1
|
Joseph JP, Kumar T, Ramteke NS, Chatterjee K, Nandi D. High intracellular calcium amounts inhibit activation-induced proliferation of mouse T cells: Tert-butyl hydroquinone as an additive enhancer of intracellular calcium. Int Immunopharmacol 2024; 143:113501. [PMID: 39488036 DOI: 10.1016/j.intimp.2024.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/29/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Optimal T cell activation is critical to orchestrate adaptive immune responses. Calcium is critical for T cell activation and integrates signaling pathways necessary to activate key transcription factors. In fact, patients with calcium channelopathies are immunodeficient. Here, we investigated the effects of different concentrations of intracellular calcium on activation of mouse T cells. High intracellular calcium amounts inhibited in vitro T cell proliferation as evidenced by a decreased cell cycling-to-hypodiploidy ratio in two models of activation: the combination of phorbol 12-myristate 13-acetate (PMA) and Ionomycin (an ionophore)/Thapsigargin (a SERCA inhibitor) or plate bound anti-CD3 and anti-CD28. High intracellular calcium amounts increased the production of reactive oxygen species (ROS) in T cells activated with PMA and Ionomycin and scavenging excess ROS using N-acetyl cysteine (NAC) rescued the decrease in cycling-to-hypodiploidy ratio. To test the universality of our observations, we studied the effects of tert-Butylhydroquinone (tBHQ), a SERCA inhibitor and Nrf2 activator. tBHQ alone did not increase intracellular calcium amounts but the intracellular calcium amounts increased when tBHQ was used in combination with PMA. Also, tBHQ inhibited T cell activation in a dose-dependent manner in both in vitro models of T cell activation. Importantly, intraperitoneal injection of tBHQ ameliorated Dextran Sodium Sulfate (DSS)-induced colitis in mice as evidenced by rescue of colon length shortening and lower disease activity index. Overall, this study identifies high calcium amounts as a potential target to lower T cell activation. The implications of these observations are discussed in the context of calcium modulating drugs that are used to treat various diseases.
Collapse
Affiliation(s)
- Joel P Joseph
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - Tanisha Kumar
- Undergraduate Program, Indian Institute of Science, Bengaluru, India
| | - Nikita S Ramteke
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India; Department of Materials Engineering, Indian Institute of Science, Bengaluru, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
2
|
Starikova EA, Mammedova JT, Ozhiganova A, Leveshko TA, Lebedeva AM, Sokolov AV, Isakov DV, Karaseva AB, Burova LA, Kudryavtsev IV. Streptococcal Arginine Deiminase Inhibits T Lymphocyte Differentiation In Vitro. Microorganisms 2023; 11:2585. [PMID: 37894243 PMCID: PMC10608802 DOI: 10.3390/microorganisms11102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Pathogenic microbes use arginine-metabolizing enzymes as an immune evasion strategy. In this study, the impact of streptococcal arginine deiminase (ADI) on the human peripheral blood T lymphocytes function in vitro was studied. The comparison of the effects of parental strain (Streptococcus pyogenes M49-16) with wild type of ArcA gene and its isogenic mutant with inactivated ArcA gene (Streptococcus pyogenes M49-16delArcA) was carried out. It was found that ADI in parental strain SDSC composition resulted in a fivefold decrease in the arginine concentration in human peripheral blood mononuclear cell (PBMC) supernatants. Only parental strain SDSCs suppressed anti-CD2/CD3/CD28-bead-stimulated mitochondrial dehydrogenase activity and caused a twofold decrease in IL-2 production in PBMC. Flow cytometry analysis revealed that ADI decreased the percentage of CM (central memory) and increased the proportion of TEMRA (terminally differentiated effector memory) of CD4+ and CD8+ T cells subsets. Enzyme activity inhibited the proliferation of all CD8+ T cell subsets as well as CM, EM (effector memory), and TEMRA CD4+ T cells. One of the prominent ADI effects was the inhibition of autophagy processes in CD8+ CM and EM as well as CD4+ CM, EM, and TEMRA T cell subsets. The data obtained confirm arginine's crucial role in controlling immune reactions and suggest that streptococcal ADI may downregulate adaptive immunity and immunological memory.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
| | - Arina Ozhiganova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
| | - Tatiana A. Leveshko
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
| | - Aleksandra M. Lebedeva
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
| | - Alexey V. Sokolov
- Laboratory of Biochemical Genetics, Department of Molecular Genetics, Institute of Experimental Medicine, 197022 St. Petersburg, Russia;
| | - Dmitry V. Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| | - Alena B. Karaseva
- Laboratory of Molecular Genetics of Pathogenic Microorganisms, Department of Molecular Microbiology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
| | - Larissa A. Burova
- Laboratory of Biomedical Microecology, Department of Molecular Microbiology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, 197022 St. Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, 197022 St. Petersburg, Russia
| |
Collapse
|
3
|
Lykhopiy V, Malviya V, Humblet-Baron S, Schlenner SM. "IL-2 immunotherapy for targeting regulatory T cells in autoimmunity". Genes Immun 2023; 24:248-262. [PMID: 37741949 PMCID: PMC10575774 DOI: 10.1038/s41435-023-00221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
FOXP3+ regulatory T cells (Treg) are indispensable for immune homoeostasis and for the prevention of autoimmune diseases. Interleukin-2 (IL-2) signalling is critical in all aspects of Treg biology. Consequences of defective IL-2 signalling are insufficient numbers or dysfunction of Treg and hence autoimmune disorders in human and mouse. The restoration and maintenance of immune homoeostasis remain central therapeutic aims in the field of autoimmunity. Historically, broadly immunosuppressive drugs with serious side-effects have been used for the treatment of autoimmune diseases or prevention of organ-transplant rejection. More recently, ex vivo expanded or in vivo stimulated Treg have been shown to induce effective tolerance in clinical trials supporting the clinical benefit of targeting natural immunosuppressive mechanisms. Given the central role of exogenous IL-2 in Treg homoeostasis, a new and promising focus in drug development are IL-2-based approaches for in vivo targeted expansion of Treg or for enhancement of their suppressive activity. In this review, we summarise the role of IL-2 in Treg biology and consequences of dysfunctional IL-2 signalling pathways. We then examine evidence of efficacy of IL-2-based biological drugs targeting Treg with specific focus on therapeutic candidates in clinical trials and discuss their limitations.
Collapse
Affiliation(s)
- Valentina Lykhopiy
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
- argenx BV, Industriepark Zwijnaarde 7, 9052, Ghent, Belgium
| | - Vanshika Malviya
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Kervella D, Blancho G. New immunosuppressive agents in transplantation. Presse Med 2022; 51:104142. [PMID: 36252821 DOI: 10.1016/j.lpm.2022.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Immunosuppressive agents have enabled the development of allogenic transplantation during the last 40 years, allowing considerable improvement in graft survival. However, several issues remain such as the nephrotoxicity of calcineurin inhibitors, the cornerstone of immunosuppressive regimens and/or the higher risk of opportunistic infections and cancers. Most immunosuppressive agents target T cell activation and may not be efficient enough to prevent allo-immunization in the long term. Finally, antibody mediated rejection due to donor specific antibodies strongly affects allograft survival. Many drugs have been tested in the last decades, but very few have come to clinical use. The most recent one is CTLA4-Ig (belatacept), a costimulation blockade molecule that targets the second signal of T cell activation and is associated with a better long term kidney function than calcineurin inhibitors, despite an increased risk of acute cellular rejection. The research of new maintenance long-term immunosuppressive agents focuses on costimulation blockade. Agents inhibiting CD40-CD40 ligand interaction may enable a good control of both T cells and B cells responses. Anti-CD28 antibodies may promote regulatory T cells. Agents targeting this costimulation pathways are currently evaluated in clinical trials. Immunosuppressive agents for ABMR treatment are scarce since anti-CD20 agent rituximab and proteasome inhibitor bortezomib have failed to demonstrate an interest in ABMR. New drugs focusing on antibodies removal (imlifidase), B cell and plasmablasts (anti-IL-6/IL-6R, anti-CD38…) and complement inhibition are in the pipeline, with the challenge of their evaluation in such a heterogeneous pathology.
Collapse
Affiliation(s)
- Delphine Kervella
- CHU Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, ITUN, Nantes, France; Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, Service de Néphrologie et d'immunologie clinique, ITUN, Nantes, France; Nantes Université, CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France.
| |
Collapse
|
5
|
Hodgson R, Xu X, Anzilotti C, Deobagkar-Lele M, Crockford TL, Kepple JD, Cawthorne E, Bhandari A, Cebrian-Serrano A, Wilcock MJ, Davies B, Cornall RJ, Bull KR. NDRG1 is induced by antigen-receptor signaling but dispensable for B and T cell self-tolerance. Commun Biol 2022; 5:1216. [PMID: 36357486 PMCID: PMC9649591 DOI: 10.1038/s42003-022-04118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Peripheral tolerance prevents the initiation of damaging immune responses by autoreactive lymphocytes. While tolerogenic mechanisms are tightly regulated by antigen-dependent and independent signals, downstream pathways are incompletely understood. N-myc downstream-regulated gene 1 (NDRG1), an anti-cancer therapeutic target, has previously been implicated as a CD4+ T cell clonal anergy factor. By RNA-sequencing, we identified Ndrg1 as the third most upregulated gene in anergic, compared to naïve follicular, B cells. Ndrg1 is upregulated by B cell receptor activation (signal one) and suppressed by co-stimulation (signal two), suggesting that NDRG1 may be important in B cell tolerance. However, though Ndrg1-/- mice have a neurological defect mimicking NDRG1-associated Charcot-Marie-Tooth (CMT4d) disease, primary and secondary immune responses were normal. We find that B cell tolerance is maintained, and NDRG1 does not play a role in downstream responses during re-stimulation of in vivo antigen-experienced CD4+ T cells, demonstrating that NDGR1 is functionally redundant for lymphocyte anergy.
