1
|
Lefevre M, Nosbaum A, Rozieres A, Lenief V, Mosnier A, Cortial A, Prieux M, De Bernard S, Nourikyan J, Jouve P, Buffat L, Hacard F, Ferrier‐Lebouedec M, Pralong P, Dzviga C, Herman A, Baeck M, Nicolas J, Vocanson M. Unique molecular signatures typify skin inflammation induced by chemical allergens and irritants. Allergy 2021; 76:3697-3712. [PMID: 34174113 DOI: 10.1111/all.14989] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Skin exposure to chemicals may induce an inflammatory disease known as contact dermatitis (CD). Distinguishing the allergic and irritant forms of CD often proves challenging in the clinic. METHODS To characterize the molecular signatures of chemical-induced skin inflammation, we conducted a comprehensive transcriptomic analysis on the skin lesions of 47 patients with positive patch tests to reference contact allergens and nonallergenic irritants. RESULTS A clear segregation was observed between allergen- and irritant-induced gene profiles. Distinct modules pertaining to the epidermal compartment, metabolism, and proliferation were induced by both contact allergens and irritants; whereas only contact allergens prompted strong activation of adaptive immunity, notably of cytotoxic T-cell responses. Our results also confirmed that: (a) unique pathways characterize allergen- and irritant-induced dermatitis; (b) the intensity of the clinical reaction correlates with the magnitude of immune activation. Finally, using a machine-learning approach, we identified and validated several minimal combinations of biomarkers to distinguish contact allergy from irritation. CONCLUSION These results highlight the value of molecular profiling of chemical-induced skin inflammation for improving the diagnosis of allergic versus irritant contact dermatitis.
Collapse
Affiliation(s)
- Marine‐Alexia Lefevre
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
- Department of Dermatology and Allergology Centre Hospitalier Universitaire de Saint‐Etienne Saint‐Priest‐en‐Jarez France
| | - Audrey Nosbaum
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
- Department of Allergy and Clinical Immunology Centre Hospitalier Lyon‐Sud Pierre‐Benite France
| | - Aurore Rozieres
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Vanina Lenief
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Amandine Mosnier
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Angèle Cortial
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | - Margaux Prieux
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| | | | | | | | | | - Florence Hacard
- Department of Allergy and Clinical Immunology Centre Hospitalier Lyon‐Sud Pierre‐Benite France
| | | | - Pauline Pralong
- Department of Dermatology, Allergology and Photobiology Centre Hospitalier Universitaire Grenoble Alpes La Tronche France
| | - Charles Dzviga
- Department of Dermatology and Allergology Centre Hospitalier Universitaire de Saint‐Etienne Saint‐Priest‐en‐Jarez France
| | - Anne Herman
- Department of Dermatology Cliniques universitaires Saint‐Luc Université Catholique de Louvain Brussels Belgium
| | - Marie Baeck
- Department of Dermatology Cliniques universitaires Saint‐Luc Université Catholique de Louvain Brussels Belgium
| | - Jean‐François Nicolas
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
- Department of Allergy and Clinical Immunology Centre Hospitalier Lyon‐Sud Pierre‐Benite France
| | - Marc Vocanson
- CIRI, Centre International de Recherche en Infectiologie, (Team Epidermal Immunity and Allergy) INSERM, U1111 Univ LyonUniversité de Lyon 1Ecole Normale Supérieure de LyonCNRS, UMR 5308 Lyon France
| |
Collapse
|
2
|
Garzorz-Stark N, Lauffer F, Krause L, Thomas J, Atenhan A, Franz R, Roenneberg S, Boehner A, Jargosch M, Batra R, Mueller NS, Haak S, Groß C, Groß O, Traidl-Hoffmann C, Theis FJ, Schmidt-Weber CB, Biedermann T, Eyerich S, Eyerich K. Toll-like receptor 7/8 agonists stimulate plasmacytoid dendritic cells to initiate TH17-deviated acute contact dermatitis in human subjects. J Allergy Clin Immunol 2018; 141:1320-1333.e11. [DOI: 10.1016/j.jaci.2017.07.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 07/24/2017] [Indexed: 10/18/2022]
|
3
|
Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 138:336-49. [PMID: 27497276 DOI: 10.1016/j.jaci.2016.06.010] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti-IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system players. These targeted molecules can be expressed on or drive the cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment.
