1
|
Flajnik MF. The Janus (dual) model of immunoglobulin isotype evolution: Conservation and plasticity are the defining paradigms. Immunol Rev 2024; 328:49-64. [PMID: 39223989 DOI: 10.1111/imr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of antibodies in jawed vertebrates (gnathostomes) provides every immunologist with a bird's eye view of how human immunoglobulins (Igs) came into existence and subsequently evolved into their present forms. It is a fascinating Darwinian history of conservation on the one hand and flexibility on the other, exemplified by the Ig heavy chain (H) isotypes IgM and IgD/W, respectively. The cartilaginous fish (e.g., sharks) Igs provide a glimpse of "how everything got off the ground," while the amphibians (e.g., the model Xenopus) reveal how the adaptive immune system made an about face with the emergence of Ig isotype switching and IgG-like structure/function. The evolution of mucosal Igs is a captivating account of malleability, convergence, and conservation, and a call to arms for future study! In between there are spellbinding chronicles of antibody evolution in each class of vertebrates and rather incredible stories of how antibodies can adapt to occupy niches, for example, single-domain variable regions, cold-adapted Igs, convergent mechanisms to dampen antibody function, provision of mucosal defense, and many more. The purpose here is not to provide an encyclopedic examination of antibody evolution, but rather to hit the high points and entice readers to appreciate how things "came to be."
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Tracing the origin of fish immunoglobulins. Mol Immunol 2023; 153:146-159. [PMID: 36502743 DOI: 10.1016/j.molimm.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
We have studied the origin of immunoglobulin genes in fish. There are two evolutionary lines of bony fish, Actinopterygii and Sarcopterygii. The former gave rise to most of the current fish and the latter to the animals that went to land. Non-teleost actinopterygians are significant evolutionary, sharing a common ancestor with sarcopterygians. There are three different immunoglob- ulin isotypes in ray-finned fish: IgM, IgD and IgT. We deduce that translocon formation in im- munoglobulins genes occurred already in non-teleost Actinopterygii. We establish a relationship between no teleosts and teleostean fish at the domain level of different immunoglobulins. We found two evolutionary lines of immunoglobulin. A line that starts from Immunoglobulin M and another from an ancestral Immunoglobulin W. The M line is stable, and the W line gives rise to the IgD of the fish. Immunoglobulin T emerges by recombination between both lines.
Collapse
|
3
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
4
|
β-glucan as a promising food additive and immunostimulant in aquaculture industry. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
The use of antibiotics in aquatic feed reduces the incidence of disease and enhances growth performance, although it presents harmful effects, such as development of resistant bacteria and accumulation in the natural environment. A variety of immune stimulants including probiotics, prebiotics, synbiotics, phytobiotics, organic acids, nucleotides, antioxidants, microalgae, yeast and enzymes have been used in the aquaculture industry. In recent decades, much attention has been paid on finding a variety of immunostimulants with lower cost which also affect specific and non-specific immunity and improve fish resistance against a wide range of pathogens. These stimulants strengthen the fish’s immune system by increasing the number of phagocytes, lysozyme activity and level of immunoglobulin. The use of immune stimulants as an effective tool to overcome diseases and strengthen the immune system of farmed species, leads to the promotion of cellular and humoral defense mechanisms and increases resistance to infectious diseases. Among these immunostimulants used in aquaculture, β-glucans are of particular importance. Glucans are complex polysaccharide compounds extracted from the cell wall of yeasts and fungi. These compounds can stimulate fish growth, survival, and immune function. Therefore, this review discusses the role and importance of β-glucan as a food additive in aquaculture and examines the impact of these compounds on the growth performance, immunity and biochemical parameters of farmed species.
Collapse
|
5
|
Quddos F, Zwollo P. A BCWD-Resistant line of rainbow trout is less sensitive to cortisol implant-induced changes in IgM response as compared to a susceptible (control) line. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103921. [PMID: 33212092 PMCID: PMC7796912 DOI: 10.1016/j.dci.2020.103921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
In salmonids, stress responses increase cortisol levels and disease susceptibility, including to Flavobacterium psychrophilum (Fp), the causative agent of BCWD. A BCWD-resistant line (R-line) of rainbow trout was used here to investigate potential differences in immunoglobulin response after a combined treatment of cortisol and Fp, as compared to a susceptible (S-line) control line. Expression of membrane and secreted immunoglobulin heavy chains mu and tau were determined by RT-qPCR in spleen and anterior kidney. Cortisol treatment did not affect B cell development in the anterior kidney, but delayed IgM responses at the early stage of infection in the spleen of both lines. An earlier IgM response was a determining factor in differential disease progression between resistant- and susceptible fish after Fp-challenge. S-line fish had a delayed and exacerbated IgM response after cortisol implant indicative of a detrimental cycle of sustained IgM responses and high pathogen loads. In contrast, R-line fish had delayed but milder, and protective IgM responses and cleared pathogen successfully. Fp challenge after cortisol implant increased serum cortisol levels on days 3 and 5 compared to mock treatments in S-line fish, but only on day 3 in R-line. Hence, combined cortisol treatment and Fp challenge differentially modulated B cell activation and Fp loads in BCWD-resistant and susceptible lines of rainbow trout. We propose that under conditions of increased stress, BCWD-resistant fish may remain immunologically better equipped to respond to infections compared to BCWD susceptible fish.
