of epidermal growth factor receptor (EGFR), its association with driver mutations has improved the therapeutics for patients with lung cancer harboring EGFR mutations. These patients usually display shorter overall survival and a higher tendency to develop distant metastasis compared with those carrying the wild‐type EGFR. Nevertheless, the way to control mutated EGFR signaling remains unclear. Here, we performed membrane proteomic analysis to determine potential components that may act with EGFR mutations to promote lung cancer malignancy. Expression of transmembrane glycoprotein non‐metastatic melanoma protein B (GPNMB) was positively correlated with the status of mutated EGFR in non‐small‐cell lung cancer (NSCLC). This protein was not only overexpressed but also highly glycosylated in EGFR‐mutated, especially EGFR‐L858R mutated, NSCLC cells. Further examination showed that GPNMB could activate mutated EGFR without ligand stimulation and could bind to the C‐terminus of EGFR, assist phosphorylation at Y845, turn on downstream STAT3 signaling, and promote cancer metastasis. Moreover, we also found that Asn134 (N134) glycosylation of GPNMB played a crucial role in this ligand‐independent regulation. Depleting N134‐glycosylation on GPNMB could dramatically inhibit binding of GPNMB to mutated EGFR, blocking its downstream signaling, and ultimately inhibiting cancer metastasis in NSCLC. Clarifying the role of N‐glycosylated GPNMB in regulating the ligand‐independent activation of mutated EGFR may soon give new insight into the development of novel therapeutics for NSCLC.
Collapse
Affiliation(s)
- Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Albert Lan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ling Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Pei-Fang Hung
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Netanely D, Leibou S, Parikh R, Stern N, Vaknine H, Brenner R, Amar S, Factor RH, Perluk T, Frand J, Nizri E, Hershkovitz D, Zemser-Werner V, Levy C, Shamir R. Classification of node-positive melanomas into prognostic subgroups using keratin, immune, and melanogenesis expression patterns. Oncogene 2021; 40:1792-1805. [PMID: 33564068 PMCID: PMC7946641 DOI: 10.1038/s41388-021-01665-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/08/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023]
Abstract
Cutaneous melanoma tumors are heterogeneous and show diverse responses to treatment. Identification of robust molecular biomarkers for classifying melanoma tumors into clinically distinct and homogenous subtypes is crucial for improving the diagnosis and treatment of the disease. In this study, we present a classification of melanoma tumors into four subtypes with different survival profiles based on three distinct gene expression signatures: keratin, immune, and melanogenesis. The melanogenesis expression pattern includes several genes that are characteristic of the melanosome organelle and correlates with worse survival, suggesting the involvement of melanosomes in melanoma aggression. We experimentally validated the secretion of melanosomes into surrounding tissues by melanoma tumors, which potentially affects the lethality of metastasis. We propose a simple molecular decision tree classifier for predicting a tumor's subtype based on representative genes from the three identified signatures. Key predictor genes were experimentally validated on melanoma samples taken from patients with varying survival outcomes. Our three-pattern approach for classifying melanoma tumors can contribute to advancing the understanding of melanoma variability and promote accurate diagnosis, prognostication, and treatment.
Collapse
Affiliation(s)
- Dvir Netanely
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Stav Leibou
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Roma Parikh
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neta Stern
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Hananya Vaknine
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Ronen Brenner
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Sarah Amar
- Department of Oncology, Edith Wolfson Medical Center, Holon, Israel
| | - Rivi Haiat Factor
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Tomer Perluk
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Jacob Frand
- Department of Plastic and Reconstructive Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Eran Nizri
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Surgery A, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dov Hershkovitz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Feng X, Zhang L, Ke S, Liu T, Hao L, Zhao P, Tu W, Cang S. High expression of GPNMB indicates an unfavorable prognosis in glioma: Combination of data from the GEO and CGGA databases and validation in tissue microarray. Oncol Lett 2020; 20:2356-2368. [PMID: 32782553 PMCID: PMC7400985 DOI: 10.3892/ol.2020.11787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB), a transmembrane glycoprotein, has been reported to be involved in tumor progression, but its prognostic value for glioma and the mechanistic effects on glioma progression have not been clearly explored. The present study aimed to investigate the prognostic role of GPNMB in glioma and the potential mechanisms of how GPNMB mediates glioma progression. Differentially expressed genes between the four highest and four lowest GPNMB expression samples in the GSE53733 dataset were first determined. Gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and Gene set enrichment analysis results demonstrated that the significantly enriched pathways in samples with high GPNMB expression compared with those with low GPNMB expression were associated with hypoxia, angiogenesis, migration and invasion. Pearson correlation analysis was conducted to investigate the correlations between GPNMB expression and the markers of hypoxia, angiogenesis, migration and invasion in GSE53733, which were further validated using another mRNA microarray dataset from the Chinese Glioma Genome Atlas (CGGA). In addition, using the CGGA dataset, high GPNMB expression was demonstrated to be significantly associated with advanced WHO grade and short survival time in patients with glioma. Of note, based on the immunohistochemical staining of the tissue microarrays, Kaplan-Meier analysis with the Renyi test and a Cox proportional hazards model were used to validate the unfavorable prognostic role of high GPNMB expression in glioma. In conclusion, high GPNMB expression may be associated with high tumor grade and unfavorable prognosis in glioma. GPNMB expression was demonstrated to correlate with the markers of hypoxia, angiogenesis, migration and invasion, which may be potential mechanisms through which GPNMB mediates glioma progression.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Lina Zhang
- Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Shanbao Ke
- Department of Radiotherapy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Tao Liu
- Department of Radiotherapy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Liuwei Hao
- Department of Physical Examination and Health Management, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Pan Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| | - Wenzhi Tu
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, P.R. China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
18
|
Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: A key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J 2020; 34:8810-8823. [PMID: 32445534 DOI: 10.1096/fj.202000651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
The glycoprotein nonmetastatic melanoma protein B (GPNMB, also known as osteoactivin) is highly expressed in many cell types and regulates the homeostasis in various tissues. In different physiological contexts, it functions as a melanosome-associated protein, membrane-bound surface receptor, soluble ligand, or adhesion molecule. Therefore, GPNMB is involved in cell differentiation, migration, inflammation, metabolism, and neuroprotection. Because of its various involvement in different physiological conditions, GPNMB has been implicated in many diseases, including cancer, neurological disorders, and more recently immune-mediated diseases. This review summarizes the regulation and function of GPNMB in normal physiology, and discusses the involvement of GPNMB in disease conditions with a particular focus on its potential role and therapeutic implications in autoimmunity.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, Yang F, Iddamalgoda A, Katayama I, Inoue S. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep 2020; 10:4930. [PMID: 32188902 PMCID: PMC7080742 DOI: 10.1038/s41598-020-61931-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
GPNMB is involved in multiple cellular functions including cell adhesion, stress protection and stem cell maintenance. In skin, melanocyte-GPNMB is suggested to mediate pigmentation through melanosome formation, but details of keratinocyte-GPNMB have yet to be well understood. We confirmed the expression of GPNMB in normal human epidermal keratinocytes (NHEKs) by reducing the expression using siRNA. A higher calcium concentration of over 1.25 mM decreased the GPNMB expression. Histological staining showed that GPNMB was expressed in the basal layer of normal skins but completely absent in vitiligo skins. The normal expression of GPNMB in nevus depigmentosus skin suggested that lack of GPNMB is characteristic of vitiligo lesional skins. IFN-γ and IL-17A, two cytokines with possible causal roles in vitiligo development, inhibited GPNMB expression in vitro. Approximately 4–8% of the total GPNMB expressed on NHEKs were released possibly by ADAM 10 as a soluble form, but the process of release was not affected by the cytokines. The suppressive effect of IFN-γ on GPNMB was partially via IFN-γ/JAK2/STAT1 signaling axis. Decreased GPNMB expression in keratinocytes may affect melanocyte maintenance or survival against oxidative stress although further studies are needed. These findings indicate a new target for vitiligo treatment, focusing on the novel role of IFN-γ and IL-17 in downregulating keratinocyte-GPNMB.