Collapse
Affiliation(s)
- Rose Hodgson
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xijin Xu
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Consuelo Anzilotti
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jessica D Kepple
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aneesha Bhandari
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Wilcock
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard J Cornall
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Katherine R Bull
- MRC Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
6
|
Geng CL, Chen JY, Song TY, Jung JH, Long M, Song MF, Ji T, Min BS, Lee JG, Peng B, Pu YS, Fan HJ, Hao P, Zhou Q, Shin EC, Cang Y. Lenalidomide bypasses CD28 co-stimulation to reinstate PD-1 immunotherapy by activating Notch signaling. Cell Chem Biol 2022; 29:1260-1272.e8. [PMID: 35732177 DOI: 10.1016/j.chembiol.2022.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Programmed cell death protein 1 (PD-1) checkpoint blockade therapy requires the CD28 co-stimulatory receptor for CD8+ T cell expansion and cytotoxicity. However, CD28 expression is frequently lost in exhausted T cells and during immune senescence, limiting the clinical benefits of PD-1 immunotherapy in individuals with cancer. Here, using a cereblon knockin mouse model that regains in vivo T cell response to lenalidomide, an immunomodulatory imide drug, we show that lenalidomide reinstates the anti-tumor activity of CD28-deficient CD8+ T cells after PD-1 blockade. Lenalidomide redirects the CRL4Crbn ubiquitin ligase to degrade Ikzf1 and Ikzf3 in T cells and unleashes paracrine interleukin-2 (IL-2) and intracellular Notch signaling, which collectively bypass the CD28 requirement for activation of intratumoral CD8+ T cells and inhibition of tumor growth by PD-1 blockade. Our results suggest that PD-1 immunotherapy can benefit from a lenalidomide combination when treating solid tumors infiltrated with abundant CD28- T cells.
Collapse
Affiliation(s)
- Chen-Lu Geng
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jun-Yi Chen
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian-Yu Song
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China; Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jae Hyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Long
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Min-Fang Song
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tong Ji
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Byung Soh Min
- Department of Surgery, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bo Peng
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yi-Sheng Pu
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hong-Jie Fan
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Qi Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yong Cang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
7
|
Yuan Y, Kolios AGA, Liu Y, Zhang B, Li H, Tsokos GC, Zhang X. Therapeutic potential of interleukin-2 in autoimmune diseases. Trends Mol Med 2022; 28:596-612. [PMID: 35624009 DOI: 10.1016/j.molmed.2022.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are characterized by dysregulation and aberrant activation of cells in the immune system. Therefore, restoration of the immune balance represents a promising therapeutic target in autoimmune diseases. Interleukin-2 (IL-2) can promote the expansion and differentiation of different immune cell subsets dose-dependently. At high doses, IL-2 can promote the differentiation and expansion of effector and memory T cells, whereas at low doses, IL-2 can promote the differentiation, survival, and function of regulatory T (Treg) cells, a CD4+ T cell subset that is essential for the maintenance of immune homeostasis and immune tolerance. Therefore, IL-2 exerts immunostimulatory and immunosuppressive effects in autoimmune diseases. The immunoregulatory role of low-dose IL-2 has sparked excitement for the therapeutic exploration of modulating the IL-2-Treg axis in the context of autoimmune diseases. In this review, we discuss recent advances in the therapeutic potential of IL-2 or IL-2-derived molecules in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yeshuang Yuan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Antonios G A Kolios
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Bo Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
8
|
McCall JL, Varney ME, Rice E, Dziadowicz SA, Hall C, Blethen KE, Hu G, Barnett JB, Martinez I. Prenatal Cadmium Exposure Alters Proliferation in Mouse CD4 + T Cells via LncRNA Snhg7. Front Immunol 2022; 12:720635. [PMID: 35087510 PMCID: PMC8786704 DOI: 10.3389/fimmu.2021.720635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Prenatal cadmium (Cd) exposure leads to immunotoxic phenotypes in the offspring affecting coding and non-coding genes. Recent studies have shown that long non-coding RNAs (lncRNAs) are integral to T cell regulation. Here, we investigated the role of long non-coding RNA small nucleolar RNA host gene 7 (lncSnhg7) in T cell proliferation. Methods RNA sequencing was used to analyze the expression of lncRNAs in splenic CD4+ T cells with and without CD3/CD28 stimulation. Next, T cells isolated from offspring exposed to control or Cd water throughout mating and gestation were analyzed with and without stimulation with anti-CD3/CD28 beads. Quantitative qPCR and western blotting were used to detect RNA and protein levels of specific genes. Overexpression of a miR-34a mimic was achieved using nucleofection. Apoptosis was measured using flow cytometry and luminescence assays. Flow cytometry was also used to measure T cell proliferation in culture. Finally, lncSnhg7 was knocked down in splenic CD4+ T cells with lentivirus to assess its effect on proliferation. Results We identified 23 lncRNAs that were differentially expressed in stimulated versus unstimulated T cells, including lncSnhg7. LncSnhg7 and a downstream protein, GALNT7, are upregulated in T cells from offspring exposed to Cd during gestation. Overexpression of miR-34a, a regulator of lncSnhg7 and GALNT7, suppresses GALNT7 protein levels in primary T cells, but not in a mouse T lymphocyte cell line. The T cells isolated from Cd-exposed offspring exhibit increased proliferation after activation in vitro, but Treg suppression and CD4+ T cell apoptosis are not affected by prenatal Cd exposure. Knockdown on lncSnhg7 inhibits proliferation of CD4+ T cells. Conclusion Prenatal Cd exposure alters the expression of lncRNAs during T cell activation. The induction of lncSnhg7 is enhanced in splenic T cells from Cd offspring resulting in the upregulation of GALNT7 protein and increased proliferation following activation. miR-34a overexpression decreased GALNT7 expression and knockdown of lncSnhg7 inhibited proliferation suggesting that the lncSnhg7/miR-34a/GALNT7 is an important pathway in primary CD4+ T cells. These data highlight the need to understand the consequences of environmental exposures on lncRNA functions in non-cancerous cells as well as the effects in utero.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Melinda E. Varney
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Emily Rice
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Casey Hall
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Bioinformatics Core, West Virginia University, Morgantown, WV, United States
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Ivan Martinez
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
9
|
Abstract
Failure of regulatory T (Treg) cells to properly control immune responses leads invariably to autoimmunity and organ damage. Decreased numbers or impaired function of Treg cells, especially in the context of inflammation, has been documented in many human autoimmune diseases. Restoration of Treg cell fitness and/or expansion of their numbers using low-dose natural IL-2, the main cytokine driving Treg cell survival and function, has demonstrated clinical efficacy in early clinical trials. Genetically modified IL-2 with an extended half-life and increased selectivity for Treg cells is now in clinical development. Administration of IL-2 combined with therapies targeting other pathways involved in the expression of autoimmune diseases should further enhance its therapeutic potential. Ongoing clinical efforts that capitalize on the early clinical success of IL-2 treatment should bring the use of this cytokine to the forefront of biological treatments for autoimmune diseases.
Collapse
|
10
|
Yang J, Lickliter JD, Hillson JL, Means GD, Sanderson RJ, Carley K, Tercero A, Manjarrez KL, Wiley JR, Peng SL. First-in-human study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of ALPN-101, a dual CD28/ICOS antagonist, in healthy adult subjects. Clin Transl Sci 2021; 14:1314-1326. [PMID: 33503289 PMCID: PMC8301585 DOI: 10.1111/cts.12983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
ALPN-101 (ICOSL vIgD-Fc) is an Fc fusion protein of a human inducible T cell costimulatory ligand (ICOSL) variant immunoglobulin domain (vIgD) designed to inhibit the cluster of differentiation 28 (CD28) and inducible T cell costimulator (ICOS) pathways simultaneously. A first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of ALPN-101 in healthy adult subjects. ALPN-101 was generally well-tolerated with no evidence of cytokine release, clinically significant immunogenicity, or severe adverse events following single subcutaneous (SC) doses up to 3 mg/kg or single intravenous (IV) doses up to 10 mg/kg or up to 4 weekly IV doses of up to 1 mg/kg. ALPN-101 exhibited a dose-dependent increase in exposure with an estimated terminal half-life of 4.3-8.6 days and SC bioavailability of 60.6% at 3 mg/kg. Minimal to modest accumulation in exposure was observed with repeated IV dosing. ALPN-101 resulted in a dose-dependent increase in maximum target saturation and duration of high-level target saturation. Consistent with its mechanism of action, ALPN-101 inhibited cytokine production in whole blood stimulated by Staphylococcus aureus enterotoxin B ex vivo, as well as antibody responses to keyhole limpet hemocyanin immunization, reflecting immunomodulatory effects upon T cell and T-dependent B cell responses, respectively. In conclusion, ALPN-101 was well-tolerated in healthy subjects with dose-dependent PK and PD consistent with the known biology of the CD28 and ICOS costimulatory pathways. Further clinical development of ALPN-101 in inflammatory and/or autoimmune diseases is therefore warranted.