Collapse
Affiliation(s)
- Fatima Quddos
- Department of Biology, William and Mary, Williamsburg, VA, 23185, USA
| | - Patty Zwollo
- Department of Biology, William and Mary, Williamsburg, VA, 23185, USA.
| |
Collapse
|
6
|
Mirete-Bachiller S, Olivieri DN, Gambón-Deza F. Immunoglobulin T genes in Actinopterygii. FISH & SHELLFISH IMMUNOLOGY 2021; 108:86-93. [PMID: 33279606 DOI: 10.1016/j.fsi.2020.11.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In teleost fishes, there are three immunoglobulin isotypes named immunoglobulin M (IgM), D (IgD), and T (IgT). IgT was the last to be described in teleost fishes, and it is specific to them. From recent fish genomes, we identified and studied the immunoglobulin heavy chain genes in Actinopterygii. For this analysis, a custom bioinformatics and machine learning pipeline, we call CHfinder, was developed that identifies the exons coding for the CH domains of fish immunoglobulins. Some IgT in teleost and holostean fish found from this systematic study have not been previously described. Phylogenetic analysis of the deduced amino acid sequences of the IgT CH1 exons reveals they are similar to the CH1 of IgM. This analysis also shows that the other three domains (CH2, CH3, and CH4) were not the result of recent IgM duplication processes in Actinopterygii, demonstrating that it is an immunoglobulin of earlier origin. The bioinformatics program, CHfinder, is publicly available at https://github.com/compimmuno/CHfinder.
Collapse
Affiliation(s)
| | - David N Olivieri
- Centro de Intelixencia Artificial, Ourense, Spain; ESE Informatica, Universidade de Vigo, Spain.
| | | |
Collapse
|
7
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
8
|
Mouse Antibody of IgM Class is Prone to Non-Enzymatic Cleavage between CH1 and CH2 Domains. Sci Rep 2018; 8:519. [PMID: 29323348 PMCID: PMC5764968 DOI: 10.1038/s41598-017-19003-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/19/2017] [Indexed: 11/15/2022] Open
Abstract
IgM is a multivalent antibody which evolved as a first line defense of adaptive immunity. It consists of heavy and light chains assembled into a complex oligomer. In mouse serum there are two forms of IgM, a full-length and a truncated one. The latter contains μ’ chain, which lacks a variable region. Although μ’ chain was discovered many years ago, its origin has not yet been elucidated. Our results indicate that μ’ chain is generated from a full-length heavy chain by non-enzymatic cleavage of the protein backbone. The cleavage occurred specifically after Asn209 and is prevented by mutating this residue into any other amino acid. The process requires the presence of other proteins, preferentially with an acidic isoelectric point, and is facilitated by neutral or alkaline pH. This unique characteristic of the investigated phenomenon distinguishes it from other, already described, Asn-dependent protein reactions. A single IgM molecule is able to bind up to 12 epitopes via its antigen binding fragments (Fabs). The cleavage at Asn209 generates truncated IgM molecules and free Fabs, resulting in a reduced IgM valence and probably affecting IgM functionality in vivo.
Collapse
|
9
|
Banerjee R, Patel B, Basu M, Lenka SS, Paicha M, Samanta M, Das S. Molecular cloning, characterization and expression of immunoglobulin D on pathogen challenge and pathogen associated molecular patterns stimulation in freshwater carp, Catla catla. Microbiol Immunol 2017; 61:452-458. [DOI: 10.1111/1348-0421.12534] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/31/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| | - Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| | - Madhubanti Basu
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Saswati S. Lenka
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Mahismita Paicha
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Mrinal Samanta
- Fish Health Management Division; Central Institute of Freshwater Aquaculture; Kausalyaganga, Bhubaneswar 751002 Odisha India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology; Department of Life; Science; National Institute of Technology; Rourkela 769008
| |
Collapse
|
10
|
Akrami R, Gharaei A, Mansour MR, Galeshi A. Effects of dietary onion (Allium cepa) powder on growth, innate immune response and hemato-biochemical parameters of beluga (Huso huso Linnaeus, 1754) juvenile. FISH & SHELLFISH IMMUNOLOGY 2015; 45:828-834. [PMID: 26067169 DOI: 10.1016/j.fsi.2015.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
The present study was aimed at determining the effects of dietary onion powder on growth, innate immune response and hemato-biochemical parameters of beluga juvenile (Huso huso). Basal diets containing onion powder 0 (control), 0.5 and 1% of feed were fed to beluga juvenile. At the end of the experiment, the highest weight gain (WG%) and specific growth rate (SGR) was observed in group fed with 1% onion (P < 0.05). There were no significant difference (P > 0.05) about feed conversion ratio (FCR) in treatment groups that fed diets containing various levels of onion powder. After 8 weeks, serum lysozyme activity, superoxide dismutase activity (SOD), respiratory burst activity and serum total immunoglobulin (Ig) showed a significant increase in treatment group with 1% onion powder compared to other groups (P < 0.05). The group fed 1% onion showed a significantly increases in the number of erythrocytes (RBC), leucocyte (WBC), haematocrit (Hct) levels compared to the control group (P < 0.05). Haemoglobin, monocyte, lymphocyte and neutrophil had no significant change (P > 0.05) in treatment groups and control. The analysis of AST and LDH levels showed a significant decrease in 1% onion compared to the control and 0.5% onion diet (P < 0.05), while ALT and ALP levels were not influenced (P > 0.05). The blood glucose, total protein, triglyceride, cholesterol, albumin and globulin levels were lower in treated groups compared with the control (P < 0.05). The results of this study demonstrated that dietary onion powder could be an improvement in growth, hematological parameters and immune function of beluga juvenile.