Collapse
Affiliation(s)
- Kazal Boron Biswas
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Aya Takahashi
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Yukiko Mizutani
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Satoru Takayama
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Asako Ishitsuka
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan
| | - Lingli Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Fei Yang
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan
| | - Arunasiri Iddamalgoda
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.,Department of Research and Development, Ichimaru Pharcos Co. Ltd., Motosu, Gifu, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University School of Medicine, Osaka, Japan.
| | - Shintaro Inoue
- Department of Cosmetic Health Science, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
20
|
Xie R, Okita Y, Ichikawa Y, Fikry MA, Huynh Dam KT, Tran STP, Kato M. Role of the kringle-like domain in glycoprotein NMB for its tumorigenic potential. Cancer Sci 2019; 110:2237-2246. [PMID: 31127873 PMCID: PMC6609797 DOI: 10.1111/cas.14076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Glycoprotein NMB (GPNMB) is highly expressed in many types of malignant tumors and thought to be a poor prognostic factor in those cancers, including breast cancer. Glycoprotein NMB is a type IA transmembrane protein that has a long extracellular domain (ECD) and a short intracellular domain (ICD). In general, the ECD of a protein is involved in protein‐protein or protein‐carbohydrate interactions, whereas the ICD is important for intracellular signaling. We previously reported that GPNMB contributes to the initiation and malignant progression of breast cancer through the hemi‐immunoreceptor tyrosine‐based activation motif (hemITAM) in its ICD. Furthermore, we showed that the tyrosine residue in hemITAM is involved in induction of the stem‐like properties of breast cancer cells. However, the contribution of the ECD to its tumorigenic function has yet to be fully elucidated. In this study, we focused on the region, the so‐called kringle‐like domain (KLD), that is conserved among species, and made a deletion mutant, GPNMB(ΔKLD). Enhanced expression of WT GPNMB induced sphere and tumor formation in breast epithelial cells; in contrast, GPNMB(ΔKLD) lacked these activities without affecting its molecular properties, such as subcellular localization, Src‐induced tyrosine phosphorylation at least in overexpression experiments, and homo‐oligomerization. Additionally, GPNMB(ΔKLD) lost its cell migration promoting activity, even though it reduced E‐cadherin expression. Although the interaction partner binding to KLD has not yet been identified, we found that the KLD of GPNMB plays an important role in its tumorigenic potential.
Collapse
Affiliation(s)
- Rudy Xie
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yukari Okita
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Yumu Ichikawa
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Muhammad Ali Fikry
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kim Tuyen Huynh Dam
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sophie Thi PhuongDung Tran
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Division of Cell Dynamics, Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell C, Shendure J. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019; 566:496-502. [PMID: 30787437 PMCID: PMC6434952 DOI: 10.1038/s41586-019-0969-x] [Citation(s) in RCA: 1965] [Impact Index Per Article: 393.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Mammalian organogenesis is a remarkable process. Within a short timeframe, the cells of the three germ layers transform into an embryo that includes most of the major internal and external organs. Here we investigate the transcriptional dynamics of mouse organogenesis at single-cell resolution. Using single-cell combinatorial indexing, we profiled the transcriptomes of around 2 million cells derived from 61 embryos staged between 9.5 and 13.5 days of gestation, in a single experiment. The resulting 'mouse organogenesis cell atlas' (MOCA) provides a global view of developmental processes during this critical window. We use Monocle 3 to identify hundreds of cell types and 56 trajectories, many of which are detected only because of the depth of cellular coverage, and collectively define thousands of corresponding marker genes. We explore the dynamics of gene expression within cell types and trajectories over time, including focused analyses of the apical ectodermal ridge, limb mesenchyme and skeletal muscle.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Computer Science, University of Washington, Seattle, WA, USA
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
22
|
van der Lienden MJC, Gaspar P, Boot R, Aerts JMFG, van Eijk M. Glycoprotein Non-Metastatic Protein B: An Emerging Biomarker for Lysosomal Dysfunction in Macrophages. Int J Mol Sci 2018; 20:E66. [PMID: 30586924 PMCID: PMC6337583 DOI: 10.3390/ijms20010066] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several diseases are caused by inherited defects in lysosomes, the so-called lysosomal storage disorders (LSDs). In some of these LSDs, tissue macrophages transform into prominent storage cells, as is the case in Gaucher disease. Here, macrophages become the characteristic Gaucher cells filled with lysosomes laden with glucosylceramide, because of their impaired enzymatic degradation. Biomarkers of Gaucher cells were actively searched, particularly after the development of costly therapies based on enzyme supplementation and substrate reduction. Proteins selectively expressed by storage macrophages and secreted into the circulation were identified, among which glycoprotein non-metastatic protein B (GPNMB). This review focusses on the emerging potential of GPNMB as a biomarker of stressed macrophages in LSDs as well as in acquired pathologies accompanied by an excessive lysosomal substrate load in macrophages.
Collapse
Affiliation(s)
| | - Paulo Gaspar
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Rolf Boot
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| | - Marco van Eijk
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
23
|
Feather follicles transcriptome profiles in Bashang long-tailed chickens with different plumage colors. Genes Genomics 2018; 41:1357-1367. [PMID: 30229509 DOI: 10.1007/s13258-018-0740-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/01/2018] [Indexed: 01/05/2023]
Abstract
Despite the rich variety in plumage color found in nature, genetic studies on how feather follicles affect pigmentation are often limited to animals that have black and white pigment. To test how gene expression influences plumage color, transcriptomes of chicken feather follicles with white, black, hemp, reed catkins, silvery grey, and landscape plumage colors were generated using Illumina sequencing. We generated six RNA-Seq libraries with over 25 million paired-end clean reads per library with percentage of paired-end clean reads ranging from 96.73 to 96.98%. 78% of the reads mapped to the chicken genome, and approximately 70% of the reads were mapped to exons and 6% mapped to introns. Transcriptomes of feather follicles producing hemp and land plumage were similar, but these two showed moderate differences compared with gray and reed colored plumage. The black and white follicle transcriptomes were most divergent from the other colors. We identified several candidate genes, including GPNMB, PMEL, TYRP1, GPR143, OCA2, SOX10, SLC45A2, KRT75, and TYR. All of these genes are known to induce pigment formation in mice. White feathers result from the lack of pigment formation, and our results suggest that the white chickens due to the recessive insertion mutation of TYR. The formation of black area size and color depth may be due to the expression levels of GPNMB, PMEL, TYRP1, GPR143, OCA2, SOX10, SLC45A2, KRT75, and TYR. The GO analysis of the differentially expressed genes (DEGs) revealed that DEGs in our transcriptome analysis were enriched in cytoskeleton and cell structure related pathways. The black plumage transcriptome showed significant differences in melanogenesis, tyrosine metabolism, and riboflavin metabolism compared with transcriptomes of other plumage colors. The transcriptome profiles of the different chicken plumage colors provide a valuable resource to understand how gene expression influences plumage color, and will be an important resource for identifying candidate genes in breeding programs.