Collapse
Affiliation(s)
- Jing Yang
- Alpine Immune Sciences, Inc.SeattleWashingtonUSA
| | | | | | | | | | - Kay Carley
- Alpine Immune Sciences, Inc.SeattleWashingtonUSA
| | | | | | | | | |
Collapse
|
11
|
Lioulios G, Fylaktou A, Papagianni A, Stangou M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin Immunol 2021; 225:108685. [PMID: 33549833 DOI: 10.1016/j.clim.2021.108685] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Aging results in substantial changes in almost all cellular subpopulations within the immune system, including functional and phenotypic alterations. T lymphocytes, as the main representative population of cellular immunity, have been extensively studied in terms of modifications and adjustments during aging. Phenotypic alterations are attributed to three main mechanisms; a reduction of naïve T cell population with a shift to more differentiated forms, a subsequent oligoclonal expansion of naïve T cells characterized by repertoire restriction, and replicative insufficiency after repetitive activation. These changes and the subsequent phenotypic disorders are comprised in the term "immunosenescence". Similar changes seem to occur in chronic kidney disease, with T cells of young patients resembling those of healthy older individuals. A broad range of surface markers can be utilized to identify immunosenescent T cells. In this review, we will discuss the most important senescence markers and their potential connection with impaired renal function.
Collapse
Affiliation(s)
- Georgios Lioulios
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration Hospital, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| | - Maria Stangou
- Department of Nephrology, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
12
|
Bhatta A, Chan MA, Benedict SH. Engagement of CD45 alters early signaling events in human T cells co-stimulated through TCR + CD28. Cell Immunol 2020; 353:104130. [PMID: 32446033 DOI: 10.1016/j.cellimm.2020.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Previously our lab has shown that co-stimulation of human T cells through different co-stimulatory molecules tune differentiation to different phenotypes. An open question is where in the signaling pathways induced by the co-stimulation do differences occur that contribute to outcome of differentiation. In this project, we investigate the early signaling process by comparing events that follow engagement of CD45 alone or in association with a co-stimulatory molecule: CD28. CD45 plays a crucial role to initiate T cell signaling by dephosphorylating a negatively regulatory tyrosine residue in Src family kinases such as Lck. First, we observed that engagement of CD45 alone induced signaling in T cells. We observed that TCR/CD3 stimulation with CD45 promoted prolonged Lck association with TCR/CD3 complex and Lck remained associated during TCR/CD3 + CD28 + CD45 stimulation as well. We concluded that Lck association is dependent on TCR/CD3 and CD45 engagement. Hence, CD45 altered early signaling events in T cells.
Collapse
Affiliation(s)
- Anuja Bhatta
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States.
| | - Marcia A Chan
- Department of Pediatrics, Division of Allergy, Asthma, and Immunology, Children's Mercy Hospital, Kansas City, MO, United States
| | - Stephen H Benedict
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
13
|
Abbas AK, Trotta E, R Simeonov D, Marson A, Bluestone JA. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol 2019; 3:3/25/eaat1482. [PMID: 29980618 DOI: 10.1126/sciimmunol.aat1482] [Citation(s) in RCA: 379] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Interleukin-2 (IL-2), the first cytokine that was molecularly cloned, was shown to be a T cell growth factor essential for the proliferation of T cells and the generation of effector and memory cells. On the basis of this activity, the earliest therapeutic application of IL-2 was to boost immune responses in cancer patients. Therefore, it was a surprise that genetic deletion of the cytokine or its receptor led not only to the expected immune deficiency but also to systemic autoimmunity and lymphoproliferation. Subsequent studies established that IL-2 is essential for the maintenance of Foxp3+ regulatory T cells (Treg cells), and in its absence, there is a profound deficiency of Treg cells and resulting autoimmunity. We now know that IL-2 promotes the generation, survival, and functional activity of Treg cells and thus has dual and opposing functions: maintaining Treg cells to control immune responses and stimulating conventional T cells to promote immune responses. It is well documented that certain IL-2 conformations result in selective targeting of Treg cells by increasing reliance on CD25 binding while compromising CD122 binding. Recent therapeutic strategies have emerged to use IL-2, monoclonal antibodies to IL-2, or IL-2 variants to boost Treg cell numbers and function to treat autoimmune diseases while dealing with the continuing challenges to minimize the generation of effector and memory cells, natural killer cells, and other innate lymphoid populations.
Collapse
Affiliation(s)
- Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Eleonora Trotta
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Kusumoto Y, Okuyama H, Shibata T, Konno K, Takemoto Y, Maekawa D, Kononaga T, Ishii T, Akashi-Takamura S, Saitoh SI, Ikebuchi R, Moriya T, Ueda M, Miyake K, Ono S, Tomura M. Epithelial membrane protein 3 (Emp3) downregulates induction and function of cytotoxic T lymphocytes by macrophages via TNF-α production. Cell Immunol 2019; 324:33-41. [PMID: 29269102 DOI: 10.1016/j.cellimm.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/22/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Tetraspanin membrane protein, epithelial membrane protein 3 (Emp3), is expressed in lymphoid tissues. Herein, we have examined the Emp3 in antigen presenting cell (APC) function in the CD8+ cytotoxic T lymphocytes (CTLs) induction. Emp3-overexpressing RAW264.7 macrophage cell line derived from BALB/c mice reduced anti-C57BL/6 alloreactive CTL induction, while Emp3-knockdown RAW264.7 enhanced it compared with parent RAW267.4. Emp3-overexpressing RAW264.7 inhibited, but Emp3-knockdown RAW264.7 augmented, CD8+ T cell proliferation, interferon-γ secretion, IL-2 consumption, and IL-2Rα expression on CD8+ T cells. The supernatant from co-culture with Emp3-overexpressing RAW264.7 contained higher amount of TNF-α, and TNF- α neutralization significantly restored all these inhibitions and the alloreactive CTL induction. These results suggest that Emp3 in allogeneic APCs possesses the inhibitory function of alloreactive CTL induction by downregulation of IL-2Rα expression CD8+ T cells via an increase in TNF-α production. This demonstrates a novel mechanism for regulating CTL induction by Emp3 in APCs through TNF-α production.
Collapse
Affiliation(s)
- Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| | - Hiromi Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takuma Shibata
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kazunori Konno
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yusuke Takemoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Daisuke Maekawa
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Tomoyuki Kononaga
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Takashi Ishii
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Sachiko Akashi-Takamura
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shin-Ichiroh Saitoh
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ryoyo Ikebuchi
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Taiki Moriya
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Mizuki Ueda
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kensuke Miyake
- Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| |
Collapse
|
15
|
Chen Q, Guo X, Deng N, Liu L, Chen S, Wang A, Li R, Huang Y, Ding X, Yu H, Hu S, Nie H. α-galactosylceramide generates lung regulatory T cells through the activated natural killer T cells in mice. J Cell Mol Med 2018; 23:1072-1085. [PMID: 30421497 PMCID: PMC6349240 DOI: 10.1111/jcmm.14008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/13/2018] [Accepted: 10/15/2018] [Indexed: 12/20/2022] Open
Abstract
Our previous study showed that intraperitoneal injection of α-galactosylceramide (α-GalCer) has the ability to activate lung iNKT cells, but α-GalCer-activated iNKT cells do not result in airway inflammation in wild-type (WT) mice. Many studies showed that iNKT cells had the capacity to induce Treg cells, which gave rise to peripheral tolerance. Therefore, we examined the influence of intraperitoneal administration of α-GalCer on the expansion and suppressive activity of lung Treg cells using iNKT cell-knockout mice and co-culture experiments in vitro. We also compared airway inflammation and airway hyperresponsiveness (AHR) after α-GalCer administration in specific anti-CD25 mAb-treated mice. Our data showed that intraperitoneal injection of α-GalCer could promote the expansion of lung Treg cells in WT mice, but not in iNKT cell-knockout mice. However, α-GalCer administration could not boost suppressive activity of Treg cells in WT mice and iNKT cell-knockout mice. Interestingly, functional inactivation of Treg cells could induce airway inflammation and AHR in WT mice treated with α-GalCer. Furthermore, α-GalCer administration could enhance iNKT cells to secrete IL-2, and neutralization of IL-2 reduced the expansion of Treg cells in vivo and in vitro. Thus, intraperitoneal administration of α-GalCer can induce the generation of lung Treg cells in mice through the release of IL-2 by the activated iNKT cells.
Collapse
Affiliation(s)
- Qianhui Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuxue Guo
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nishan Deng
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Liu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ailing Wang
- Nursing Department, Wuhan University School of Health Sciences, Wuhan, China
| | - Ruiyun Li
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Huang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuhong Ding
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongying Yu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Suping Hu
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanxiang Nie
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Yang J, Hu L. Immunomodulators targeting the PD-1/PD-L1 protein-protein interaction: From antibodies to small molecules. Med Res Rev 2018; 39:265-301. [PMID: 30215856 DOI: 10.1002/med.21530] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has made great strides in the recent decade, especially in the area of immune checkpoint blockade. The outstanding efficacy, prolonged durability of effect, and rapid assimilation of anti-PD-1 and anti-PD-L1 monoclonal antibodies in clinical practice have been nothing short of a medical breakthrough in the treatment of numerous malignancies. The major advantages of these therapeutic antibodies over their small molecule counterparts have been their high binding affinity and target specificity. However, antibodies do have their flaws including immune-related toxicities, inadequate pharmacokinetics and tumor penetration, and high cost burden to manufacturers and consumers. These limitations hinder broader clinical applications of the antibodies and have heightened interests in developing the alternative small molecule platform that includes peptidomimetics and peptides to target the PD-1/PD-L1 immune checkpoint system. The progress on these small molecule alternatives has been relatively slow compared to that of the antibodies. Fortunately, recent structural studies of the interactions among PD-1, PD-L1, and their respective antibodies have revealed key hotspots on PD-1 and PD-L1 that may facilitate drug discovery efforts for small molecule immunotherapeutics. This review is intended to discuss key concepts in immuno-oncology, describe the successes and shortcomings of PD-1/PD-L1 antibody-based therapies, and to highlight the recent development of small molecule inhibitors of the PD-1/PD-L1 protein-protein interaction.