Collapse
Affiliation(s)
- Raza Akrami
- Department of Fisheries, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran.
| | - Ahmad Gharaei
- Department of Fisheries, Faculty of Natural Resources and Hamoun International Wetland Research Institute, University of Zabol, Zabol, Sisatan and Baluchestan, Iran
| | - Majid Razeghi Mansour
- Young Researchers and Elite Club, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
| | - Ali Galeshi
- Department of Fisheries, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
| |
Collapse
|
11
|
Chiraporn P, Sasimanas U, Prapansak S. Diversity analysis of the immunoglobulin M heavy chain gene in Nile tilapia, Oreochromis niloticus (Linnaeus). ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2014.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Awad E, Awaad AS, Esteban MA. Effects of dihydroquercetin obtained from deodar (Cedrus deodara) on immune status of gilthead seabream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2015; 43:43-50. [PMID: 25530582 DOI: 10.1016/j.fsi.2014.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/07/2014] [Accepted: 12/11/2014] [Indexed: 06/04/2023]
Abstract
The use of medicinal plants as prophylactic method in fish is considered safe and a very promising alternative to the use of chemicals in aquaculture practices. The prospective mode of action of dihydroquercetin, fraction of the medical plant deodar (Cedrus deodara), was evaluated on immune status of gilthead seabream (Sparus aurata L.). Fish were divided into 4 groups before being fed for 14 days with commercial diets supplemented with 0% (control), 0.1%, 0.5% and 1% of dihydroquercetin. Cellular (phagocytosis and respiratory burst activities) and humoral (seric complement activity, antiprotease, total protein, peroxidase, bactericidal activity and IgM level) immune parameters were investigated. The results recorded enhancement in all the tested parameters and in all the dihydroquercetin supplemented groups compared to the control. Interestingly, the fish received the lowest dose of dihydroquercetin (0.1%) showed a highly significant difference (p < 0.05) in phagocytosis, respiratory burst, IgM level, total protein, complement, antiprotease and bactericidal activities compared to the control. Direct effect of different doses of dihydroquercetin on head-kidney leucocytes was also studied in a previous in vitro assay. Again, the lowest doses tested provoked the highest immune cellular activities, where, the highest phagocytic and respiratory bust activities were recorded in leucocytes incubated with 0.025% and 0.0125% doses, respectively. Therefore, the results suggest that low concentrations of dihydroquercetin as food supplements are able to increase the immune status of gilthead seabream.
Collapse
Affiliation(s)
- Elham Awad
- Department of Hydrobiology, National Research Center, Giza, Egypt; Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Amani S Awaad
- Pharmacognosy Department, College of Pharmacy, Salman Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - M Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
13
|
Tacchi L, Larragoite E, Salinas I. Discovery of J chain in African lungfish (Protopterus dolloi, Sarcopterygii) using high throughput transcriptome sequencing: implications in mucosal immunity. PLoS One 2013; 8:e70650. [PMID: 23967082 PMCID: PMC3743840 DOI: 10.1371/journal.pone.0070650] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022] Open
Abstract
J chain is a small polypeptide responsible for immunoglobulin (Ig) polymerization and transport of Igs across mucosal surfaces in higher vertebrates. We identified a J chain in dipnoid fish, the African lungfish (Protopterus dolloi) by high throughput sequencing of the transcriptome. P. dolloi J chain is 161 aa long and contains six of the eight Cys residues present in mammalian J chain. Phylogenetic studies place the lungfish J chain closer to tetrapod J chain than to the coelacanth or nurse shark sequences. J chain expression occurs in all P. dolloi immune tissues examined and it increases in the gut and kidney in response to an experimental bacterial infection. Double fluorescent in-situ hybridization shows that 88.5% of IgM⁺ cells in the gut co-express J chain, a significantly higher percentage than in the pre-pyloric spleen. Importantly, J chain expression is not restricted to the B-cell compartment since gut epithelial cells also express J chain. These results improve our current view of J chain from a phylogenetic perspective.
Collapse
Affiliation(s)
- Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Erin Larragoite
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
14
|
A monoclonal antibody distinguishes between two IgM heavy chain isotypes in Atlantic salmon and brown trout: Protein characterization, 3D modeling and epitope mapping. Mol Immunol 2011; 48:1859-67. [DOI: 10.1016/j.molimm.2011.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/04/2011] [Accepted: 05/09/2011] [Indexed: 01/09/2023]
|
15
|
Quiniou SMA, Wilson M, Boudinot P. Processing of fish Ig heavy chain transcripts: diverse splicing patterns and unusual nonsense mediated decay. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:949-58. [PMID: 21168434 DOI: 10.1016/j.dci.2010.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/10/2010] [Indexed: 05/13/2023]
Abstract
While the diversification of the antigen-binding sites is realized by genomic VDJ rearrangements during B cell differentiation, different forms of immunoglobulin (Ig) heavy (H) chains can be produced through multiple splicing pathways. In most vertebrates, the secreted (S) and membrane (Mb) forms of IgM chain are created by alternative splicing through usage of a cryptic splice site in Cμ4 allowing the junction to the TM exon. The processing pattern for Igμ is different in teleosts, which generally use the Cμ3 donor site instead. In ancient fish lineages, multiple unusual splicing patterns were found for Ig H chain, involving donor sites that do not always follow the classical consensus. The production of IgD versus IgM H chains seems to be generally realized by alternative splicing in all vertebrates, but typical teleost IgD H chains are chimeric and contains a Cμ1 domain. Together, these observations raise questions on how different fish regulate RNA splicing and if their splicing machinery is especially complex. A preliminary scan of the zebrafish and stickleback genomes provides evidence that gene orthologs to the mammalian main splice factors are highly conserved as single copy genes, while the snRNPs U repertoire may be different and may explain other particular features of RNA processing in fish.