Collapse
Affiliation(s)
- Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.
| | - Jean-Pierre Allam
- Department of Dermatology and Allergy, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Stefanie Gilles
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, and the Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfram Hoetzenecker
- Department of Dermatology/Allergology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Edward Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Allergy Unit, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Swiss Institute for Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Manzhalii E, Hornuss D, Stremmel W. Intestinal-borne dermatoses significantly improved by oral application of Escherichia coli Nissle 1917. World J Gastroenterol 2016; 22:5415-5421. [PMID: 27340358 PMCID: PMC4910662 DOI: 10.3748/wjg.v22.i23.5415] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of oral Escherichia coli (E. coli) Nissle application on the outcome of intestinal-borne dermatoses.
METHODS: In a randomized, controlled, non-blinded prospective clinical trial 82 patients with intestinal-borne facial dermatoses characterized by an erythematous papular-pustular rash were screened. At the initiation visit 37 patients entered the experimental arm and 20 patients constituted the control arm. All 57 patients were treated with a vegetarian diet and conventional topical therapy of the dermatoses with ointments containing tetracycline, steroids and retinoids. In the experimental arm patients received a one month therapy with oral E. coli Nissle at a maintenance dose of 2 capsules daily. The experimental group was compared to a non-treatment group only receiving the diet and topical therapy. The primary outcome parameter was improvement of the dermatoses, secondary parameters included life quality and adverse events. In addition the immunological reaction profile (IgA, interleucin-8 and interferon-α) was determined. Furthermore the changes of stool consistency and the microbiota composition over the time of intervention were recorded.
RESULTS: Eighty-nine percent of the patients with acne, papular-pustular rosacea and seborrhoic dermatitis responded to E. coli Nissle therapy with significant amelioration or complete recovery in contrast to 56% in the control arm (P < 0.01). Accordingly, in the E. coli Nissle treated patients life quality improved significantly (P < 0.01), and adverse events were not recorded. The clinical improvement was associated with a significant increase of IgA levels to normal values in serum as well as suppression of the proinflammatory cytokine IL-8 (P < 0.01 for both parameters). In the E. coli Nissle treated group a shift towards a protective microbiota with predominance of bifidobacteria and lactobacteria (> 107 CFU/g stool) was observed in 79% and 63% of the patients, respectively (P < 0.01), compared to no change in the control group without E. coli Nissle. Moreover, the detection rate of a pathogenic flora dropped from 73% to 14 % of the patients in the experimental arm (P < 0.01) with no significant change in the control arm (accounting 80% before and 70% after the observation period, P > 0.05). Accordingly, stool consistency, color and smell normalized in the E. coli Nissle treated patients.
CONCLUSION: E. coli Nissle protects the mucus barrier by overgrowth of a favorable gut microbiota with less immunoreactive potential which finally leads to clinical improvement of intestinal borne dermatoses.
Collapse
|
5
|
Schubert W. Advances in toponomics drug discovery: Imaging cycler microscopy correctly predicts a therapy method of amyotrophic lateral sclerosis. Cytometry A 2015; 87:696-703. [PMID: 25869332 PMCID: PMC4676937 DOI: 10.1002/cyto.a.22671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An imaging cycler microscope (ICM) is a fully automated (epi)fluorescence microscope which overcomes the spectral resolution limit resulting in parameter- and dimension-unlimited fluorescence imaging. This enables the spatial resolution of large molecular systems with their emergent topological properties (toponome) in morphologically intact cells and tissues displaying thousands of multi protein assemblies at a time. The resulting combinatorial geometry of these systems has been shown to be key for in-vivo/in-situ detection of lead proteins controlling protein network topology and (dys)function: If lead proteins are blocked or downregulated the corresponding disease protein network disassembles. Here, correct therapeutic predictions are exemplified for ALS. ICM drug target studies have discovered an 18-dimensional cell surface molecular system in ALS-PBMC with a lead drug target protein, whose therapeutic downregulation is now reported to show statistically significant effect with stop of disease progression in one third of the ALS patients. Together, this clinical and the earlier experimental validations of the ICM approach indicate that ICM readily discovers in vivo robustness nodes of disease with lead proteins controlling them. Breaking in vivo robustness nodes using drugs against their lead proteins is likely to overcome current high drug attrition rates. © 2015 The Author. Published by Wiley Periodicals, Inc, on behalf of ISAC.