Collapse
Affiliation(s)
- Jeffrey Yang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Longqin Hu
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
17
|
RNA stability regulates human T cell leukemia virus type 1 gene expression in chronically-infected CD4 T cells. Virology 2017; 508:7-17. [PMID: 28478312 DOI: 10.1016/j.virol.2017.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/22/2022]
Abstract
Regulation of expression of HTLV-1 gene products from integrated proviruses plays an important role in HTLV-1-associated disease pathogenesis. Previous studies have shown that T cell receptor (TCR)- and phorbol ester (PMA) stimulation of chronically infected CD4 T cells increases the expression of integrated HTLV-1 proviruses in latently infected cells, however the mechanism remains unknown. Analysis of HTLV-1 RNA and protein species following PMA treatment of the latently HTLV-1-infected, FS and SP T cell lines demonstrated rapid induction of tax/rex mRNA. This rapid increase in tax/rex mRNA was associated with markedly enhanced tax/rex mRNA stability while the stability of unspliced or singly spliced HTLV-1 RNAs did not increase. Tax/rex mRNA in the HTLV-1 constitutively expressing cell lines exhibited high basal stability even without PMA treatment. Our data support a model whereby T cell activation leads to increased HTLV-1 gene expression at least in part through increased tax/rex mRNA stability.
Collapse
|
18
|
Svedova J, Tsurutani N, Liu W, Khanna KM, Vella AT. TNF and CD28 Signaling Play Unique but Complementary Roles in the Systemic Recruitment of Innate Immune Cells after Staphylococcus aureus Enterotoxin A Inhalation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4510-21. [PMID: 27183621 PMCID: PMC4875807 DOI: 10.4049/jimmunol.1600113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/27/2016] [Indexed: 01/12/2023]
Abstract
Staphylococcus aureus enterotoxins cause debilitating systemic inflammatory responses, but how they spread systemically and trigger inflammatory cascade is unclear. In this study, we showed in mice that after inhalation, Staphylococcus aureus enterotoxin A rapidly entered the bloodstream and induced T cells to orchestrate systemic recruitment of inflammatory monocytes and neutrophils. To study the mechanism used by specific T cells that mediate this process, a systems approach revealed inducible and noninducible pathways as potential targets. It was found that TNF caused neutrophil entry into the peripheral blood, whereas CD28 signaling, but not TNF, was needed for chemotaxis of inflammatory monocytes into blood and lymphoid tissue. However, both pathways triggered local recruitment of neutrophils into lymph nodes. Thus, our findings revealed a dual mechanism of monocyte and neutrophil recruitment by T cells relying on overlapping and nonoverlapping roles for the noninducible costimulatory receptor CD28 and the inflammatory cytokine TNF. During sepsis, there might be clinical value in inhibiting CD28 signaling to decrease T cell-mediated inflammation and recruitment of innate cells while retaining bioactive TNF to foster neutrophil circulation.
Collapse
Affiliation(s)
- Julia Svedova
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Naomi Tsurutani
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Wenhai Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Kamal M Khanna
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT 06030
| |
Collapse
|
19
|
Pleiotropic Effects of IL-2 on Cancer: Its Role in Cervical Cancer. Mediators Inflamm 2016; 2016:2849523. [PMID: 27293315 PMCID: PMC4880719 DOI: 10.1155/2016/2849523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
IL-2 receptor (IL-2R) signalling is critical for normal lymphocyte proliferation, but its role in cervical cancer is not fully understood. The receptor is composed of three chains: IL-2α, IL-2β, and IL-2γ. Intracellular signalling is initiated by ligand-induced heterodimerization of the IL-2β and IL-2γ chains, resulting in the activation of multiple intracellular kinases. Recently, IL-2R was shown to be expressed on nonhaematopoietic cells, especially on several types of tumour cells. However, the function of this receptor on malignant cells has not been clearly defined. The expression of IL-2R and the production of IL-2 in cervical cancer cells have been documented as well as expression of molecules of the JAK-STAT pathway. In the current review we have highlighted the differences in the responses of molecules downstream from the IL-2R in normal lymphocytes and tumour cells that could explain the presence of tumour cells in an environment in which cytotoxic lymphocytes also exist and compete and also the effect of different concentrations of IL-2 that could activate effector cells of the immune system cells, which favour the elimination of tumour cells, or concentrations that may promote a regulatory microenvironment in which tumour cells can easily grow.
Collapse
|
20
|
Miyajima C, Itoh Y, Inoue Y, Hayashi H. Positive Regulation of Interleukin-2 Expression by a Pseudokinase, Tribbles 1, in Activated T Cells. Biol Pharm Bull 2016; 38:1126-33. [PMID: 26235576 DOI: 10.1248/bpb.b15-00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tribbles 1 (TRB1), a member of the Tribbles family, is a pseudokinase that is conserved among species and implicated in various human diseases including leukemia, cardiovascular diseases, and metabolic disorders. However, the role of TRB1 in the immune response is not understood. To evaluate this role, we examined regulation of TRB1 expression and the function of TRB1 in interleukin-2 (IL-2) induction in Jurkat cells, a human acute T cell leukemia cell line. We found that TRB1 was strongly induced by phorbol 12-myristate 13-acetate (PMA) and ionomycin in these cells. IL-2 expression was induced in Jurkat cells activated by PMA and ionomycin; however, knockdown of TRB1 resulted in decreased induction of IL-2. TRB1 null Jurkat cells established using the CRISPR/Cas9 system also showed reduction of IL-2 expression on PMA/ionomycin stimulation. TRB1 knockdown also markedly inhibited IL-2 promoter activation. To determine the mechanism of the stimulatory effect on IL-2 induction, we focused on histone deacetylases (HDACs), and found that HDAC1 preferentially interacts with TRB1. TRB1 suppressed the interaction of HDAC1 with nuclear factor of activated T cells 2 (NFAT2), which is a crucial transcription factor for IL-2 induction. These results indicate that TRB1 is a positive regulator of IL-2 induction in activated T cells.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | | | | | | |
Collapse
|
21
|
Delgoffe GM, Powell JD. Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Mol Immunol 2016; 68:492-6. [PMID: 26256793 DOI: 10.1016/j.molimm.2015.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/10/2015] [Accepted: 07/21/2015] [Indexed: 12/23/2022]
Abstract
Through the direct control of infection or by providing cytokine signals to other cellular players, T cells play a central role in the orchestration of the immune response. However, in many disease states, T cells are rendered dysfunctional, unable to carry out their effector functions. As T cell activation is bioenergetically demanding, some T cell dysfunction can have metabolic underpinnings. In this review, we will discuss how T cells are programmed to fuel their effector response, and how programmed or pathologic changes can disrupt their ability to generate the energy needed to proliferate and carry out their critical functions.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Tumor Microenvironment Center, Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, United States.
| | - Jonathan D Powell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21223, United States
| |
Collapse
|
22
|
Pham MN, von Herrath MG, Vela JL. Antigen-Specific Regulatory T Cells and Low Dose of IL-2 in Treatment of Type 1 Diabetes. Front Immunol 2016; 6:651. [PMID: 26793191 PMCID: PMC4707297 DOI: 10.3389/fimmu.2015.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in preventing effector T-cell (Teff) targeting of self-antigens that can lead to tissue destruction in autoimmune settings, including type 1 diabetes (T1D). Autoimmunity is caused in part by an imbalance between Teff and Tregs. Early attempts to treat with immunosuppressive agents have led to serious side effects, thus requiring a more targeted approach. Low-dose IL-2 (LD IL-2) can provide immunoregulation with few side effects by preferentially acting on Tregs to drive tolerance. The concept of LD IL-2 as a therapeutic approach is supported by data in mouse models where autoimmunity is cured and further strengthened by success in human clinical studies in hepatitis C virus-induced vasculitis, chronic graft-versus-host disease, and Alopecia areata. Treatment will require identification of a safe therapeutic window, which is a difficult task given that patients are reported to have deficient or defective IL-2 production or signaling and have experienced mild activation of NK cells and eosinophils with LD IL-2 therapy. In T1D, an LD IL-2 clinical trial concluded that Tregs can be safely expanded in humans; however, the study was not designed to address efficacy. Antigen-specific therapies have also aimed at regulation of the autoimmune response but have been filled with disappointment despite an extensive list of diverse islet antigens tested in humans. This approach could be enhanced through the addition of LD IL-2 to the antigenic treatment regimen to improve the frequency and function of antigen-specific Tregs, without global immunosuppression. Here, we will discuss the use of LD IL-2 and islet antigen to enhance antigen-specific Tregs in T1D and focus on what is known about their immunological impact, their safety, and potential efficacy, and need for better methods to identify therapeutic effectiveness.
Collapse
Affiliation(s)
- Minh N Pham
- Novo Nordisk Research Center, Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | | |
Collapse
|
23
|
Liu Z, Gerner MY, Van Panhuys N, Levine AG, Rudensky AY, Germain RN. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 2015; 528:225-30. [PMID: 26605524 PMCID: PMC4702500 DOI: 10.1038/nature16169] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022]
Abstract
FOXP3(+) regulatory T cells (Treg cells) prevent autoimmunity by limiting the effector activity of T cells that have escaped thymic negative selection or peripheral inactivation. Despite the information available about molecular factors mediating the suppressive function of Treg cells, the relevant cellular events in intact tissues remain largely unexplored, and whether Treg cells prevent activation of self-specific T cells or primarily limit damage from such cells has not been determined. Here we use multiplex, quantitative imaging in mice to show that, within secondary lymphoid tissues, highly suppressive Treg cells expressing phosphorylated STAT5 exist in discrete clusters with rare IL-2-positive T cells that are activated by self-antigens. This local IL-2 induction of STAT5 phosphorylation in Treg cells is part of a feedback circuit that limits further autoimmune responses. Inducible ablation of T cell receptor expression by Treg cells reduces their regulatory capacity and disrupts their localization in clusters, resulting in uncontrolled effector T cell responses. Our data thus reveal that autoreactive T cells are activated to cytokine production on a regular basis, with physically co-clustering T cell receptor-stimulated Treg cells responding in a negative feedback manner to suppress incipient autoimmunity and maintain immune homeostasis.