Collapse
|
16
|
Hikima JI, Jung TS, Aoki T. Immunoglobulin genes and their transcriptional control in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:924-936. [PMID: 21078341 DOI: 10.1016/j.dci.2010.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/27/2010] [Accepted: 10/28/2010] [Indexed: 05/30/2023]
Abstract
Immunoglobulin (Ig), which exists only in jawed vertebrates, is one of the most important molecules in adaptive immunity. In the last two decades, many teleost Ig genes have been identified by in silico data mining from the enormous gene and EST databases of many fish species. In this review, the organization of Ig gene segments, the expressed Ig isotypes and their transcriptional controls are discussed. The Ig heavy chain (IgH) locus in teleosts encodes the variable (V), the diversity (D), the joining (J) segments and three different isotypic constant (C) regions including Cμ, Cδ, and Cζ/τ genes, and is organized as a "translocon" type like the IgH loci of higher vertebrates. In contrast, the Ig light (L) chain locus is arranged in a "multicluster" or repeating set of VL, JL, and CL segments. The IgL chains have four isotypes; two κ L1/G and L3/F), σ (L2) and λ. The transcription of IgH genes in teleosts is regulated by a VH promoter and the Eμ3' enhancer, which both function in a B cell-specific manner. The location of the IgH locus, structure and transcriptional function of the Eμ3' enhancer are important to our understanding of the evolutional changes that have occurred in the IgH gene locus.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | | | | |
Collapse
|
17
|
Magadán-Mompó S, Sánchez-Espinel C, Gambón-Deza F. Immunoglobulin heavy chains in medaka (Oryzias latipes). BMC Evol Biol 2011; 11:165. [PMID: 21676244 PMCID: PMC3141427 DOI: 10.1186/1471-2148-11-165] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/15/2011] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Bony fish present an immunological system, which evolved independently from those of animals that migrated to land 400 million years ago. The publication of whole genome sequences and the availability of several cDNA libraries for medaka (Oryzias latipes) permitted us to perform a thorough analysis of immunoglobulin heavy chains present in this teleost. RESULTS We identified IgM and IgD coding ESTs, mainly in spleen, kidney and gills using published cDNA libraries but we did not find any sequence that coded for IgT or other heavy chain isotypes described in fish. The IgM - ESTs corresponded with the secreted and membrane forms and surprisingly, the latter form only presented two constant heavy chain domains. This is the first time that this short form of membrane IgM is described in a teleost. It is different from that identified in Notothenioid teleost because it does not present the typical splicing pattern of membrane IgM. The identified IgD-ESTs only present membrane transcripts, with Cμ1 and five Cδ exons. Furthermore, there are ESTs with sequences that do not have any VH which disrupt open reading frames. A scan of the medaka genome using transcripts and genomic short reads resulted in five zones within a region on chromosome 8 with Cμ and Cδ exons. Some of these exons do not form part of antibodies and were at times interspersed, suggesting a recombination process between zones. An analysis of the ESTs confirmed that no antibodies are expressed from zone 3. CONCLUSIONS Our results suggest that the IGH locus duplication is very common among teleosts, wherein the existence of a recombination process explains the sequence homology between them.
Collapse
Affiliation(s)
- Susana Magadán-Mompó
- Oceanographic Center of Vigo, Spanish Institute of Oceanography (IEO), Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| | - Christian Sánchez-Espinel
- Shared Unit of Immunology, University of Vigo - Vigo University Hospital Complex (Hospital Meixoeiro), Edificio de Ciencias Experimentales, Rua das Abeleiras, Campus As LagoasMarcosende, Vigo 36310, Pontevedra, Spain
| | - Francisco Gambón-Deza
- Unidad de Inmunología, Hospital do Meixoeiro, Servizo Galego de Saude (SERGAS), Carretera de Madrid s/n, Vigo 36210, Pontevedra, Spain
| |
Collapse
|
18
|
Chou PH, Chang HS, Chen IT, Lee CW, Hung HY, Han-Ching Wang KC. Penaeus monodon Dscam (PmDscam) has a highly diverse cytoplasmic tail and is the first membrane-bound shrimp Dscam to be reported. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1109-23. [PMID: 21338689 DOI: 10.1016/j.fsi.2011.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 05/21/2023]
Abstract
Down syndrome cell adhesion molecule (Dscam) seems likely to play a key role in the "alternative adaptive immunity" that has been reported in invertebrates. Dscam consists of a cytoplasmic tail that is involved in signal transduction and a hypervariable extracellular region that might use a pathogen recognition mechanism similar to that used by the vertebrate antibodies. In our previous paper, we isolated a unique tail-less form of Dscam from Litopenaeus vannamei. In this study, we report the first membrane-bound form of shrimp Dscam: PmDscam was isolated from Penaeus monodon, and it occurred in both membrane-bound and tail-less forms. Phylogenetic analysis showed that while the crustacean Dscams from shrimp and water flea did not share a single subclade, they were distinct from the invertebrate Dscam-like molecules and from the insecta Dscams. In the extracellular region, the variable regions of PmDscam were located in N-terminal Ig2, N-terminal Ig3 and the entire Ig7 domain. The PmDscam extracellular variants and transmembrane domain variants were produced by mutually exclusive alternative splicing events. The cytoplasmic tail variants were produced by exon inclusion/exclusion. Based on the genomic organization of Daphnia Dscam's cytoplasmic tail, we propose a model of how the shrimp Dscam genomic locus might use Type III polyadenylation to generate both the tail-less and membrane-bound forms.