Collapse
|
24
|
Taya M, Hammes SR. Glycoprotein Non-Metastatic Melanoma Protein B (GPNMB) and Cancer: A Novel Potential Therapeutic Target. Steroids 2018; 133:102-107. [PMID: 29097143 PMCID: PMC6166407 DOI: 10.1016/j.steroids.2017.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a transmembrane protein enriched on the cell surface of cancer cells, including melanoma, glioblastoma, and triple-negative breast cancer. There is growing evidence identifying GPNMB as a tumor-promoter; however, despite its biological and clinical significance, the molecular mechanisms engaged by GPNMB to promote tumorigenesis are not well understood. GPNMB promotes aggressive behaviors such as tumor cell proliferation, migration, and invasion. The extracellular domain of GPNMB shed from the cell surface interacts with integrins to facilitate in the recruitment of immune-suppressive and pro-angiogenic cells to the tumor microenvironment, thereby enhancing tumor migration and invasion. GPNMB also modulates receptor tyrosine kinases and integrin signaling in a cell autonomous fashion, leading to downstream kinase signaling that in turn triggers the expression and secretion of tumorigenic factors such as matrix metalloproteinases (MMPs) and cytokines. Therefore, GPNMB exerts its pro-tumorigenic role both intracellularly and in a paracrine fashion through shedding its extracellular domain. This review highlights the importance of GPNMB in cancer progression and discusses molecular mediators of GPNMB-induced tumor growth and invasion.
Collapse
Affiliation(s)
- Manisha Taya
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | - Stephen R Hammes
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
25
|
Yang CF, Lin SP, Chiang CP, Wu YH, H'ng WS, Chang CP, Chen YT, Wu JY. Loss of GPNMB Causes Autosomal-Recessive Amyloidosis Cutis Dyschromica in Humans. Am J Hum Genet 2018; 102:219-232. [PMID: 29336782 DOI: 10.1016/j.ajhg.2017.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 11/29/2022] Open
Abstract
Amyloidosis cutis dyschromica (ACD) is a distinct form of primary cutaneous amyloidosis characterized by generalized hyperpigmentation mottled with small hypopigmented macules on the trunks and limbs. Affected families and sporadic case subjects have been reported predominantly in East and Southeast Asian ethnicities; however, the genetic cause has not been elucidated. We report here that the compound heterozygosity or homozygosity of GPNMB truncating alleles is the cause of autosomal-recessive ACD. Six nonsense or frameshift mutations were identified in nine individuals diagnosed with ACD. Immunofluorescence analysis of skin biopsies showed that GPNMB is expressed in all epidermal cells, with the highest staining observed in melanocytes. GPNMB staining is significantly reduced in the lesional skin of affected individuals. Hyperpigmented lesions exhibited significantly increased amounts of DNA/keratin-positive amyloid deposits in the papillary dermis and infiltrating macrophages compared with hypo- or depigmented macules. Depigmentation of the lesions was attributable to loss of melanocytes. Intracytoplasmic fibrillary aggregates were observed in keratinocytes scattered in the lesional epidermis. Thus, our analysis indicates that loss of GPNMB, which has been implicated in melanosome formation, autophagy, phagocytosis, tissue repair, and negative regulation of inflammation, underlies autosomal-recessive ACD and provides insights into the etiology of amyloidosis and pigment dyschromia.
Collapse
Affiliation(s)
- Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shuan-Pei Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Pediatrics, MacKay Memorial Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chien-Ping Chiang
- Departments of Dermatology, Tri-Service General Hospital, Taipei 114, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Hung Wu
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; Department of Dermatology, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Weng Siong H'ng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ping Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
26
|
Guffroy M, Falahatpisheh H, Finkelstein M. Improving the Safety Profile of ADCs. CANCER DRUG DISCOVERY AND DEVELOPMENT 2018. [DOI: 10.1007/978-3-319-78154-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther 2017; 179:127-141. [PMID: 28546082 DOI: 10.1016/j.pharmthera.2017.05.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GPNMB has emerged as an immunomodulator and an important positive mediator of tumor progression and metastasis in numerous solid cancers. Tumor intrinsic GPNMB-mediated effects on cellular signaling, coupled with the ability of GPNMB to influence the primary tumor and metastatic microenvironments in a non-cell autonomous fashion, combine to augment malignant cancer phenotypes. In addition, GPNMB is often overexpressed in a variety of cancers, making it an attractive therapeutic target. In this regard, glembatumumab vedotin, an antibody-drug conjugate (ADC) that targets GPNMB, is currently in clinical trials as a single agent in multiple cancers. In this review, we will describe the physiological functions of GPNMB in normal tissues and summarize the processes through which GPNMB augments tumor growth and metastasis. We will review the pre-clinical and clinical development of glembatumumab vedotin, evaluate on-going clinical trials, explore emerging opportunities for this agent in new disease indications and discuss exciting possibilities for this ADC in the context of combination therapies.
Collapse
Affiliation(s)
- April A N Rose
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Marco Biondini
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Biochemistry, McGill University, Montréal, Québec, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada; Department of Oncology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
28
|
Heine A, Held SAE, Schulte-Schrepping J, Wolff JFA, Klee K, Ulas T, Schmacke NA, Daecke SN, Riethausen K, Schultze JL, Brossart P. Generation and functional characterization of MDSC-like cells. Oncoimmunology 2017; 6:e1295203. [PMID: 28507805 DOI: 10.1080/2162402x.2017.1295203] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are critical in regulating immune responses by suppressing antigen presenting cells (APC) and T cells. We previously observed that incubation of peripheral blood monocytes with interleukin (IL)-10 during their differentiation to monocyte-derived dendritic cells (moDCs) results in the generation of an APC population with a CD14+HLA-DRlowphenotype (IL-10-APC) with reduced stimulatory capacity similar to human MDSC. Co-incubation experiments now revealed that the addition of IL-10-APC to moDC caused a reduction of DC-induced T-cell proliferation, of the expression of maturation markers, and of secreted cytokines and chemokines such as TNF-α, IL-6, MIP-1α and Rantes. Addition of IL-10-APC increased the immunosuppressive molecule osteoactivin and its corresponding receptor syndecan-4 on moDC. Moreover, CD14+HLA-DRlow MDSC isolated from healthy donors expressed high levels of osteoactivin, which was even further upregulated by the auxiliary addition of IL-10. Using transcriptome analysis, we identified a set of molecules and pathways mediating these effects. In addition, we found that IL-10-APC as well as human isolated MDSC expressed higher levels of programmed death (PD)-1, PD-ligand-1 (PD-L1), glucocorticoid-induced-tumor-necrosis-factor-receptor-related-protein (GITR) and GITR-ligand. Inhibition of osteoactivin, syndecan-4, PD-1 or PD-L1 on MDSC by using blocking antibodies restored the stimulatory capacity of DC in co-incubation experiments. Activation of MDSC with Dectin-1 ligand curdlan reduced the expression of osteoactivin and PD-L1. Our results demonstrate that osteoactivin/syndecan-4 and PD-/PD-L1 are key molecules that are profoundly involved in the inhibitory effects of MDSC on DC function and might be promising tools for clinical application.