Collapse
Affiliation(s)
- Walter Schubert
- Department of Medicine, Molecular Pattern Recognition Research Group, Otto Von Guericke University, Magdeburg, Germany
| |
Collapse
|
6
|
Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, Andres C, Traidl-Hoffmann C, Cavani A, Theis FJ, Ring J, Schmidt-Weber CB, Eyerich S, Eyerich K. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med 2015; 6:244ra90. [PMID: 25009230 DOI: 10.1126/scitranslmed.3008946] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previous attempts to gain insight into the pathogenesis of psoriasis and eczema by comparing their molecular signatures were hampered by the high interindividual variability of those complex diseases. In patients affected by both psoriasis and nonatopic or atopic eczema simultaneously (n = 24), an intraindividual comparison of the molecular signatures of psoriasis and eczema identified genes and signaling pathways regulated in common and exclusive for each disease across all patients. Psoriasis-specific genes were important regulators of glucose and lipid metabolism, epidermal differentiation, as well as immune mediators of T helper 17 (TH17) responses, interleukin-10 (IL-10) family cytokines, and IL-36. Genes in eczema related to epidermal barrier, reduced innate immunity, increased IL-6, and a TH2 signature. Within eczema subtypes, a mutually exclusive regulation of epidermal differentiation genes was observed. Furthermore, only contact eczema was driven by inflammasome activation, apoptosis, and cellular adhesion. On the basis of this comprehensive picture of the pathogenesis of psoriasis and eczema, a disease classifier consisting of NOS2 and CCL27 was created. In an independent cohort of eczema (n = 28) and psoriasis patients (n = 25), respectively, this classifier diagnosed all patients correctly and also identified initially misdiagnosed or clinically undifferentiated patients.
Collapse
Affiliation(s)
- Maria Quaranta
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Natalie Garzorz
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | - Martina Mattii
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Venu Pullabhatla
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, Guy's Hospital, London WC2R 2LS, UK
| | - Davide Pennino
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Christian Andres
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | | | - Andrea Cavani
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00163 Rome, Italy
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany. Department of Mathematics, Technische Universität Munich, 85748 Garching, Germany
| | - Johannes Ring
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research, 80802 Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität Munich, 80802 Munich, Germany.