Collapse
Affiliation(s)
- Pin-Hsiang Chou
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Wool GD, Cabana VG, Lukens J, Shaw PX, Binder CJ, Witztum JL, Reardon CA, Getz GS. 4F Peptide reduces nascent atherosclerosis and induces natural antibody production in apolipoprotein E-null mice. FASEB J 2010; 25:290-300. [PMID: 20876212 DOI: 10.1096/fj.10-165670] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our objective was to contrast the effect of apolipoprotein (apo) A-I mimetic peptides, such as 4F and 4F-Pro-4F (Pro), on nascent and mature atherosclerotic lesions and on levels of antibodies against oxidation-specific epitopes. Chow-fed apoE(-/-) mice were injected intraperitoneally with either the 4F peptide or a tandem helix apoA-I mimetic peptide (Pro) every other day. Mice treated with 4F, but not Pro, for 4 wk starting at 10 wk of age showed a dramatic decrease in atherosclerosis at 2 arterial sites. However, neither peptide was effective in mice treated for 8 wk starting at 20 wk of age; lesions were larger and more mature at this time point. Peptide treatment caused increased production of antibodies against oxidation-specific epitopes, including a disproportionate induction of the IgM natural antibody (NAb) E06/T15 to oxidized phospholipids. In summary, 4F, but not the tandem peptide Pro, effectively inhibited early atherogenesis but was ineffective against more mature lesions. Two different apoA-I mimetic peptides increased titers of natural antibodies against oxidation-specific epitopes.
Collapse
Affiliation(s)
- Geoffrey D Wool
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yasuike M, de Boer J, von Schalburg KR, Cooper GA, McKinnel L, Messmer A, So S, Davidson WS, Koop BF. Evolution of duplicated IgH loci in Atlantic salmon, Salmo salar. BMC Genomics 2010; 11:486. [PMID: 20813058 PMCID: PMC2996982 DOI: 10.1186/1471-2164-11-486] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 09/02/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Atlantic salmon (Salmo salar) immunoglobulin heavy chain (IgH) locus possesses two parallel IgH isoloci (IGH-A and IGH-B), that are related to the genomic duplication event in the family Salmonidae. These duplicated IgH loci in Atlantic salmon provide a unique opportunity to examine the mechanisms of genome diversity and genome evolution of the IgH loci in vertebrates. In this study, we defined the structure of these loci in Atlantic salmon, and sequenced 24 bacterial artificial chromosome (BAC) clones that were assembled into the IGH-A (1.1 Mb) and IGH-B (0.9 Mb) loci. In addition, over 7,000 cDNA clones from the IgH variable (VH) region have been sequenced and analyzed. RESULTS The present study shows that the genomic organization of the duplicated IgH loci in Atlantic salmon differs from that in other teleosts and other vertebrates. The loci possess multiple Cτ genes upstream of the Cμ region, with three of the Cτ genes being functional. Moreover, the duplicated loci possess over 300 VH segments which could be classified into 18 families. This is the largest number of VH families currently defined in any vertebrate. There were significant structural differences between the two loci, indicating that both IGH-A and -B loci have evolved independently in the short time after the recent genome duplication approximately 60 mya. CONCLUSIONS Our results indicate that the duplication of the IgH loci in Atlantic salmon significantly contributes to the increased diversity of the antibody repertoire, as compared with the single IgH locus in other vertebrates.
Collapse
Affiliation(s)
- Motoshige Yasuike
- Department of Biology, University of Victoria,Victoria, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang HG, Wu TX, Zhao ZY, Pan XD. Effects of fish protein hydrolysate on growth performance and humoral immune response in large yellow croaker (Pseudosciaena crocea R.). J Zhejiang Univ Sci B 2008; 9:684-90. [PMID: 18763300 DOI: 10.1631/jzus.b0820088] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We investigated the effects of fish protein hydrolysate (FPH) on growth performance and humoral immune response of the large yellow croaker (Pseudosciaena crocea R.). One thousand and two hundred large yellow croakers [initial average weight: (162.75+/-23.85) g] were divided into four groups and reared in floating sea cages (3 m x 3 m x 3 m). The animals were fed with 4 diets: basal diet only (control) or diets supplemented with 5%, 10% and 15% (w/w) FPH. The results show that dietary FPH levels significantly influenced the growth and immunity of the large yellow croaker. Compared with the control group, total weight gain (TWG) in all treatment groups, relative weight gain (RWG) and specific growth rate (SGR) in fish fed with diets supplemented with 10% and 15% FPH were significantly increased (P<0.05). Similar results were observed in immune parameters [lysozyme activity, serum complements, immunoglobulin M (IgM)]. Lysozyme activity, complement C4 and IgM were also significantly increased (P<0.05) in fish fed with diets supplemented with 10% and 15% FPH, while complement C3 level was significantly increased (P<0.05) in all treatment groups. In general, with the supplementation of FPH, particularly at dose of 10%, the growth performance and immunity of the large yellow croaker can be improved effectively.