Collapse
Affiliation(s)
- Annkristin Heine
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | | | | | | | - Kathrin Klee
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | - Thomas Ulas
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany
| | | | - Solveig Nora Daecke
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Kati Riethausen
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, Bonn, Germany.,Platform for Single Cell Genomics and Epigenomics (PRECISE) at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Bonn, Germany
| | - Peter Brossart
- Medical Clinic III for Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
29
|
Abstract
Antibody drug conjugates (ADCs) constitute a family of cancer therapeutics designed to preferentially direct a cytotoxic drug to cells expressing a cell-surface antigen recognized by an antibody. The antibody and drug are linked through chemistries that enable release of the cytotoxic drug or drug adduct upon internalization and digestion of the ADC by the cell. Over 40 distinct ADCs, targeting an array of antigens and utilizing a variety of drugs and linkers, are undergoing clinical evaluation. This review primarily covers ADCs that have advanced to clinical investigation with a particular emphasis on how the individual targets, linker chemistries, and appended drugs influence their behavior.
Collapse
Affiliation(s)
- Paul Polakis
- Department of Molecular Oncology, Genentech, South San Francisco, California
| |
Collapse
|
30
|
Blango MG, Bass BL. Identification of the long, edited dsRNAome of LPS-stimulated immune cells. Genome Res 2016; 26:852-62. [PMID: 27197207 PMCID: PMC4889969 DOI: 10.1101/gr.203992.116] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/18/2016] [Indexed: 12/31/2022]
Abstract
Endogenous double-stranded RNA (dsRNA) must be intricately regulated in mammals to prevent aberrant activation of host inflammatory pathways by cytosolic dsRNA binding proteins. Here, we define the long, endogenous dsRNA repertoire in mammalian macrophages and monocytes during the inflammatory response to bacterial lipopolysaccharide. Hyperediting by adenosine deaminases that act on RNA (ADAR) enzymes was quantified over time using RNA-seq data from activated mouse macrophages to identify 342 Editing Enriched Regions (EERs), indicative of highly structured dsRNA. Analysis of publicly available data sets for samples of human peripheral blood monocytes resulted in discovery of 3438 EERs in the human transcriptome. Human EERs had predicted secondary structures that were significantly more stable than those of mouse EERs and were located primarily in introns, whereas nearly all mouse EERs were in 3' UTRs. Seventy-four mouse EER-associated genes contained an EER in the orthologous human gene, although nucleotide sequence and position were only rarely conserved. Among these conserved EER-associated genes were several TNF alpha-signaling genes, including Sppl2a and Tnfrsf1b, important for processing and recognition of TNF alpha, respectively. Using publicly available data and experimental validation, we found that a significant proportion of EERs accumulated in the nucleus, a strategy that may prevent aberrant activation of proinflammatory cascades in the cytoplasm. The observation of many ADAR-edited dsRNAs in mammalian immune cells, a subset of which are in orthologous genes of mouse and human, suggests a conserved role for these structured regions.
Collapse
Affiliation(s)
- Matthew G Blango
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
31
|
Prizant H, Taya M, Lerman I, Light A, Sen A, Mitra S, Foster TH, Hammes SR. Estrogen maintains myometrial tumors in a lymphangioleiomyomatosis model. Endocr Relat Cancer 2016; 23:265-80. [PMID: 26880751 PMCID: PMC4992946 DOI: 10.1530/erc-15-0505] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease in women. Patients with LAM develop metastatic smooth-muscle cell adenomas within the lungs, resulting in reduced pulmonary function. LAM cells contain mutations in tuberous sclerosis genes (TSC1 or TSC2), leading to up-regulation of mTORC1 activity and elevated proliferation. The origin of LAM cells remains unknown; however, inactivation of Tsc2 gene in the mouse uterus resulted in myometrial tumors exhibiting LAM features, and approximately 50% of animals developed metastatic myometrial lung tumors. This suggests that LAM tumors might originate from the uterine myometrium, possibly explaining the overwhelming prevalence of LAM in female. Here, we demonstrate that mouse Tsc2-null myometrial tumors exhibit nearly all the features of LAM, including mTORC1/S6K activation, as well as expression of melanocytic markers and matrix metalloproteinases (MMPs). Estrogen ablation reduces S6K signaling and results in Tsc2-null myometrial tumor regression. Thus, even without TSC2, estradiol is required to maintain tumors and mTORC1/S6K signaling. Additionally, we find that MMP-2 and -9, as well as neutrophil elastase (NE), are overexpressed in Tsc2-null myometrial tumors in an estrogen-dependent fashion. In vivo fluorescent imaging using MMP- or NE-sensitive optical biomarkers confirms that protease activity is specific to myometrial tumors. Similar to LAM cells, uterine Tsc2-null myometrial cells also overexpress melanocytic markers in an estrogen-dependent fashion. Finally, we identify glycoprotein NMB (GPNMB) as a melanocytic marker up-regulated in Tsc2-null mouse uteri and human LAM samples. Our data highlight the potential importance of estradiol in LAM cells, suggesting that anti-estrogen therapy may be a treatment modality. Furthermore, proteases and GPNMB might be useful LAM biomarkers.
Collapse
Affiliation(s)
- Hen Prizant
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Manisha Taya
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irina Lerman
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Allison Light
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Aritro Sen
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Soumya Mitra
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Thomas H Foster
- Department of Imaging SciencesUniversity of Rochester Medical Center, Rochester, New York, USA
| | - Stephen R Hammes
- Division of Endocrinology and MetabolismDepartment of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
32
|
Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep 2016; 6:23241. [PMID: 26988030 PMCID: PMC4796790 DOI: 10.1038/srep23241] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Glycoprotein nonmetastatic melanoma protein B (GPNMB) plays important roles in various types of cancer and amyotrophic lateral sclerosis (ALS). The details of GPNMB function and its interacting protein have not been clarified. Therefore, to identify GPNMB binding partners on the cell membrane, we used membrane protein library/BLOTCHIP-MS technology, which enables us to analyze all cell membrane proteins as binding partners of the GPNMB extracellular fragment. As a result of a comprehensive search, we identified the alpha subunits of Na(+)/K(+)-ATPase (NKA) as a possible binding partner. We confirmed the interaction between the GPNMB extracellular fragment and NKA by immunoprecipitation and immunostaining in NSC-34 cells. Indeed, endogenous GPNMB extracellular fragment bound to and colocalized with NKA alpha subunits. Furthermore, exogenous GPNMB extracellular fragment, i.e., human recombinant GPNMB, also bound to and colocalized with NKA alpha subunits. Additionally, we found that the GPNMB extracellular fragment had neuroprotective effects and activated the phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathways via NKA. These findings indicated that NKA may act as a novel "receptor" for the GPNMB extracellular fragment, offering additional molecular targets for the treatment of GPNMB-related diseases, including various types of cancer and ALS.