| |
Collapse
|
7
|
Quaranta M, Eyerich S, Knapp B, Nasorri F, Scarponi C, Mattii M, Garzorz N, Harlfinger AT, Jaeger T, Grosber M, Pennino D, Mempel M, Schnopp C, Theis FJ, Albanesi C, Cavani A, Schmidt-Weber CB, Ring J, Eyerich K. Allergic contact dermatitis in psoriasis patients: typical, delayed, and non-interacting. PLoS One 2014; 9:e101814. [PMID: 25058585 PMCID: PMC4109932 DOI: 10.1371/journal.pone.0101814] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/11/2014] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is characterized by an apoptosis-resistant and metabolic active epidermis, while a hallmark for allergic contact dermatitis (ACD) is T cell-induced keratinocyte apoptosis. Here, we induced ACD reactions in psoriasis patients sensitized to nickel (n = 14) to investigate underlying mechanisms of psoriasis and ACD simultaneously. All patients developed a clinically and histologically typical dermatitis upon nickel challenge even in close proximity to pre-existing psoriasis plaques. However, the ACD reaction was delayed as compared to non-psoriatic patients, with a maximum intensity after 7 days. Whole genome expression analysis revealed alterations in numerous pathways related to metabolism and proliferation in non-involved skin of psoriasis patients as compared to non-psoriatic individuals, indicating that even in clinically non-involved skin of psoriasis patients molecular events opposing contact dermatitis may occur. Immunohistochemical comparison of ACD reactions as well as in vitro secretion analysis of lesional T cells showed a higher Th17 and neutrophilic migration as well as epidermal proliferation in psoriasis, while ACD reactions were dominated by cytotoxic CD8+ T cells and a Th2 signature. Based on these findings, we hypothesized an ACD reaction directly on top of a pre-existing psoriasis plaque might influence the clinical course of psoriasis. We observed a strong clinical inflammation with a mixed psoriasis and eczema phenotype in histology. Surprisingly, the initial psoriasis plaque was unaltered after self-limitation of the ACD reaction. We conclude that sensitized psoriasis patients develop a typical, but delayed ACD reaction which might be relevant for patch test evaluation in clinical practice. Psoriasis and ACD are driven by distinct and independent immune mechanisms.
Collapse
Affiliation(s)
- Maria Quaranta
- ZAUM – Center of Allergy and Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- ZAUM – Center of Allergy and Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Martina Mattii
- ZAUM – Center of Allergy and Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Natalie Garzorz
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Anna T. Harlfinger
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Teresa Jaeger
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Martine Grosber
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Davide Pennino
- ZAUM – Center of Allergy and Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Mempel
- Department of Dermatology, Venereology, and Allergology, University Medicine Goettingen, Goettingen, Germany
| | - Christina Schnopp
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technische Universität Munich, Garching, Germany
| | | | - Andrea Cavani
- Laboratory of experimental immunology, IDI-IRCCS, Rome, Italy
| | - Carsten B. Schmidt-Weber
- ZAUM – Center of Allergy and Environment, Technische Universität and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Johannes Ring
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technische Universität Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
8
|
Simon D, Aeberhard C, Erdemoglu Y, Simon HU. Th17 cells and tissue remodeling in atopic and contact dermatitis. Allergy 2014; 69:125-31. [PMID: 24372156 DOI: 10.1111/all.12351] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Eczematous skin lesions of atopic dermatitis (AD) as well as allergic and irritant contact dermatitis (ACD, ICD) are characterized by the same typical clinical signs, although due to different causes. In both AD and ACD, the presence of T helper 17 cells which play an important role in host defense, has been reported. Furthermore, IL-17 is involved in tissue repair and remodeling. This study aimed to investigate IL-17 expression in acute eczematous skin lesions and correlate it with markers of remodeling in AD, ACD, and ICD. METHODS Skin specimens were taken from positive patch test reactions to aeroallergens, contact allergens, and irritants at days 2, 3, and 4. Inflammatory cells as well as the expression of cytokines and extracellular matrix proteins were evaluated by immunofluorescence staining and confocal microscopy. RESULTS Allergic contact dermatitis and ICD were characterized by IFN-γ expression, whereas in AD lesions, IL-13 expression and high numbers of eosinophils were the prominent phenotype. Expression of IL-17, but also IL-21 and IL-22, was observed in all eczema subtypes. The number of IL-22+ T cells correlated with the number of eosinophils. Markers of remodeling such as MMP-9, procollagen-3, and tenascin C were observed in all acute eczematous lesions, while a correlation of IL-17+ T cell numbers with tenascin C-expressing cells and MMP-9+ eosinophils was apparent. CONCLUSION The expression of IL-17 and related cytokines, such as IL-22, was demonstrated in acute eczematous lesions independent of their pathogenesis. Our results suggest a potential role for IL-17 in remodeling of the skin.