Collapse
Affiliation(s)
- Zhiduo Liu
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | - Michael Y Gerner
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | - Nicholas Van Panhuys
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| | - Andrew G Levine
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892, USA
| |
Collapse
|
24
|
Tuftsin-derived T-peptide prevents cellular immunosuppression and improves survival rate in septic mice. Sci Rep 2015; 5:16725. [PMID: 26577833 PMCID: PMC4649719 DOI: 10.1038/srep16725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022] Open
Abstract
The primary mechanisms of sepsis induced cellular immunesuppression involve immune dysfunction of T lymphocytes and negative immunoregulation of regulatory T cells (Tregs). It has been found that tuftsin is an immune modulating peptide derived from IgG in spleen. T-peptide is one of tuftsin analogs. Herein, we examined the effect of T-peptide on cell-mediated immunity in the presence of lipopolysaccharide (LPS) and the survival rate in septic mice. T-peptide regulated the proliferative ability of CD4+CD25− T cells in dual responses. Meanwhile, 10 and 100 μg/ml T-peptides were able to enhance the apoptotic rate of CD4+CD25− T cells compared with 1 μg/ml T-peptide, but markedly lowered interleukin (IL)-2 levels. When CD4+CD25+ Tregs were treated with T-peptide for 24 hours, and co-cultured with normal CD4+CD25− T cells, the suppressive ability of CD4+CD25+ Tregs on CD4+CD25− T cells was significantly lowered, along with decreased expression in forkhead/winged helix transcription factor p-3 (Foxp-3) as well as cytotoxic T lymphocyte-associated antigen (CTLA)-4, and secretion of transforming growth factor (TGF)-β. Moreover, T-peptide has the ability to improve outcome of septic mice in a dose- and time- dependent manner, and associated with improvement in the microenvironment of cellular immunosuppression in septic mice.
Collapse
|
25
|
Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun 2015; 6:8698. [PMID: 26507712 PMCID: PMC4846325 DOI: 10.1038/ncomms9698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022] Open
Abstract
Induction of T-cell clonal anergy involves serial activation of transcription factors, including NFAT and Egr2/3. However, downstream effector mechanisms of these transcription factors are not fully understood yet. Here we identify Ndrg1 as an anergy factor induced by Egr2. Ndrg1 is upregulated by anergic signalling and maintained at high levels in resting anergic T cells. Overexpression of Ndrg1 mimics the anergic state and knockout of the gene prevents anergy induction. Interestingly, Ndrg1 is phosphorylated and degraded by CD28 signalling in a proteasome-dependent manner, explaining the costimulation dependence of anergy prevention. Similarly, IL-2 treatment of anergic T cells, under conditions that lead to the reversal of anergy, also induces Ndrg1 phosphorylation and degradation. Finally, older Ndrg1-deficient mice show T-cell hyperresponsiveness and Ndrg1-deficient T cells aggravate inducible autoimmune inflammation. Thus, Ndrg1 contributes to the maintenance of clonal anergy and inhibition of T-cell-mediated inflammation.
Collapse
|
26
|
Phetsouphanh C, Kelleher AD. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again. Front Immunol 2015; 6:391. [PMID: 26284074 PMCID: PMC4519685 DOI: 10.3389/fimmu.2015.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
27
|
Li CH, Lin MH, Chu SH, Tu PH, Fang CC, Yen CH, Liang PI, Huang JC, Su YC, Sytwu HK, Chen YMA. Role of glycine N-methyltransferase in the regulation of T-cell responses in experimental autoimmune encephalomyelitis. Mol Med 2015; 20:684-96. [PMID: 25535034 DOI: 10.2119/molmed.2014.00133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 12/12/2014] [Indexed: 01/18/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is known for its function as a tumor suppressor gene. Since 100% of female Gnmt(-/-) mice developed hepatocellular carcinoma, we hypothesized that Gnmt(-/-) mice may have defective immune surveillance. In this study, we examined the immune modulation of GNMT in T-cell responses using experimental autoimmune encephalomyelitis (EAE). The results showed that EAE severity was reduced significantly in Gnmt(-/-) mice. Pathological examination of the spinal cords revealed that Gnmt(-/-) mice had significantly lower levels of mononuclear cell infiltration and demyelination than the wild-type mice. In addition, quantitative real-time PCR showed that expression levels of proinflammatory cytokines, including interferon (IFN)-γ and interleukin (IL)-17A, were much lower in the spinal cord of Gnmt(-/-) than in that of wild-type mice. Accordingly, myelin oligodendrocyte glycoprotein (MOG)-specific T-cell proliferation and induction of T-helper (Th)1 and Th17 cells were markedly suppressed in MOG(35-55)-induced Gnmt(-/-) mice. Moreover, the number of regulatory T (Treg) cells was increased significantly in these mice. When the T-cell receptor was stimulated, the proliferative capacity and the activation status of mTOR-associated downstream signaling were decreased significantly in Gnmt(-/-) CD4(+) T cells via an IL-2- and CD25-independent manner. Moreover, GNMT deficiency enhanced the differentiation of Treg cells without affecting the differentiation of Th1 and Th17 cells. Furthermore, the severity of EAE in mice adoptive transferred with GNMT-deficient CD4(+) T cells was much milder than in those with wild-type CD4(+) T cells. In summary, our findings suggest that GNMT is involved in the pathogenesis of EAE and plays a crucial role in the regulation of CD4(+) T-cell functions.
Collapse
Affiliation(s)
- Chung-Hsien Li
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Han Chu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pang-Hsien Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chieh Fang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jason C Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chia Su
- National Laboratory Animal Center, National Applied Research Laboratories
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Ming Arthur Chen
- Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
28
|
Resolving Early Signaling Events in T-Cell Activation Leading to IL-2 and FOXP3 Transcription. Processes (Basel) 2014. [DOI: 10.3390/pr2040867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Heninger AK, Wentrup S, Al-Saeedi M, Schiessling S, Giese T, Wartha F, Meuer S, Schröder-Braunstein J. Immunomodulation of human intestinal T cells by the synthetic CD80 antagonist RhuDex®. IMMUNITY INFLAMMATION AND DISEASE 2014; 2:166-80. [PMID: 25505551 PMCID: PMC4257762 DOI: 10.1002/iid3.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/13/2014] [Accepted: 08/25/2014] [Indexed: 12/17/2022]
Abstract
Deregulated activation of mucosal lamina propria T cells plays a central role in the pathogenesis of intestinal inflammation. One of the means to attenuate T cell activation is by blocking the CD28/CD80 co-stimulatory pathway. Here we investigate RhuDex®, a small molecule that binds to human CD80, for its effects on the activation of lamina propria T cells employing a gut-culture model of inflammation. To this end, lamina propria leukocytes (LPL) and peripheral blood lymphocytes (PBL) were stimulated either through the CD3/T-cell-receptor complex or the CD2-receptor (CD2) employing agonistic monoclonal antibodies. Co-stimulatory signals were provided by CD80/CD86 present on lamina propria myeloid cells or LPS-activated peripheral blood monocytes. Results show that RhuDex® caused a profound reduction of LPL and PBL proliferation, while Abatacept (CTLA-4-Ig) inhibited LPL proliferation to a small degree, and had no effect on PBL proliferation. Furthermore, Abatacept significantly inhibited IL-2, TNF-α, and IFN-γ release from LPL, primarily produced by CD4+ T cells, where IL-2 blockage was surprisingly strong, suggesting a down-regulating effect on regulatory T cells. In contrast, in the presence of RhuDex®, secretion of IL-17, again mostly by CD4+ T cells, and IFN-γ was inhibited in LPL and PBL, yet IL-2 remained unaffected. Thus, RhuDex® efficiently inhibited lamina propria and peripheral blood T-cell activation in this pre-clinical study making it a promising drug candidate for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Anne-Kristin Heninger
- Institute for Immunology, University Hospital Heidelberg Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Sabine Wentrup
- Institute for Immunology, University Hospital Heidelberg Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Mohammed Al-Saeedi
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Serin Schiessling
- Institute for Immunology, University Hospital Heidelberg Im Neuenheimer Feld 305, 69120, Heidelberg, Germany ; Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, University Hospital Heidelberg Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Florian Wartha
- Medigene AG Lochhamer Str. 11, 82152, Planegg/Martinsried, Germany
| | - Stefan Meuer
- Institute for Immunology, University Hospital Heidelberg Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Jutta Schröder-Braunstein
- Institute for Immunology, University Hospital Heidelberg Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
30
|
Co-expression of tumor antigen and interleukin-2 from an adenoviral vector augments the efficiency of therapeutic tumor vaccination. Mol Ther 2014; 22:2107-2117. [PMID: 25023330 DOI: 10.1038/mt.2014.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/22/2014] [Indexed: 12/14/2022] Open
Abstract
We have previously shown that for the majority of antigens, adenoviral vaccines expressing the target antigen fused to the MHC associated invariant chain (Ii) induce an accelerated, augmented, and prolonged transgene-specific CD8(+) T-cell response. Here we describe a new adenoviral vaccine vector approach where the target antigen fused to Ii is expressed from the adenoviral E1 region and IL-2 is expressed from the E3 region. Immunization of mice with this new vector construct resulted in an augmented primary effector CD8(+) T-cell response. Furthermore, in a melanoma model we observed significantly prolonged tumor control in vaccinated wild type (WT) mice. The improved tumor control required antigen-specific cells, since no tumor control was observed, unless the melanoma cells expressed the vaccine targeted antigen. We also tested our new vaccine in immunodeficient (CD80/86 deficient) mice. Following vaccination with the IL-2 expressing construct, these mice were able to raise a delayed but substantial CD8(+) T-cell response, and to control melanoma growth nearly as efficaciously as similarly vaccinated WT mice. Taken together, these results demonstrate that current vaccine vectors can be improved and even tailored to meet specific demands: in the context of therapeutic vaccination, the capacity to promote an augmented effector T-cell response.