Collapse
|
33
|
Arosarena OA, Dela Cadena RA, Denny MF, Bryant E, Barr EW, Thorpe R, Safadi FF. Osteoactivin Promotes Migration of Oral Squamous Cell Carcinomas. J Cell Physiol 2016; 231:1761-70. [PMID: 26636434 DOI: 10.1002/jcp.25279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/26/2022]
Abstract
Nearly 50% of patients with oral squamous cell carcinoma (OSCC) die of metastases or locoregional recurrence. Metastasis is mediated by cancer cell adhesion, migration, and invasion. Osteoactivin (OA) overexpression plays a role in metastases in several malignancies. The aims were to determine how integrin interactions modulate OA-induced OSCC cell migration; and to investigate OA effects on cell survival and proliferation. We confirmed OA mRNA and protein overexpression in OSCC cell lines. We assessed OA's interactions with integrins using adhesion inhibition assays, fluorescent immunocytochemistry and co-immunoprecipitation. We investigated OA-mediated activation of mitogen-activated protein kinases (MAPKs) and cell survival. Integrin inhibition effects on OA-mediated cell migration were determined. We assessed effects of OA knock-down on cell migration and proliferation. OA is overexpressed in OSCC cell lines, and serves as a migration-promoting adhesion molecule. OA co-localized with integrin subunits, and co-immunoprecipitated with the subunits. Integrin blocking antibodies, especially those directed against the β1 subunit, inhibited cell adhesion (P = 0.03 for SCC15 cells). Adhesion to OA activated MAPKs in UMSCC14a cells and OA treatment promoted survival of SCC15 cells. Integrin-neutralizing antibodies enhanced cell migration with OA in the extracellular matrix. OA knock-down resulted in decreased proliferation of SCC15 and SCC25 cells, but did not inhibit cell migration. OA in the extracellular matrix promotes OSCC cell adhesion and migration, and may be a novel target in the prevention of HNSCC spread. J. Cell. Physiol. 231: 1761-1770, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Oneida A Arosarena
- Department of Otolaryngology-Head and Neck Surgery, Temple University School of Medicine, Philadelphia, Pennsylvania.,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Raul A Dela Cadena
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania.,Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Michael F Denny
- Department of Medicine, Section of Rheumatology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Evan Bryant
- Pennsylvania State University, University Park, Pennsylvania
| | - Eric W Barr
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ryan Thorpe
- Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
34
|
Roth M, Barris DM, Piperdi S, Kuo V, Everts S, Geller D, Houghton P, Kolb EA, Hawthorne T, Gill J, Gorlick R. Targeting Glycoprotein NMB With Antibody-Drug Conjugate, Glembatumumab Vedotin, for the Treatment of Osteosarcoma. Pediatr Blood Cancer 2016; 63:32-8. [PMID: 26305408 DOI: 10.1002/pbc.25688] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/08/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cure rates for children and young adults with osteosarcoma have remained stagnant over the past three decades. Targeting glycoprotein non-metastatic b (GPNMB) with the antibody-drug conjugate glembatumumab vedotin has improved outcomes for patients with melanoma and breast cancer. The potential utility of targeting GPNMB in osteosarcoma was explored. METHODS GPNMB protein expression was evaluated by immunohistochemistry in human osteosarcoma tumor samples and by enzyme-linked immunosorbent assay (ELISA) in osteosarcoma cell lines. mRNA expression was measured by quantitative PCR in primary osteosarcoma samples and cell lines. Surface GPNMB expression was evaluated by flow cytometry and correlated with in vitro and in vivo cytotoxicity of glembatumumab vedotin. RESULTS Sixty seven human osteosarcoma samples were evaluated by immunohistochemistry, including 12 samples from initial biopsy, 38 samples from definitive surgery, and 17 from the time of disease recurrence. GPNMB was expressed in 92.5% (62/67) of osteosarcoma samples. All primary osteosarcoma samples expressed high levels of GPNMB mRNA. Glembatumumab induced cytotoxic effects in 74% (14/19) of osteosarcoma cell lines, and GPNMB protein levels correlated with glembatumumab in vitro cytotoxicity (r = -0.46, P = 0.04). All osteosarcoma cell lines demonstrated surface GPNMB expression. CONCLUSIONS GPNMB is expressed in osteosarcoma and targeting GPNMB with the antibody-drug conjugate glembatumumab vedotin demonstrates osteosarcoma cytotoxic activity. Clinical trials are indicated to assess the efficacy of targeting GPNMB in patients with osteosarcoma.
Collapse
Affiliation(s)
- Michael Roth
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - David M Barris
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Sajida Piperdi
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Vicky Kuo
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Stephanie Everts
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - David Geller
- Department of Orthopaedic Surgery, Montefiore Medical Center and the Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Peter Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, Texas
| | - E Anders Kolb
- Division of Pediatric Hematology/Oncology, A.I. duPont Hospital for Children, Wilmington, Delaware
| | | | - Jonathan Gill
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York
| | - Richard Gorlick
- Division of Pediatric Hematology/Oncology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York.,Department of Pediatrics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
35
|
Geier B, Kurmashev D, Kurmasheva RT, Houghton PJ. Preclinical Childhood Sarcoma Models: Drug Efficacy Biomarker Identification and Validation. Front Oncol 2015; 5:193. [PMID: 26380223 PMCID: PMC4549564 DOI: 10.3389/fonc.2015.00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Over the past 35 years, cure rates for pediatric cancers have increased dramatically. However, it is clear that further dose intensification using cytotoxic agents or radiation therapy is not possible without enhancing morbidity and long-term effects. Consequently, novel, less genotoxic, agents are being sought to complement existing treatments. Here, we discuss preclinical human tumor xenograft models of pediatric cancers that may be used practically to identify novel agents for soft tissue and bone sarcomas, and "omics" approaches to identifying biomarkers that may identify sensitive and resistant tumors to these agents.
Collapse
Affiliation(s)
- Brian Geier
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
36
|
Vaklavas C, Forero A. Management of metastatic breast cancer with second-generation antibody-drug conjugates: focus on glembatumumab vedotin (CDX-011, CR011-vcMMAE). BioDrugs 2015; 28:253-63. [PMID: 24496926 DOI: 10.1007/s40259-014-0085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Exploiting the highly targeted nature of monoclonal antibodies to deliver selectively to tumor cells a cytotoxic payload is an attractive concept and the successful precedents of the recent past set the stage for broader applications in the future. Antibody-drug conjugates may currently hold an unprecedented potential; however, there are multiple unique challenges in their development, and the recent successes have come hand in hand with significant technologic advances in their chemistry and manufacturing. Over the years, multiple factors have been identified to affect the pharmacokinetic and pharmacodynamic properties of an antibody-drug conjugate, but many important details remain to be further investigated. These factors pertain to the target antigen, antibody, conjugate, linker, as well as the nature of the malignancy under treatment. Glembatumumab vedotin is an antibody-drug conjugate targeting glycoprotein non-metastatic B (GPNMB) expressed in multiple malignancies, including breast cancer. The expression of this protein has been associated with an aggressive malignant phenotype, invasive growth, angiogenesis, and generation of skeletal metastases. Glembatumumab vedotin is currently in early stages of clinical development in melanoma and breast cancer. Although in unselected patients with metastatic breast cancer glembatumumab vedotin was not superior to other agents, by virtue of its target being frequently and highly expressed in triple-negative breast cancer, its activity was particularly promising in this subset of patients. Results from the clinical studies in breast cancer as well as companion studies in melanoma indicate that a biomarker-informed approach is the optimal pathway for the future development of this drug.