Collapse
Affiliation(s)
- Hong-gang Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
22
|
Song ZF, Wu TX, Cai LS, Zhang LJ, Zheng XD. Effects of dietary supplementation with clostridium butyricum on the growth performance and humoral immune response in Miichthys miiuy. J Zhejiang Univ Sci B 2006; 7:596-602. [PMID: 16773736 PMCID: PMC1500882 DOI: 10.1631/jzus.2006.b0596] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/19/2006] [Indexed: 11/11/2022]
Abstract
The effects of dietary supplementation with Clostridium butyricum on growth performance and humoral immune response in Miichthys miiuy were evaluated. One hundred and fifty Miichthys miiuy weighing approximately 200-260 g were divided into five groups and reared in 15 tanks with closed circuiting culture system. The animals were fed 5 diets: basal diet only (control) or supplemented of the basal diet with C. butyricum at doses of 10(3) (CB1), 10(5) (CB2), 10(7) (CB3) or 10(9) (CB4) CFU/g. Compared with the control, the serum phenoloxidase activity was significantly increased by the supplementation (P<0.05), acid phosphatases activity was increased significantly (P<0.05) at the doses of 10(9) CFU/g. Serum lysozyme activity peaked at dose of 10(7) CFU/g and in the skin mucus at dose of 10(9) CFU/g. Immunoglobulin M level in the serum and skin mucus was increased except at dose of 10(3) CFU/g (P<0.05). The growth at the dose of 10(9) CFU/g was higher than that of the control (P<0.05). It is concluded that supplementation of C. butyricum can mediate the humoral immune responses and improve the growth performance in Miichthys miiuy.
Collapse
Affiliation(s)
- Zeng-fu Song
- School of Animal Sciences, Zhejiang University, Hangzhou 310027, China
- Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Tian-xing Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Li-sheng Cai
- Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Li-jing Zhang
- Key Laboratory for Molecular Design and Nutrition Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
| | - Xiao-dong Zheng
- School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Suetake H, Saha NR, Araki K, Akatsu K, Kikuchi K, Suzuki Y. Lymphocyte surface marker genes in fugu. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2006; 1:102-8. [DOI: 10.1016/j.cbd.2005.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Revised: 07/24/2005] [Accepted: 08/01/2005] [Indexed: 01/29/2023]
|
24
|
Solem ST, Stenvik J. Antibody repertoire development in teleosts--a review with emphasis on salmonids and Gadus morhua L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:57-76. [PMID: 16084588 DOI: 10.1016/j.dci.2005.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The group of teleosts is highly diverse, comprising more than 23000 extant species. Studies of the teleost antibody repertoire have been conducted in many different species within different orders, though some species and families have been better characterised than others. The Atlantic cod (Gadus morhua L.) and several species within the Salmoninae (e.g. Salmo salar and Oncorynchus mykiss) are among the best-studied teleosts in terms of the antibody repertoire. The estimated size of the repertoire, the organisation of immunoglobulin (IG) gene segments, the expressed IG repertoire, the IgM serum concentration, and the serum antibody responses reveal some fundamental differences between these species. The serum IgM concentration of G. morhua is some ten times higher than that of S. salar, though G. morhua is characterised as a 'low' (or 'non') responder in terms of specific antibody production. In contrast, an antibody response is readily induced in S. salar, although the response is strongly regulated by antigen induced suppression. The IGHD gene of G. morhua has a unique structure, while the IGHM and IGHD genes of S. salar have a characteristic genomic organisation in two parallel loci. In addition, salmonids, express a broad repertoire of IGH and IGI V-region gene segments, while a single V gene family dominates the expressed heavy and light chain repertoire of G. morhua. Little is known about the developing antibody repertoire during ontogeny, in different stages of B-cell maturation, or in separate B-cell subsets. Information on the establishment of the preimmune repertoire, and the possible role of environmental antigens is also sparse.
Collapse
Affiliation(s)
- Stein Tore Solem
- Department of Marine Biotechnology, Norwegian College of Fishery Science, Breivika, N-9037 Tromsø, Norway.