Collapse
|
31
|
Delgoffe GM, Vignali DAA. STAT heterodimers in immunity: A mixed message or a unique signal? JAKSTAT 2014; 2:e23060. [PMID: 24058793 PMCID: PMC3670269 DOI: 10.4161/jkst.23060] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/14/2023] Open
Abstract
Cytokine signals are essential for generating a robust and specialized immune response. These signals are typically transmitted via canonical STAT homodimers. However, the number of STAT molecules utilized by cytokine signaling cascades within immune cells are limited, and so the mechanism used to deliver complex signals remains elusive. Heterodimerization of STAT proteins is one potential mechanism for signals to be modified downstream of the receptor and may play an important role in dictating the targets of specific cytokine signaling. In this review, we discuss our current understanding of the prevalence of STAT heterodimers, how they are formed and what their physiologic role may be in vivo.
Collapse
Affiliation(s)
- Greg M Delgoffe
- Department of Immunology; St. Jude Children's Research Hospital; Memphis, TN USA
| | | |
Collapse
|
32
|
Liu C, Wang HC, Yu S, Jin R, Tang H, Liu YF, Ge Q, Sun XH, Zhang Y. Id1 expression promotes T regulatory cell differentiation by facilitating TCR costimulation. THE JOURNAL OF IMMUNOLOGY 2014; 193:663-672. [PMID: 24920844 DOI: 10.4049/jimmunol.1302554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T regulatory (Treg) cells play crucial roles in the regulation of cellular immunity. The development of Treg cells depends on signals from TCRs and IL-2Rs and is influenced by a variety of transcription factors. The basic helix-loop-helix proteins are known to influence TCR signaling thresholds. Whether this property impacts Treg differentiation is not understood. In this study, we interrogated the role of basic helix-loop-helix proteins in the production of Treg cells using the CD4 promoter-driven Id1 transgene. We found that Treg cells continued to accumulate as Id1 transgenic mice aged, resulting in a significant increase in Treg cell counts in the thymus as well as in the periphery compared with wild-type controls. Data from mixed bone marrow assays suggest that Id1 acts intrinsically on developing Treg cells. We made a connection between Id1 expression and CD28 costimulatory signaling because Id1 transgene expression facilitated the formation of Treg precursors in CD28(-/-) mice and the in vitro differentiation of Treg cells on thymic dendritic cells despite the blockade of costimulation by anti-CD80/CD86. Id1 expression also allowed in vitro Treg differentiation without anti-CD28 costimulation, which was at least in part due to enhanced production of IL-2. Notably, with full strength of costimulatory signals, however, Id1 expression caused modest but significant suppression of Treg induction. Finally, we demonstrate that Id1 transgenic mice were less susceptible to the induction of experimental autoimmune encephalomyelitis, thus illustrating the impact of Id1-mediated augmentation of Treg cell levels on cellular immunity.
Collapse
Affiliation(s)
- Chen Liu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | | | - Sen Yu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Rong Jin
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Hui Tang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Yuan-Feng Liu
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Qing Ge
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Xiao-Hong Sun
- Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Yu Zhang
- Department of Immunology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
33
|
Anthony K, More A, Zhang X. Activation of silenced cytokine gene promoters by the synergistic effect of TBP-TALE and VP64-TALE activators. PLoS One 2014; 9:e95790. [PMID: 24755922 PMCID: PMC3995891 DOI: 10.1371/journal.pone.0095790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/29/2014] [Indexed: 11/19/2022] Open
Abstract
Recent work has shown that the combinatorial use of multiple TALE activators can selectively activate certain cellular genes in inaccessible chromatin regions. In this study, we aimed to interrogate the activation potential of TALEs upon transcriptionally silenced immune genes in the context of non-immune cells. We designed a unique strategy, in which a single TALE fused to the TATA-box binding protein (TBP-TALE) is coupled with multiple VP64-TALE activators. We found that our strategy is significantly more potent than multiple TALE activators alone in activating expression of IL-2 and GM-CSF in diverse cell origins in which both genes are otherwise completely silenced. Chromatin analysis revealed that the gene activation was due in part to displacement of a distinctly positioned nucleosome. These studies provide a novel epigenetic mechanism for artificial gene induction and have important implications for targeted cancer immunotherapy, DNA vaccine development, as well as rational design of TALE activators.
Collapse
Affiliation(s)
- Kim Anthony
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
| | - Abhijit More
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Waickman AT, Powell JD. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol Rev 2013; 249:43-58. [PMID: 22889214 DOI: 10.1111/j.1600-065x.2012.01152.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Upon antigen recognition, naive T cells undergo rapid expansion and activation. The energy requirements for this expansion are formidable, and T-cell activation is accompanied by dramatic changes in cellular metabolism. Furthermore, the outcome of antigen engagement is guided by multiple cues derived from the immune microenvironment. Mammalian target of rapamycin (mTOR) is emerging as a central integrator of these signals playing a critical role in driving T-cell differentiation and function. Indeed, multiple metabolic programs are controlled by mTOR signaling. In this review, we discuss the role of mTOR in regulating metabolism and how these pathways intersect with the ability of mTOR to integrate cues that guide the outcome of T-cell receptor engagement.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
35
|
Roger PM, Hyvernat H, Ticchioni M, Kumar G, Dellamonica J, Bernardin G. The early phase of human sepsis is characterized by a combination of apoptosis and proliferation of T cells. J Crit Care 2012; 27:384-93. [PMID: 22824083 DOI: 10.1016/j.jcrc.2012.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 04/06/2012] [Accepted: 04/15/2012] [Indexed: 11/16/2022]
Abstract
PURPOSE T cell activation as well as unresponsiveness has been described in separate studies in sepsis. Our aim was to establish the coexistence of both T cell fate in human sepsis. PATIENTS AND METHODS This is a cross-sectional study of 48 patients presenting with severe sepsis or septic shock and 15 healthy controls. Cytofluorometric techniques were used to quantify T cell activation, apoptosis, proliferation, expression of costimulatory molecules, and cytokine secretion. RESULTS Patients with sepsis were characterized by a significant increase in the percentage of activated T cell subsets, as measured using CD69 marker, compared with healthy controls (P<.05). T cell proliferation as measured through Ki67 expression was obvious in infected patients for both CD4 and CD8 T cell subsets compared with controls (P ≤.006). T cell subset apoptosis as measured using Hoechst dye was also increased in infected patients compared with controls (P ≤.002). CD4 T cell proliferation was correlated with interleukin 2 secretion (R(2)=0.84, P<.001), whereas up-regulation of CD4 T cell apoptosis was correlated with CTLA-4 expression (R(2)=0.24, P=.001). No such similar relationship was observed for CD8(+) T cells. CONCLUSIONS Concomitant T cell proliferation and T cell apoptosis are observed in human sepsis, being related to a different pathway.
Collapse
Affiliation(s)
- Pierre-Marie Roger
- Service d'Infectiologie, Centre Hospitalier Universitaire de Nice, France.
| | | | | | | | | | | |
Collapse
|
36
|
Goldberg B, Bona C. Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents. J Cell Mol Med 2011; 15:1822-32. [PMID: 21435177 PMCID: PMC3918039 DOI: 10.1111/j.1582-4934.2011.01319.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/17/2011] [Indexed: 11/28/2022] Open
Abstract
The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3' end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4(+) T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Burt Goldberg
- Department of Chemistry, New York University, NY 10003-6688, USA.
| | | |
Collapse
|
37
|
López-Huertas MR, Mateos E, Díaz-Gil G, Gómez-Esquer F, Sánchez del Cojo M, Alcamí J, Coiras M. Protein kinase Ctheta is a specific target for inhibition of the HIV type 1 replication in CD4+ T lymphocytes. J Biol Chem 2011; 286:27363-77. [PMID: 21669868 DOI: 10.1074/jbc.m110.210443] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Integration of HIV-1 genome in CD4(+) T cells produces latent reservoirs with long half-life that impedes the eradication of the infection. Control of viral replication is essential to reduce the size of latent reservoirs, mainly during primary infection when HIV-1 infects CD4(+) T cells massively. The addition of immunosuppressive agents to highly active antiretroviral therapy during primary infection would suppress HIV-1 replication by limiting T cell activation, but these agents show potential risk for causing lymphoproliferative disorders. Selective inhibition of PKC, crucial for T cell function, would limit T cell activation and HIV-1 replication without causing general immunosuppression due to PKC being mostly expressed in T cells. Accordingly, the effect of rottlerin, a dose-dependent PKC inhibitor, on HIV-1 replication was analyzed in T cells. Rottlerin was able to reduce HIV-1 replication more than 20-fold in MT-2 (IC(50) = 5.2 μM) and Jurkat (IC(50) = 2.2 μM) cells and more than 4-fold in peripheral blood lymphocytes (IC(50) = 4.4 μM). Selective inhibition of PKC, but not PKCδ or -ζ, was observed at <6.0 μM, decreasing the phosphorylation at residue Thr(538) on the kinase catalytic domain activation loop and avoiding PKC translocation to the lipid rafts. Consequently, the main effector at the end of PKC pathway, NF-κB, was repressed. Rottlerin also caused a significant inhibition of HIV-1 integration. Recently, several specific PKC inhibitors have been designed for the treatment of autoimmune diseases. Using these inhibitors in combination with highly active antiretroviral therapy during primary infection could be helpful to avoid massive viral infection and replication from infected CD4(+) T cells, reducing the reservoir size at early stages of the infection.