Collapse
Affiliation(s)
- D. Simon
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - C. Aeberhard
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - Y. Erdemoglu
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern Switzerland
| |
Collapse
|
9
|
Schubert W. Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems. J Mol Recognit 2014; 27:3-18. [PMID: 24375580 PMCID: PMC4283051 DOI: 10.1002/jmr.2326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 01/27/2023]
Abstract
Understanding biological systems at the level of their relational (emergent) molecular properties in functional protein networks relies on imaging methods, able to spatially resolve a tissue or a cell as a giant, non-random, topologically defined collection of interacting supermolecules executing myriads of subcellular mechanisms. Here, the development and findings of parameter-unlimited functional super-resolution microscopy are described-a technology based on the fluorescence imaging cycler (IC) principle capable of co-mapping thousands of distinct biomolecular assemblies at high spatial resolution and differentiation (<40 nm distances). It is shown that the subcellular and transcellular features of such supermolecules can be described at the compositional and constitutional levels; that the spatial connection, relational stoichiometry, and topology of supermolecules generate hitherto unrecognized functional self-segmentation of biological tissues; that hierarchical features, common to thousands of simultaneously imaged supermolecules, can be identified; and how the resulting supramolecular order relates to spatial coding of cellular functionalities in biological systems. A large body of observations with IC molecular systems microscopy collected over 20 years have disclosed principles governed by a law of supramolecular segregation of cellular functionalities. This pervades phenomena, such as exceptional orderliness, functional selectivity, combinatorial and spatial periodicity, and hierarchical organization of large molecular systems, across all species investigated so far. This insight is based on the high degree of specificity, selectivity, and sensitivity of molecular recognition processes for fluorescence imaging beyond the spectral resolution limit, using probe libraries controlled by ICs.
Collapse
Affiliation(s)
- Walter Schubert
- Molecular pattern recognition research group, O-v-G-university MagdeburgGermany
- International faculty, Max-Planck (CAS-MPG) partner institute for computational biologyShanghai, China
- Human toponome project, TNLMunich, Germany
| |
Collapse
|
10
|
Eyerich K, Novak N. Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy 2013; 68:974-82. [PMID: 23889510 DOI: 10.1111/all.12184] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
Atopic eczema (AE) is a challenge for modern medicine, because it is prevalent, severely affects quality of life of patients and their families, and causes high socioeconomic costs. The pathogenesis of AE is complex. While initial studies suggested a Th2 deviation as primary reason for the disease, numerous studies addressed a genetically predetermined impaired epidermal barrier as leading cause in a subgroup of patients. Recently, immune changes beyond the initial Th2 concept were defined in AE, with a role for specialized dendritic cells as well as newly identified T helper cell subsets such as Th17 and Th22 cells. Furthermore, trigger factors are expanded beyond classical Th2 allergens such as pollen or house dust mites to microbial products as well as self-antigens. This review pieces together our current understanding of immune as well as barrier abnormalities into the pathogenesis mosaic of AE.
Collapse
Affiliation(s)
| | - N. Novak
- Department of Dermatology and Allergy; University of Bonn Medical Center; Bonn; Germany
| |
Collapse
|
11
|
Ostalecki C, Konrad A, Thurau E, Schuler G, Croner RS, Pommer AJ, ael Stürzl M. Combined multi-gene analysis at the RNA and protein levels in single FFPE tissue sections. Exp Mol Pathol 2013; 95:1-6. [PMID: 23583336 DOI: 10.1016/j.yexmp.2013.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/19/2013] [Accepted: 03/21/2013] [Indexed: 10/27/2022]
Abstract
Novel approaches of individualized medicine require rapid analyses of comprehensive multi-gene expression patterns both at the RNA and protein levels. Optimally these analyses are achieved with minimal amounts of tissues, which are derived from routine procedures of clinical diagnostics. We demonstrate the parallel analyses of gene expression of six different genes at the RNA and protein levels in two consecutive sections of routinely processed FFPE tissues. This was achieved by combination of multi-epitope-ligand cartography (MELC) and fully automatically magnetic bead-based RNA extraction and subsequent qRT-PCR analysis. Our work provides proof-of-principle that comprehensive analyses of multi-gene expression patterns can be achieved by the combination of these two high content technologies. This may provide new perspectives for the determination of pathogenic gene expression in the framework of individualized medicine.