| | | |
Collapse
|
25
|
Bengtén E, Clem LW, Miller NW, Warr GW, Wilson M. Channel catfish immunoglobulins: repertoire and expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:77-92. [PMID: 16153707 DOI: 10.1016/j.dci.2005.06.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The channel catfish, Ictalurus punctatus, is widely recognized as an important model for studying immune responses in ectothermic vertebrates. It is one of the few fish species for which defined viable in vitro culture systems have been established and is currently the only fish species from which a variety of functionally distinct clonal leukocyte lines are available. Moreover, there is a large basis of biochemical and molecular information on the structure and function of catfish immunoglobulins (Igs). Catfish, as other teleosts, have a tetrameric homolog of IgM as their predominant serum Ig plus a homolog of IgD. They also have genetic elements basically similar to those of mammals, which encode and regulate their expression. The catfish Ig heavy (H) chain locus is a translocon-type locus with three Igdelta genes linked to an Igmu gene or pseudogene. The catfish IgH locus is estimated to contain approximately 200 variable (V) region genes representing 13 families as well as at least three diversity (D) and 11 joining (JH) genes. The catfish has two light (L) chain isotypes, F and G, both encoded by loci organized in multiple cassettes of VL-JL-CL with the VL in the opposite transcriptional orientation. Hence, all requisite components for encoding antibodies are present in the catfish, albeit with certain variations. In the future, whether or not additional unique features of Ig function and expression will be found remains to be determined.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | | | | | |
Collapse
|
26
|
Saha NR, Suetake H, Suzuki Y. Analysis and characterization of the expression of the secretory and membrane forms of IgM heavy chains in the pufferfish, Takifugu rubripes. Mol Immunol 2005; 42:113-24. [PMID: 15488950 DOI: 10.1016/j.molimm.2004.06.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Accepted: 06/11/2004] [Indexed: 11/22/2022]
Abstract
We investigated the structure and expression of immunoglobulin genes in the pufferfish, Takifugu rubripes, a highly prized and economically important fish species. The cDNA fragment that partially encodes the constant region of the IgM heavy chain was isolated in these animals by RACE using degenerate primers after which it was used as a probe for screening IgM heavy chains in a fugu splenic cDNA library. The structural feature of the constant region of fugu sIgM was found to consist of four constant domains (CH1 to CH4), while mIgM was shown to contain a deletion of the CH4 domain, and its transmembrane domain was directly spliced to the CH3 domain as found in other teleosts. This feature may be common to all teleosts. In addition, five VH genes isolated in this study fell into two families based on their variability. Analysis of genomic sequences from the fugu genomic database also showed that there are only two VH families in the genome. The IgM gene was preferentially expressed in presumptive lymphoid tissues. Moreover, in situ hybridization revealed that large numbers of IgM positive cells were widely distributed throughout the spleen, head kidney, kidney, and thymus, confirming that these tissues were major sites of antibody production in fish. The expressions of IgM in the mucosal organs such as the skin, gills, and intestine suggest that they, too, contribute to humoral immunity in aquatic animals. The expression of IgM mRNA in the early development stages of this fish suggests that its larval form possesses a protective defense mechanism against foreign invaders.
Collapse
Affiliation(s)
- Nil Ratan Saha
- Department of Aquatic Biosciences, Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Maisaka 2971-4, Shizuoka 431-0211, Japan
| | | | | |
Collapse
|
27
|
Cuesta A, Meseguer J, Esteban MA. Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Vet Immunol Immunopathol 2004; 101:203-10. [PMID: 15350750 DOI: 10.1016/j.vetimm.2004.04.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 04/05/2004] [Accepted: 04/30/2004] [Indexed: 10/26/2022]
Abstract
Immunoglobulin M (IgM) is a major component of the teleost humoral immune system. Despite the significance of IgM levels as an immune parameter, there are relatively few studies on changes induced in its total levels in serum. This study examines the effects of several immunomodulators (vitamin A, chitin, yeast cells or levamisole, which act as immunostimulants, and crowding, hypoxia or anaesthetics, which act as stressors) upon the total serum IgM levels of non-immunized gilthead seabream (Sparus aurata L.). Total serum IgM levels of fish fed with the assayed immunostimulant-supplemented diets were statistically higher than those in fish fed a non-supplemented diet, especially in the case of levamisole. On the other hand, serum IgM levels of fish subjected to different stressors were not affected by crowding, hypoxia or certain anaesthetics. However, benzocaine and a narcotic dose of 2-phenoxyethanol provoked a great reduction, while quinaldine sulphate increased IgM levels to a significant degree. These results show how the seric IgM levels can be differently affected by some immunomodulators and the important role they may play in the regulation of total circulating IgM levels in seabream. The possibility of using total serum IgM for assessing immunostimulation, disease diagnosis and stress symptoms during fish farming is discussed.
Collapse
Affiliation(s)
- A Cuesta
- Faculty of Biology, Department of Cell Biology, University of Murcia, 30100 Murcia, Spain
| | | | | |
Collapse
|
28
|
Ota T, Rast JP, Litman GW, Amemiya CT. Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox. Proc Natl Acad Sci U S A 2003; 100:2501-6. [PMID: 12606718 PMCID: PMC151370 DOI: 10.1073/pnas.0538029100] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lineage leading to lungfishes is one of the few major jawed vertebrate groups in which Ig heavy chain isotype structure has not been investigated at the genetic level. In this study, we have characterized three different Ig heavy chain isotypes of the African lungfish, Protopterus aethiopicus, including an IgM-type heavy chain and short and long forms of non-IgM heavy chains. Northern blot analysis as well as patterns of V(H) utilization suggest that the IgM and non-IgM isotypes are likely encoded in separate loci. The two non-IgM isotypes identified in Protopterus share structural features with the short and long forms of IgX/W/NARC (referred to hereafter as IgW), which were previously considered to be restricted to the cartilaginous fish. It seems that the IgW isotype has a far broader phylogenetic distribution than considered originally and raises questions with regard to the origin and evolutionary divergence of IgM and IgW. Moreover, its absence in other gnathostome lineages implies paradoxically that the IgW-type genes were lost from teleost and tetrapod lineages.