Collapse
Affiliation(s)
- Christos Vaklavas
- Division of Hematology/Clinical Oncology, Department of Medicine, Comprehensive Cancer Center, University of Alabama at Birmingham, NP 2540M, 1802 6th Avenue South, Birmingham, AL, 35294-3300, USA,
| | | |
Collapse
|
37
|
GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis. Oncogene 2015; 34:5494-504. [PMID: 25772243 DOI: 10.1038/onc.2015.8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/17/2022]
Abstract
Glycoprotein nmb (GPNMB) promotes breast tumor growth and metastasis and its expression in tumor epithelium correlates with poor prognosis in breast cancer patients. Despite its biological and clinical significance, little is known regarding the molecular mechanisms engaged by GPNMB. Herein, we show that GPNMB engages distinct functional domains and mechanisms to promote primary tumor growth and metastasis. We demonstrate that neuropilin-1 (NRP-1) expression is increased in breast cancer cells that overexpress GPNMB. Interestingly, the GPNMB-driven increase in NRP-1 expression potentiated vascular endothelial growth factor signaling in breast cancer cells and was required for the growth, but not metastasis, of these cells in vivo. Interrogation of RNAseq data sets revealed a positive correlation between GPNMB and NRP-1 levels in human breast tumors. Furthermore, we ascribe pro-growth and pro-metastatic functions of GPNMB to its ability to bind α5β1 integrin and increase downstream signaling in breast cancer cells. We show that GPNMB enhances breast cancer cell adhesion to fibronectin, increases α5β1 expression and associates with this receptor through its RGD motif. GPNMB recruitment into integrin complexes activates Src and Fak signaling pathways in an RGD-dependent manner. Importantly, both the RGD motif and cytoplasmic tail of GPNMB are required to promote primary mammary tumor growth; however, only mutation of the RGD motif impaired the formation of lung metastases. Together, these findings identify novel and distinct molecular mediators of GPNMB-induced breast cancer growth and metastasis.
Collapse
|
38
|
Furuya M, Hong SB, Tanaka R, Kuroda N, Nagashima Y, Nagahama K, Suyama T, Yao M, Nakatani Y. Distinctive expression patterns of glycoprotein non-metastatic B and folliculin in renal tumors in patients with Birt-Hogg-Dubé syndrome. Cancer Sci 2015; 106:315-23. [PMID: 25594584 PMCID: PMC4376441 DOI: 10.1111/cas.12601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/10/2014] [Accepted: 12/24/2014] [Indexed: 12/27/2022] Open
Abstract
Birt–Hogg–Dubé syndrome (BHD) is an inherited disorder associated with a germline mutation of the folliculin gene (FLCN). The affected families have a high risk for developing multiple renal cell carcinomas (RCC). Diagnostic markers that distinguish between FLCN-related RCC and sporadic RCC have not been investigated, and many patients with undiagnosed BHD fail to receive proper medical care. We investigated the histopathology of 27 RCCs obtained from 18 BHD patients who were diagnosed by genetic testing. Possible somatic mutations of RCC lesions were investigated by DNA sequencing. Western blotting and immunohistochemical staining were used to compare the expression levels of FLCN and glycoprotein non-metastatic B (GPNMB) between FLCN-related RCCs and sporadic renal tumors (n = 62). The expression of GPNMB was also evaluated by quantitative RT-PCR. Histopathological analysis revealed that the most frequent histological type was chromophobe RCC (n = 12), followed by hybrid oncocytic/chromophobe tumor (n = 6). Somatic mutation analysis revealed small intragenic mutations in six cases and loss of heterozygosity in two cases. Western blot and immunostaining analyses revealed that FLCN-related RCCs showed overexpression of GPNMB and underexpression of FLCN, whereas sporadic tumors showed inverted patterns. GPNMB mRNA in FLCN-related RCCs was 23-fold more abundant than in sporadic tumors. The distinctive expression patterns of GPNMB and FLCN might identify patients with RCCs who need further work-up for BHD.
Collapse
Affiliation(s)
- Mitsuko Furuya
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gan-Or Z, Dion PA, Rouleau GA. Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy 2015; 11:1443-57. [PMID: 26207393 PMCID: PMC4590678 DOI: 10.1080/15548627.2015.1067364] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 02/09/2023] Open
Abstract
Parkinson disease (PD), once considered as a prototype of a sporadic disease, is now known to be considerably affected by various genetic factors, which interact with environmental factors and the normal process of aging, leading to PD. Large studies determined that the hereditary component of PD is at least 27%, and in some populations, single genetic factors are responsible for more than 33% of PD patients. Interestingly, many of these genetic factors, such as LRRK2, GBA, SMPD1, SNCA, PARK2, PINK1, PARK7, SCARB2, and others, are involved in the autophagy-lysosome pathway (ALP). Some of these genes encode lysosomal enzymes, whereas others correspond to proteins that are involved in transport to the lysosome, mitophagy, or other autophagic-related functions. Is it possible that all these factors converge into a single pathway that causes PD? In this review, we will discuss these genetic findings and the role of the ALP in the pathogenesis of PD and will try to answer this question. We will suggest a novel hypothesis for the pathogenic mechanism of PD that involves the lysosome and the different autophagy pathways.
Collapse
Affiliation(s)
- Ziv Gan-Or
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
| | - Patrick A Dion
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
- The Department of Neurology & Neurosurgery; McGill University; Montreal, QC Canada
| | - Guy A Rouleau
- The Department of Human Genetics; McGill University; Montreal, QC Canada
- Montreal Neurological Institute; McGill University; Montreal, QC Canada
- The Department of Neurology & Neurosurgery; McGill University; Montreal, QC Canada
| |
Collapse
|
40
|
Kolb EA, Gorlick R, Billups CA, Hawthorne T, Kurmasheva RT, Houghton PJ, Smith MA. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr Blood Cancer 2014; 61:1816-21. [PMID: 24912408 PMCID: PMC4280502 DOI: 10.1002/pbc.25099] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND Glembatumumab vedotin is an antibody-auristatin conjugate that targets cells expressing the transmembrane glycoprotein NMB (GPNMB, also known as osteoactivin). It has entered clinical evaluation for adult cancers that express GPNMB, including melanoma and breast cancer. PROCEDURES Glembatumumab vedotin was administered intravenously at a dose of 2.5 mg/kg using a weekly × 3 schedule, and its antitumor activity was evaluated against selected Pediatric Preclinical Testing Program (PPTP) solid tumor xenografts using standard PPTP response metrics. RESULTS Among PPTP xenografts, GPNMB was primarily expressed on the osteosarcoma xenografts, all of which expressed GPNMB at the RNA level, although at varying levels. Protein expression assessed by immunohistochemistry (IHC) showed variation across the osteosarcoma xenografts with one model showing no tumor cell expression. Glembatumumab vedotin induced statistically significant differences (P < 0.05) in event-free survival (EFS) distribution compared to control in each of the six osteosarcoma models studied. Three of six osteosarcoma xenografts demonstrated a maintained complete response (MCR). Two other xenografts showed progressive disease with growth delay, while the final xenograft showed progressive disease with no growth delay. Two of the osteosarcoma xenografts with MCRs showed the highest GPNMB expression at the RNA level. Conversely, the xenograft with the lowest GPNMB mRNA expression had the poorest response to glembatumumab vedotin. Two rhabdomyosarcoma xenografts that did not express GPNMB showed limited responses to glembatumumab vedotin. CONCLUSIONS Glembatumumab vedotin yielded high-level activity against three of six osteosarcoma xenografts, with evidence for response being related to GPNMB expression levels.