Collapse
|
12
|
Eckhardt J, Ostalecki C, Kuczera K, Schuler G, Pommer AJ, Lechmann M. Murine whole-organ immune cell populations revealed by multi-epitope-ligand cartography. J Histochem Cytochem 2012; 61:125-33. [PMID: 23160665 DOI: 10.1369/0022155412470140] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multi-epitope-ligand cartography (MELC) is an innovative high-throughput fluorescence microscopy-based method. A tissue section is analyzed through a repeated cycling of (1) incubation with a fluorophore-labeled antibody, (2) fluorescence imaging, and (3) soft bleaching. This method allows staining of the same tissue section with up to 100 fluorescent markers and to analyze their toponomic expression using further image processing and pixel-precise overlay of the corresponding images. In this study, we adapted this method to identify a large panel of murine leukocyte subpopulations in a whole frozen section of a peripheral lymph node. Using the resulting antibody library, we examined non-inflamed versus inflamed tissues of brain and spinal cord in the experimental autoimmune encephalomyelitis (EAE) model. The presence and activity of specific leukocyte subpopulations (different T cell subpopulations, dendritic cells, macrophages, etc.) could be assessed and the cellular localizations and the corresponding activation status in situ were investigated. The results were then correlated with quantitative RT-PCR.
Collapse
|
13
|
Kölling J, Langenkämper D, Abouna S, Khan M, Nattkemper TW. WHIDE--a web tool for visual data mining colocation patterns in multivariate bioimages. Bioinformatics 2012; 28:1143-50. [PMID: 22390938 PMCID: PMC3324520 DOI: 10.1093/bioinformatics/bts104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Motivation: Bioimaging techniques rapidly develop toward higher resolution and dimension. The increase in dimension is achieved by different techniques such as multitag fluorescence imaging, Matrix Assisted Laser Desorption / Ionization (MALDI) imaging or Raman imaging, which record for each pixel an N-dimensional intensity array, representing local abundances of molecules, residues or interaction patterns. The analysis of such multivariate bioimages (MBIs) calls for new approaches to support users in the analysis of both feature domains: space (i.e. sample morphology) and molecular colocation or interaction. In this article, we present our approach WHIDE (Web-based Hyperbolic Image Data Explorer) that combines principles from computational learning, dimension reduction and visualization in a free web application. Results: We applied WHIDE to a set of MBI recorded using the multitag fluorescence imaging Toponome Imaging System. The MBI show field of view in tissue sections from a colon cancer study and we compare tissue from normal/healthy colon with tissue classified as tumor. Our results show, that WHIDE efficiently reduces the complexity of the data by mapping each of the pixels to a cluster, referred to as Molecular Co-Expression Phenotypes and provides a structural basis for a sophisticated multimodal visualization, which combines topology preserving pseudocoloring with information visualization. The wide range of WHIDE's applicability is demonstrated with examples from toponome imaging, high content screens and MALDI imaging (shown in the Supplementary Material). Availability and implementation: The WHIDE tool can be accessed via the BioIMAX website http://ani.cebitec.uni-bielefeld.de/BioIMAX/; Login: whidetestuser; Password: whidetest. Supplementary information:Supplementary data are available at Bioinformatics online. Contact:tim.nattkemper@uni-bielefeld.de
Collapse
Affiliation(s)
- Jan Kölling
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
14
|
Weise C, Zhu Y, Ernst D, Kühl AA, Worm M. Oral administration of Escherichia coli Nissle 1917 prevents allergen-induced dermatitis in mice. Exp Dermatol 2011; 20:805-9. [PMID: 21740462 DOI: 10.1111/j.1600-0625.2011.01326.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The prevalence of allergies has been linked to Western life style factors including a decrease of microbial exposure. Probiotics, such as Escherichia coli Nissle 1917 (EcN), have been shown to be beneficial for prevention and treatment of several chronic inflammatory diseases. OBJECTIVE The aim of this study was to investigate the impact of oral EcN administration on development and outcome of allergen-induced dermatitis. METHODS In sensitized BALB/c mice, skin inflammation was induced by topical allergen application. EcN was administered orally in a preventive manner. Severity of dermatitis was analysed by evaluation of skin score, local cellular and cytokine profile. The systemic immune response was assessed by analysis of immunoglobulins and allergen-dependent cytokine response. RESULTS Oral EcN administration improved allergen-induced dermatitis dose-dependently. In parallel, a reduction of epidermal thickness and infiltrating immune cells together with an enhanced number of forkhead box P3 (Foxp3)(+) cells and a trend of increased IFNγ, IL-10 and TGFβ expression was detected in eczematous skin. In allergen-stimulated splenocytes reduced IL-4 and IFNγ along with an elevated IL-10 production and a tendency to an increased TGFβ secretion were observed. CONCLUSIONS Our findings indicate that EcN alters the local allergen-induced immune response by increase of Foxp3(+) cells and by favouring an immunoregulatory cytokine pattern. Thus, oral administration of EcN might be an effective strategy in prevention and potentially therapy of allergic inflammatory skin diseases.