Collapse
Affiliation(s)
- María Rosa López-Huertas
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Poirier N, Blancho G, Vanhove B. A more selective costimulatory blockade of the CD28-B7 pathway. Transpl Int 2010; 24:2-11. [DOI: 10.1111/j.1432-2277.2010.01176.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
39
|
Parish ST, Wu JE, Effros RB. Sustained CD28 expression delays multiple features of replicative senescence in human CD8 T lymphocytes. J Clin Immunol 2010; 30:798-805. [PMID: 20721608 PMCID: PMC2970803 DOI: 10.1007/s10875-010-9449-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/26/2010] [Indexed: 02/03/2023]
Abstract
CD28 costimulatory signal transduction in T lymphocytes is essential for optimal telomerase activity, stabilization of cytokine mRNAs, and glucose metabolism. During aging and chronic infection with HIV-1, there are increased proportions of CD8 T lymphocytes that lack CD28 expression and show additional features of replicative senescence. Moreover, the abundance of these cells correlates with decreased vaccine responsiveness, early mortality in the very old, and accelerated HIV disease progression. Here, we show that sustained expression of CD28, via gene transduction, retards the process of replicative senescence, as evidenced by enhanced telomerase activity, increased overall proliferative potential, and reduced secretion of pro-inflammatory cytokines. Nevertheless, the transduced cultures eventually do reach senescence, which is associated with increased CTLA-4 gene expression and a loss of CD28 cell surface expression. These findings further elucidate the central role of CD28 in the replicative senescence program, and may ultimately lead to novel therapies for diseases associated with replicative senescence.
Collapse
Affiliation(s)
- Stanley T. Parish
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 USA
| | - Jennifer E. Wu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 USA
| | - Rita B. Effros
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 USA
- UCLA AIDS Institute, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095 USA
| |
Collapse
|
40
|
Zhang X, Wei HX, Rui S, Wei H, Tian Z. Opposite effects of high and low doses of interleukin-2 on T cell-mediated hepatitis in mice (interleukin-2 on hepatitis). Hepatol Int 2010; 4:641-8. [PMID: 21063489 DOI: 10.1007/s12072-010-9196-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 07/09/2010] [Indexed: 12/16/2022]
Abstract
PURPOSE Concanavalin A (Con A)-induced hepatitis is an extensively used animal model of T cell-mediated acute hepatitis. A variety of cytokines, including interleukin 4 (IL-4), interferon gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α), have been shown to play important roles in Con A-induced liver injury. However, the role of IL-2, a critical cytokine in the development and function of T cells and a clinical therapeutics for virus infection and tumor, has not been carefully examined in this model. METHODS In this study, we investigated the function of IL-2 in Con A-induced hepatitis by using various strategies of rhIL-2 pretreatment. We treated mice with two rhIL-2 administration strategies: a single injection of high dose of rhIL-2 (IL-2(hi), 50 × 10(3) U/mouse) and four injections of low dose of rhIL-2 (IL-2(4lo), 5 × 10(3) U/mouse). RESULTS IL-2(hi) pretreatment ameliorated Con A-induced liver injury, while IL-2(4lo) aggravated Con A-induced liver injury. IL-2(hi) pretreatment reduced Con A-induced elevation of serum TNF-α while IL-2(4lo) pretreatment did not. Serum IL-4 and TNF-α were high 6 h after Con A injection in IL-2(4lo) mice, while it was undetectable in IL-2(hi) and non-pretreated mice. IL-2(hi) pretreatment reduced Con A-induced accumulation of T cells in liver while IL-2(4lo) pretreatment increased accumulation of NK cells. CONCLUSION Various strategies of rhIL-2 administration play different roles in Con A-induced hepatitis, suggesting the importance of IL-2 administrative regime in clinical liver diseases.
Collapse
Affiliation(s)
- Xiaoang Zhang
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
| | | | | | | | | |
Collapse
|
41
|
Petroff MG, Perchellet A. B7 family molecules as regulators of the maternal immune system in pregnancy. Am J Reprod Immunol 2010; 63:506-19. [PMID: 20384620 DOI: 10.1111/j.1600-0897.2010.00841.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Placental and fetal growth and development are associated with chronic exposure of the maternal immune system to fetally derived, paternally inherited antigens. Because maternal lymphocytes are aware of fetal antigens, active tolerance mechanisms are required to ensure unperturbed progression of pregnancy and delivery of a healthy newborn. These mechanisms of tolerance may include deletion, receptor downregulation, and anergy of fetal antigen-specific cells in lymphoid tissues, as well as regulation at the maternal-fetal interface by a variety of locally expressed immunoregulatory molecules. The B7 family of costimulatory molecules comprises one group of immunoregulatory molecules present in the decidua and placenta. B7 family members mediate both inhibitory and stimulatory effects on T-cell activation and effector functions and may play a critical role in maintaining tolerance to the fetus. Here, we review the known functions of the B7 family proteins in pregnancy.
Collapse
Affiliation(s)
- Margaret G Petroff
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
42
|
Kaminski MM, Sauer SW, Klemke CD, Süss D, Okun JG, Krammer PH, Gülow K. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. THE JOURNAL OF IMMUNOLOGY 2010; 184:4827-41. [PMID: 20335530 DOI: 10.4049/jimmunol.0901662] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article shows that T cell activation-induced expression of the cytokines IL-2 and -4 is determined by an oxidative signal originating from mitochondrial respiratory complex I. We also report that ciprofloxacin, a fluoroquinolone antibiotic, exerts immunosuppressive effects on human T cells suppressing this novel mechanism. Sustained treatment of preactivated primary human T cells with ciprofloxacin results in a dose-dependent inhibition of TCR-induced generation of reactive oxygen species (ROS) and IL-2 and -4 expression. This is accompanied by the loss of mitochondrial DNA and a resulting decrease in activity of the complex I. Consequently, using a complex I inhibitor or small interfering RNA-mediated downregulation of the complex I chaperone NDUFAF1, we demonstrate that TCR-triggered ROS generation by complex I is indispensable for activation-induced IL-2 and -4 expression and secretion in resting and preactivated human T cells. This oxidative signal (H(2)O(2)) synergizes with Ca(2+) influx for IL-2/IL-4 expression and facilitates induction of the transcription factors NF-kappaB and AP-1. Moreover, using T cells isolated from patients with atopic dermatitis, we show that inhibition of complex I-mediated ROS generation blocks disease-associated spontaneous hyperexpression and TCR-induced expression of IL-4. Prolonged ciprofloxacin treatment of T cells from patients with atopic dermatitis also blocks activation-induced expression and secretion of IL-4. Thus, our work shows that the activation phenotype of T cells is controlled by a mitochondrial complex I-originated oxidative signal.
Collapse
Affiliation(s)
- Marcin M Kaminski
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Parish ST, Kim S, Sekhon RK, Wu JE, Kawakatsu Y, Effros RB. Adenosine deaminase modulation of telomerase activity and replicative senescence in human CD8 T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2010; 184:2847-54. [PMID: 20147632 DOI: 10.4049/jimmunol.0903647] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased proportions of CD8 T lymphocytes lacking expression of the CD28 costimulatory receptor have been documented during both aging and chronic infection with HIV-1, and their abundance correlates with numerous deleterious clinical outcomes. CD28-negative cells also arise in cell cultures of CD8(+)CD28(+) following multiple rounds of Ag-driven proliferation, reaching the end stage of replicative senescence. The present study investigates the role of a second T cell costimulatory receptor component, adenosine deaminase (ADA), on the process of replicative senescence. We had previously reported that CD28 signaling is required for optimal telomerase upregulation. In this study, we show that the CD8(+)CD28(+) T lymphocytes that are ADA(+) have significantly greater telomerase activity than those that do not express ADA and that ADA is progressively lost as cultures progress to senescence. Because ADA converts adenosine to inosine, cells lacking this enzyme might be subject to prolonged exposure to adenosine, which has immunosuppressive effects. Indeed, we show that chronic exposure of CD8 T lymphocytes to exogenous adenosine accelerates the process of replicative senescence, causing a reduction in overall proliferative potential, reduced telomerase activity, and blunted IL-2 gene transcription. The loss of CD28 expression was accelerated, in part due to adenosine-induced increases in constitutive caspase-3, known to act on the CD28 promoter. These findings provide the first evidence for a role of ADA in modulating the process of replicative senescence and suggest that strategies to enhance this enzyme may lead to novel therapeutic approaches for pathologies associated with increases in senescent CD8 T lymphocytes.