Collapse
|
41
|
Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, Simantov R, Crowley E, Green JA, Hawthorne T, Davis TA, Sznol M, Hwu P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 2014; 32:3659-66. [PMID: 25267741 DOI: 10.1200/jco.2013.54.8115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The antibody-drug conjugate glembatumumab vedotin links a fully human immunoglobulin G2 monoclonal antibody against the melanoma-related glycoprotein NMB (gpNMB) to the potent cytotoxin monomethyl auristatin E. This study evaluated the safety and activity of glembatumumab vedotin in patients with advanced melanoma. PATIENTS AND METHODS Patients received glembatumumab vedotin every 3 weeks (schedule 1) in a dose escalation and phase II expansion at the maximum-tolerated dose (MTD). Dosing during 2 of 3 weeks (schedule 2) and weekly (schedule 3) was also assessed. The primary end points were safety and pharmacokinetics. The secondary end points included antitumor activity, gpNMB expression, and immunogenicity. RESULTS One hundred seventeen patients were treated using schedule 1 (n = 79), schedule 2 (n = 15), or schedule 3 (n = 23). The MTDs were 1.88, 1.5, and 1.0 mg/kg for schedules 1, 2, and 3, respectively. Grade 3/4 treatment-related toxicities that occurred in two or more patients included rash, neutropenia, fatigue, neuropathy, arthralgia, myalgia, and diarrhea. Three treatment-related deaths (resulting from pneumococcal sepsis, toxic epidermal necrolysis, and renal failure) occurred at doses exceeding the MTDs. In the schedule 1 phase II expansion cohort (n = 34), five patients (15%) had a partial response and eight patients (24%) had stable disease for ≥ 6 months. The objective response rate (ORR) was 2 of 6 (33%) for the schedule 2 MTD and 3 of 12 (25%) for the schedule 3 MTD. Rash was correlated with a greater ORR and improved progression-free survival. CONCLUSION Glembatumumab vedotin is active in advanced melanoma. The schedule 1 MTD (1.88 mg/kg once every 3 weeks) was associated with a promising ORR and was generally well tolerated. More frequent dosing was potentially associated with a greater ORR but increased toxicity.
Collapse
Affiliation(s)
- Patrick A Ott
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ.
| | - Omid Hamid
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Anna C Pavlick
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Harriet Kluger
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Kevin B Kim
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Peter D Boasberg
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Ronit Simantov
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Elizabeth Crowley
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Jennifer A Green
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas Hawthorne
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Thomas A Davis
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Mario Sznol
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| | - Patrick Hwu
- Patrick A. Ott and Anna C. Pavlick, New York University Cancer Institute, New York, NY; Omid Hamid and Peter D. Boasberg, The Angeles Clinic and Research Institute, Los Angeles, CA; Harriet Kluger and Mario Sznol, Yale Cancer Center, New Haven, CT; Kevin B. Kim and Patrick Hwu, University of Texas MD Anderson Cancer Center, Houston, TX; Ronit Simantov, Elizabeth Crowley, Jennifer A. Green, Thomas Hawthorne, and Thomas A. Davis, Celldex Therapeutics, Hampton, NJ
| |
Collapse
|
42
|
Abstract
Endothelin-1 (ET-1) plays an indispensable role in epidermal pigmentation in hyperpigmentary disorders due to a central role in melanogenesis. Nevertheless, precise mechanism involved in ET-1-induced hyperpigmentation is still undefined. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB) is a key element in melanosome formation. Therefore, we speculated that GPNMB was correlated with ET-1-induced pigmentation. After culturing with ET-1, melanin synthesis was significantly up-regulated, accompanying with increased expression of GPNMB and microphthalmia-associated transcription factor (MITF). Total number of melanosomes and melanin synthesis were sharply reduced via GPNMB-siRNA transfection, indicating ET-1-induced pigmentation by GPNMB-dependent manner. Furthermore, MITFsiRNA transfection strikingly inhibited GPNMB expression and the melanogenesis, and this suppression failed to be alleviated by ET-1 stimulation. All of these results demonstrated that ET-1 can trigger melanogenesis via the MITF-regulated GPNMB pathway. Taken together, these findings will provide a new explanation of how ET-1 induces hyperpigmentation, and possibly supply a new strategy for cosmetic studies. [BMB Reports 2013; 46(7): 364-369]
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | |
Collapse
|
43
|
Chung JS, Tamura K, Akiyoshi H, Cruz PD, Ariizumi K. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:2576-84. [PMID: 24516197 DOI: 10.4049/jimmunol.1301857] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Having discovered that the dendritic cell (DC)-associated heparan sulfate proteoglycan-dependent integrin ligand (DC-HIL) receptor on APCs inhibits T cell activation by binding to syndecan-4 (SD-4) on T cells, we hypothesized that the DC-HIL/SD-4 pathway may regulate autoimmune responses. Using experimental autoimmune encephalomyelitis (EAE) as a disease model, we noted an increase in SD-4(+) T cells in lymphoid organs of wild-type (WT) mice immunized for EAE. The autoimmune disease was also more severely induced (clinically, histologically, and immunophenotypically) in mice knocked out for SD-4 compared with WT cohorts. Moreover, infusion of SD-4(-/-) naive T cells during EAE induction into Rag2(-/-) mice also led to increased severity of EAE in these animals. Similar to SD-4 on T cells, DC-HIL expression was upregulated on myeloid cells during EAE induction, with CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSCs) as the most expanded population and most potent T cell suppressor among the myeloid cells examined. The critical role of DC-HIL was supported by DC-HIL gene deletion or anti-DC-HIL treatment, which abrogated T cell suppressor activity of MDSCs, and also by DC-HIL activation inducing MDSC expression of IFN-γ, NO, and reactive oxygen species. Akin to SD-4(-/-) mice, DC-HIL(-/-) mice manifested exacerbated EAE. Adoptive transfer of MDSCs from EAE-affected WT mice into DC-HIL(-/-) mice reduced EAE severity to the level of EAE-immunized WT mice, an outcome that was precluded by depleting DC-HIL(+) cells from the infused MDSC preparation. Our findings indicate that the DC-HIL/SD-4 pathway regulates autoimmune responses by mediating the T cell suppressor function of MDSCs.