Collapse
Affiliation(s)
- Christin Weise
- Allergy-Center-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Bonin S, Larese FF, Trevisan G, Avian A, Rui F, Stanta G, Bovenzi M. Gene expression changes in peripheral blood mononuclear cells in occupational exposure to nickel. Exp Dermatol 2010; 20:147-8. [PMID: 21054559 DOI: 10.1111/j.1600-0625.2010.01162.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allergic contact dermatitis is preceded by a clinically silent phase of sensitisation. In this study, we investigated whether the expression levels of six genes were related to nickel exposure and/or nickel sensitisation, and whether they could predict allergic manifestations to nickel. The mRNA expression level of six genes involved in cell growth (PIM1 and ETS2), metabolism/synthesis (HSD11B1 and PRDX4), apoptosis (CASP8) and signal transduction (CISH) was investigated by means of quantitative real-time RT-PCR in a cohort of 110 subjects, including healthy controls (n=51), nickel-exposed workers (n=23) and patients allergic to nickel (n=36). Our findings show that the expression levels of the analysed genes did not differ between allergic patients and healthy controls, while higher expression levels of ETS2 and CASP8 were detected in the nickel-exposed workers. Changes in ETS2 and CASP8 expression are likely to be related to nickel exposure rather than to allergy.
Collapse
|
16
|
Pierre S, Scholich K. Toponomics: studying protein-protein interactions and protein networks in intact tissue. MOLECULAR BIOSYSTEMS 2010; 6:641-7. [PMID: 20237641 DOI: 10.1039/b910653g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The function of a protein is determined on several levels including the genome, transcriptome, proteome, and the recently introduced toponome. The toponome describes the topology of all proteins, protein complexes and protein networks which constitute and influence the microenvironment of a given protein. It has long been known that cellular function or dysfunction of proteins strongly depends on their microenvironment and even small changes in protein arrangements can dramatically alter their activity/function. Thus, deciphering the topology of the multi-dimensional networks which control normal and disease-related pathways will give a better understanding of the mechanisms underlying disease development. While various powerful proteomic tools allow simultaneous quantification of proteins, only a limited number of techniques are available to visualize protein networks in intact cells and tissues. This review discusses a novel approach to map and decipher functional molecular networks of proteins in intact cells or tissues. Multi-epitope-ligand-cartography (MELC) is an imaging technology that identifies and quantifies protein networks at the subcellular level of morphologically-intact specimens. This immunohistochemistry-based method allows serial visualization and biomathematical analysis of up to 100 cellular components using fluorescence-labelled tags. The resulting toponome maps, simultaneously ranging from the subcellular to the supracellular scale, have the potential to provide the basis for a mathematical description of the dynamic topology of protein networks, and will complement current proteomic data to enhance the understanding of physiological and pathophysiological cell functions.
Collapse
Affiliation(s)
- Sandra Pierre
- Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|