Collapse
Affiliation(s)
- Stanley T Parish
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
44
|
Interleukin 2 and systemic lupus erythematosus. Autoimmun Rev 2009; 9:34-9. [DOI: 10.1016/j.autrev.2009.02.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 02/25/2009] [Indexed: 12/17/2022]
|
45
|
Vavassori S, Covey LR. Post-transcriptional regulation in lymphocytes: the case of CD154. RNA Biol 2009; 6:259-65. [PMID: 19395873 DOI: 10.4161/rna.6.3.8581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The control of mRNA decay is emerging as an important control point and a major contributor to gene expression in both immune and non-immune cells. The identification of protein factors and cis-acting elements responsible for transcript degradation has illuminated a comprehensive picture of precisely orchestrated events required to both regulate and establish the decay process. One gene that is highly regulated at the post-transcriptional level is CD40 ligand (CD154 or CD40L). CD154 on CD4(+) T cells is tightly controlled by an interacting network of transcriptional and post-transcriptional processes that result in precise surface levels of protein throughout an extended time course of antigen stimulation. The activation-induced stabilization of the CD154 transcript by a polypyrimidine tract-binding protein (PTB)-complex is a key event that corresponds to the temporal expression of CD154. In this review, we discuss known and potential roles of major mRNA decay pathways in lymphocytes and focus on the unique post-transcriptional mechanisms leading to CD154 expression by activated CD4(+) T cells.
Collapse
Affiliation(s)
- Stefano Vavassori
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
46
|
Liang S, Hosur KB, Nawar HF, Russell MW, Connell TD, Hajishengallis G. In vivo and in vitro adjuvant activities of the B subunit of Type IIb heat-labile enterotoxin (LT-IIb-B5) from Escherichia coli. Vaccine 2009; 27:4302-8. [PMID: 19450646 DOI: 10.1016/j.vaccine.2009.05.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/21/2009] [Accepted: 05/10/2009] [Indexed: 01/07/2023]
Abstract
The pentameric B subunit of the Escherichia coli LT-IIb enterotoxin (LT-IIb-B(5)) activates TLR2 signaling in macrophages. Herein we demonstrate that LT-IIb-B(5), in contrast to a TLR2-nonbinding point mutant, induces functional activation of bone marrow-derived dendritic cells and stimulates CD4(+) T cell proliferation, activities which suggested that LT-IIb-B(5) might function as an adjuvant in vivo. Indeed, in an intranasal mouse immunization model, LT-IIb-B(5) augmented specific mucosal and serum antibody responses to a co-administered immunogen, at levels which were almost comparable to those induced by intact LT-IIb holotoxin, a potent but toxic adjuvant. Therefore, LT-IIb-B(5) displays useful adjuvant properties which, combined with lack of enterotoxicity and relative stability against degradation, may find application in mucosal vaccines.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Periodontics/Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lin JT, Lineberry NB, Kattah MG, Su LL, Utz PJ, Fathman CG, Wu L. Naive CD4 t cell proliferation is controlled by mammalian target of rapamycin regulation of GRAIL expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5919-28. [PMID: 19414743 PMCID: PMC2853371 DOI: 10.4049/jimmunol.0803986] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we demonstrate that the E3 ubiquitin ligase gene related to anergy in lymphocytes (GRAIL) is expressed in quiescent naive mouse and human CD4 T cells and has a functional role in inhibiting naive T cell proliferation. Following TCR engagement, CD28 costimulation results in the expression of IL-2 whose signaling through its receptor activates the Akt-mammalian target of rapamycin (mTOR) pathway. Activation of mTOR allows selective mRNA translation, including the epistatic regulator of GRAIL, Otubain-1 (Otub1), whose expression results in the degradation of GRAIL and allows T cell proliferation. The activation of mTOR appears to be the critical component of IL-2R signaling regulating GRAIL expression. CTLA4-Ig treatment blocks CD28 costimulation and resultant IL-2 expression, whereas rapamycin and anti-IL-2 treatment block mTOR activation downstream of IL-2R signaling. Thus, all three of these biotherapeutics inhibit mTOR-dependent translation of mRNA transcripts, resulting in blockade of Otub1 expression, maintenance of GRAIL, and inhibition of CD4 T cell proliferation. These observations provide a mechanistic pathway sequentially linking CD28 costimulation, IL-2R signaling, and mTOR activation as important requirements for naive CD4 T cell proliferation through the regulation of Otub1 and GRAIL expression. Our findings also extend the role of GRAIL beyond anergy induction and maintenance, suggesting that endogenous GRAIL regulates general cell cycle and proliferation of primary naive CD4 T cells.
Collapse
Affiliation(s)
- Jack T. Lin
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Neil B. Lineberry
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Michael G. Kattah
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Leon L. Su
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - Paul J. Utz
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | - C. Garrison Fathman
- Stanford University School of Medicine, Department of Medicine, Division of Immunology and Rheumatology, Stanford, CA 94305
| | | |
Collapse
|
48
|
Parish ST, Wu JE, Effros RB. Modulation of T lymphocyte replicative senescence via TNF-{alpha} inhibition: role of caspase-3. THE JOURNAL OF IMMUNOLOGY 2009; 182:4237-43. [PMID: 19299722 DOI: 10.4049/jimmunol.0803449] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Expanded populations of CD8(+) T lymphocytes lacking CD28 expression are associated with a variety of deleterious clinical outcomes, including early mortality in the elderly, more rapid progression to AIDS, cardiovascular disease, and enhanced tumor cell growth. In cell culture, irreversible loss of CD28 expression correlates with increased production of TNF-alpha as CD8(+) T cells are driven to the nonproliferative end stage of replicative senescence by multiple rounds of Ag-driven cell division. Interestingly, in patients with rheumatoid arthritis, inhibition or neutralization of TNF-alpha reduces the proportion of T cells lacking CD28 in the disease joints, consistent with studies showing a direct involvement of this cytokine in CD28 gene transcription. Here, we show that modulation of TNF-alpha levels in long-term cultures of human CD8(+) T lymphocytes, by chronic exposure either to a neutralizing Ab or to an inhibitor of the TNF-alpha receptor-1, increases proliferative potential, delays loss of CD28 expression, retards cytokine profile changes, and enhances telomerase activity. We also show that constitutive caspase-3, one of the downstream effectors of TNF-alphaR1 binding, increases in parallel with the loss of CD28 in long-term cultures, but this effect is blunted in the presence of the TNF-alpha inhibitors. Consistent with the in vitro culture data, CD8(+)CD28(-) T lymphocytes tested immediately ex vivo also show significantly higher levels of caspase-3 compared with their CD28(+) counterparts. These findings help elucidate the complex nature of CD28 gene regulation, and may ultimately lead to novel therapeutic approaches for diseases associated with increased proportions of CD28(-) T lymphocytes.
Collapse
Affiliation(s)
- Stanley T Parish
- Department of Pathology, David Geffen School of Medicine at University of California Los Angeles, 90095, USA
| | | | | |
Collapse
|
49
|
Enhanced T-cell apoptosis in human septic shock is associated with alteration of the costimulatory pathway. Eur J Clin Microbiol Infect Dis 2009; 28:575-84. [PMID: 19229566 DOI: 10.1007/s10096-008-0673-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
T-cell apoptosis during septic shock (SS) has been associated with deleterious outcome, but the mechanisms of apoptosis are not well understood. As T-cells are not infected in bacterial infection, our hypothesis was that deleterious interactions between lymphocytes and monocytes could be involved. This is a cross-sectional study of 27 patients presenting with community-acquired SS, 23 infected patients without SS and 18 controls. Cytofluorometric techniques were used to study apoptosis, the costimulatory pathway and cytokine synthesis. Apoptosis was increased in SS compared to infected patients without SS and controls: the median values were 18, 2 and 3%, respectively, for CD4(+) T-cells (P < 0.001), and 12, 5 and 2%, respectively, for CD8(+) T-cells (P < 0.001). Patients with SS exhibited significant CD152 over-expression on T-cells, while CD86 expression was decreased on monocytes (P = 0.004). The synthesis of interleukin-2 was decreased in patients with SS compared to the other groups, while secretions of interferon-gamma and TNF-alpha were not altered. Ten surviving patients with SS showed a trend towards the normalisation of these parameters on day 7. In SS, T-cell apoptosis is related, at least in part, to the alteration of the costimulatory pathway, which, in turn, leads to significant modification of the cytokine network.
Collapse
|
50
|
Min HJ, Nam JW, Yu ES, Hong JH, Seo EK, Hwang ES. Effect of naturally occurring hydroxychavicol acetate on the cytokine production in T helper cells. Int Immunopharmacol 2009; 9:448-54. [PMID: 19208458 DOI: 10.1016/j.intimp.2009.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/02/2008] [Accepted: 01/15/2009] [Indexed: 01/29/2023]
Abstract
Naturally occurring phenolic compounds, such as chavicol analogues, have been shown to have potent antioxidant and anti-inflammatory activities. We have previously isolated two chavicol acetate analogues, acetoxychavicol acetate (ACA) and hydroxychavicol acetate (HCA) from the rhizomes of Alpinia galanga. Although the function of ACA has been studied in many systems, the function of HCA has yet to be systemically examined. In this study, we have comparably examined the functions of ACA and HCA on the cytokine production in Th cells. ACA exhibited potent antioxidant activity and increased cell apoptosis; therefore, cytokine production by Th cells was diminished. Although HCA had neither antioxidant activity nor pro-apoptotic function, it was shown to increase IL-2 production and attenuate IFNgamma expression in Th cells. In addition, we demonstrated that HCA suppressed T-bet expression, which is responsible for IL-2 suppression and IFNgamma induction in Th cells and inhibited T-bet-mediated Th1 cell differentiation. Therefore, we suggest that HCA may be beneficial as therapeutics for treating inflammatory immune disorders caused by extravagant activation of Th1-mediated immune responses.
Collapse
Affiliation(s)
- Hyun Jung Min
- College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|