Collapse
Affiliation(s)
- Jin-Sung Chung
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | | | | | | |
Collapse
|
44
|
QIN CAIPENG, LIU ZHENHUA, YUAN YEQING, ZHANG XIAOWEI, LI HENAN, ZHANG CHUNFANG, XU TAO, WANG XIAOFENG. Glycoprotein non-metastatic melanoma protein B as a predictive prognostic factor in clear-cell renal cell carcinoma following radical nephrectomy. Mol Med Rep 2014; 9:851-6. [DOI: 10.3892/mmr.2014.1896] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/09/2014] [Indexed: 11/05/2022] Open
|
45
|
Zhang P, Li J, Pang X, Yuan X, Li D, Li Y, Guo L, Liu W. A monoclonal antibody against GPNMB. Monoclon Antib Immunodiagn Immunother 2013; 32:265-9. [PMID: 23909420 DOI: 10.1089/mab.2013.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As a melanosome-associated transmembrane glycoprotein, GPNMB plays an important role in numerous cell types, as well as in tumors. Producing a high specificity and affinity monoclonal antibody against human GPNMB provides an important tool to study the function of GPNMB protein. In this study, monoclonal antibodies to GPNMB were obtained by immunizing BALB/c mice with purified GST-GPNMB emulsified in Freund's adjuvant. Three monoclonal antibodies with high specificity and affinity were obtained. The titers of anti-serum were 1:10,000, 1:8000, and 1:3000, respectively. Western blot and immunohistochemistry experiments were used to characterize the antibody. The anti-GPNMB antibodies G203 and F105 had high affinities (G203 around 2.7 × 10(-8) M and F105 around 1.6 × 10(-8) M, respectively) for the GPNMB antigen. However, M306 had a low binding activity to GPNMB. The results of Western blot and immunohistochemistry experiments showed that the antibodies could bind human GPNMB antigen. The monoclonal antibodies provided good tools for further studying functional characterization of GPNMB.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, The General Hospital of the Air Force, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Higdon CW, Mitra RD, Johnson SL. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS One 2013; 8:e67801. [PMID: 23874447 PMCID: PMC3706446 DOI: 10.1371/journal.pone.0067801] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/23/2013] [Indexed: 01/05/2023] Open
Abstract
In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.
Collapse
Affiliation(s)
- Charles W. Higdon
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| | - Robi D. Mitra
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Stephen L. Johnson
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| |
Collapse
|
47
|
Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther 2013; 6:839-52. [PMID: 23874106 PMCID: PMC3711880 DOI: 10.2147/ott.s44906] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecularly targeted therapies are rapidly growing with respect to their clinical development and impact on cancer treatment due to their highly selective anti-tumor action. However, many aggressive cancers such as triple-negative breast cancer (TNBC) currently lack well-defined therapeutic targets against which such agents can be developed. The identification of tumor-associated antigens and the generation of antibody drug-conjugates represent an emerging area of intense interest and growth in the field of cancer therapeutics. Glycoprotein non-metastatic b (GPNMB) has recently been identified as a gene that is over-expressed in numerous cancers, including TNBC, and often correlates with the metastatic phenotype. In breast cancer, GPNMB expression in the tumor epithelium is associated with a reduction in disease-free and overall survival. Based on these findings, glembatumumab vedotin (CDX-011), an antibody-drug conjugate that selectively targets GPNMB, is currently being investigated in clinical trials for patients with metastatic breast cancer and unresectable melanoma. This review discusses the physiological and potential pathological roles of GPNMB in normal and cancer tissues, respectively, and details the clinical advances and challenges in targeting GPNMB-expressing malignancies.
Collapse
Affiliation(s)
- Gordana Maric
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada ; Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
48
|
Theos AC, Watt B, Harper DC, Janczura KJ, Theos SC, Herman KE, Marks MS. The PKD domain distinguishes the trafficking and amyloidogenic properties of the pigment cell protein PMEL and its homologue GPNMB. Pigment Cell Melanoma Res 2013; 26:470-86. [PMID: 23452376 DOI: 10.1111/pcmr.12084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 02/26/2013] [Indexed: 11/29/2022]
Abstract
Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.
Collapse
Affiliation(s)
- Alexander C Theos
- Department of Pathology & Laboratory Medicine and Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Muppirala M, Gupta V, Swarup G. Emerging role of tyrosine phosphatase, TCPTP, in the organelles of the early secretory pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1125-32. [PMID: 23328081 DOI: 10.1016/j.bbamcr.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
T-cell protein tyrosine phosphatase, TCPTP, is a ubiquitously expressed non-receptor type tyrosine phosphatase. There are two splice variants of TCPTP, TC48 and TC45, which differ in their sub-cellular localizations and functions. TC45 is a nuclear protein, which has both nuclear and cytoplasmic substrates, and is involved in many signaling events including endocytic recycling of platelet-derived growth factor β-receptor. TC48 is a predominantly endoplasmic reticulum (ER)-localizing protein, which dephosphorylates some of the substrates of TC45 at the ER. However, recently few specific substrates for TC48 have been identified. These include C3G (RapGEF1), syntaxin 17 and BCR-Abl. TC48 moves from the ER to post-ER compartments, the ER-Golgi intermediate compartment (ERGIC) and Golgi, and it is retrieved back to the ER. The retrieval of ER proteins from post-ER compartments is generally believed as a mechanism of targeting these proteins to the ER. However, it is possible that this shuttling of TC48 serves to regulate signaling in the early secretory pathway. For example, TC48 dephosphorylates phosphorylated C3G at the Golgi and inhibits neurite outgrowth. TC48 interacts with and dephosphorylates syntaxin 17, which is an ER and ERGIC-localizing protein involved in vesicle transport. A yeast two-hybrid screen identified several unique interacting partners of TC48 belonging to two groups - proteins involved in vesicle trafficking and proteins involved in cell adhesion. These interacting proteins could be substrates or regulators of TC48 function and localization. Thus, the role of TC48 seems to be more diverse, which is still to be explored.
Collapse
Affiliation(s)
- Madhavi Muppirala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | |
Collapse
|
50
|
Zhang P, Liu W, Zhu C, Yuan X, Li D, Gu W, Ma H, Xie X, Gao T. Silencing of GPNMB by siRNA inhibits the formation of melanosomes in melanocytes in a MITF-independent fashion. PLoS One 2012; 7:e42955. [PMID: 22912767 PMCID: PMC3418242 DOI: 10.1371/journal.pone.0042955] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022] Open
Abstract
Background Melanosomes are specialized membrane-surrounded organelles, which are involved in the synthesis, storage and transport of melanin. Glycoprotein (transmembrane) non-metastatic melanoma protein b (GPNMB), a melanosome-specific structural protein, shares significant amino acid sequence homology with Pmel-17. Proteomic analysis demonstrated that GPNMB is present in all stages (I-IV) of melanosomes. However, little is known about the role of GPNMB in melanosomes. Methodology/Principal Findings Using real-time quantitative PCR, Western blotting and immunofluorescence analysis, we demonstrated that the expression of GPNMB in PIG1 melanocytes was up-regulated by ultraviolet B (UVB) radiation. Transmission electron microscopy analysis showed that the total number of melanosomes in PIG1 melanocytes was sharply reduced by GPNMB-siRNA transfection. Simultaneously, the expression levels of tyrosinase (Tyr), tyrosinase related protein 1 (Trp1), Pmel17/gp100 and ocular albinism type 1 protein (OA1) were all significantly attenuated. But the expression of microphthalmia-associated transcription factor (MITF) was up-regulated. Intriguingly, in GPNMB silenced PIG1 melanocytes, UVB radiation sharply reduced MITF expression. Conclusion Our present work revealed that the GPNMB was critical for the formation of melanosomes. And GPNMB expression down-regulation attenuated melanosome formation in a MITF-independent fashion.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- * E-mail:
| | - Cansheng Zhu
- Shaanxi Provincial Institute for Endemic Disease Control, Xi'an, China
| | - Xiaoying Yuan
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
| | - Dongguang Li
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
| | - Weijie Gu
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
| | - Huimin Ma
- Department of Dermatology, the General Hospital of the Air Force, Beijing, China
| | - Xin Xie
- Reg Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|