Collapse
Affiliation(s)
- Tatsuya Ota
- Department of Biosystems Science, The Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | |
Collapse
|
29
|
Ota T, Nguyen TA, Huang E, Detrich HW, Amemiya CT. Positive Darwinian selection operating on the immunoglobulin heavy chain of Antarctic fishes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 295:45-58. [PMID: 12548542 DOI: 10.1002/jez.b.4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The cooling of the Southern Ocean to the freezing point of seawater (-1.9 degrees C) over the past 25 million years played a dominant selective role in the evolution of the Antarctic fish fauna. During this period, the perciform suborder Notothenioidei, which is largely endemic to the Antarctic, diversified and developed numerous cold-adapted characters. In this report, we provide compelling evidence that the immunoglobulin heavy chain (IgH) of the notothenioid fishes has undergone adaptive selection. Two and four IgH clones were isolated, respectively, from spleen cDNA libraries prepared from the Antarctic icefish Chaenocephalus aceratus and the yellowbelly rockcod Notothenia coriiceps. The transmembrane region of the membrane form of the rockcod IgM heavy chain was located at the end of the second constant (C(H)) domain, in contrast to other teleost IgMs in which the transmembrane region is located at the end of the third constant domain. Phylogenetic analyses of C(H) regions revealed that rates of nonsynonymous nucleotide substitution were higher than rates of synonymous nucleotide substitution. Many of the nonsynonymous substitutions introduced charge changes, consistent with positive Darwinian selection acting to adapt the structure of the notothenioid immunoglobulins. The rates of nonsynonymous nucleotide substitutions were higher than the rates of synonymous nucleotide substitutions in complementarity determining regions of variable regions, suggesting that diversity at antigen binding sites is enhanced by genomic and/or somatic selection. Results of Southern blot hybridization experiments were consistent with a translocon type of IgH gene organization reminiscent of bony fishes and tetrapods.
Collapse
Affiliation(s)
- Tatsuya Ota
- Center for Human Genetics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
30
|
Hordvik I. Identification of a novel immunoglobulin delta transcript and comparative analysis of the genes encoding IgD in Atlantic salmon and Atlantic halibut. Mol Immunol 2002; 39:85-91. [PMID: 12213331 DOI: 10.1016/s0161-5890(02)00043-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atlantic salmon possesses two parallel Ig heavy chain gene complexes, A and B, most probably as a result of ancestral tetraploidy. Consequently, there are two distinct IgD heavy chain (delta) subvariants in this species. The Igdelta(B) gene was characterised in a previous study. In the present work the Igdelta(A) gene was amplified by PCR and sequenced. Both Igdelta genes in salmon have a structure like delta1-(delta2-delta3-delta4)(2)-delta5-delta6-delta7-TM1-TM2 and show a high degree of sequence identity (approximately 95%). 3'RACE and RT-PCR analyses performed in the present study indicate that Igdelta transcripts of membrane type are dominating in Atlantic salmon and Atlantic halibut. However, a different transcript, originating from the Igdelta(B) gene in salmon, was identified by PCR. This RNA fragment is spliced between the regular donor/acceptor sites in delta6 and TM2. Cloning and characterisation of cDNA encoding the membrane form of halibut IgD revealed an overall Ig domain structure equivalent to that in salmon. Corresponding duplications of delta2-delta3-delta4 have now been found in three teleost fishes: salmon, halibut and catfish. The tandem duplicated fragments are highly similar within each species, while not being especially conserved between the species. Thus, the duplicated gene fragments have either arisen independently in each species or are subjected to homogenisation by some means.
Collapse
Affiliation(s)
- Ivar Hordvik
- Department of Fisheries and Marine Biology, High Technology Centre, University of Bergen, 5020 Bergen, Norway.
| |
Collapse
|
31
|
Lundqvist ML, Middleton DL, Hazard S, Warr GW. The immunoglobulin heavy chain locus of the duck. Genomic organization and expression of D, J, and C region genes. J Biol Chem 2001; 276:46729-36. [PMID: 11592961 DOI: 10.1074/jbc.m106221200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The region of the duck IgH locus extending from upstream of the proximal diversity (D) segment to downstream of the constant gene cluster has been cloned and mapped. A sequence contig of 48,796 base pairs established that the organization of the genes is D-J(H)-mu-alpha-upsilon. No evidence for a functional homologue (or remnant) of a delta gene was found. The alpha gene is in inverted transcriptional orientation; class switch to IgA expression thus requires inversion of the approximately 27-kilobase pair region that includes both mu and alpha genes. The secreted forms of duck alpha and mu are each encoded by 4 constant region exons, and the hydrophobic C-terminal regions of the membrane receptor forms of alpha and mu are encoded by one and two transmembrane exons, respectively. Putative switch (S) regions were identified for duck mu and upsilon by comparison with chicken Smu and Supsilon sequences and for duck alpha by comparison with mouse Salpha. The duck IgH locus is rich in complex variable number tandem repeats, which occupy approximately 60% of the sequenced region, and occur at a much higher frequency in the IgH locus than in other sequenced regions of the duck genome.
Collapse
Affiliation(s)
- M L Lundqvist
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
32
|
Zou X, Ayling C, Xian J, Piper TA, Barker PJ, Brüggemann M. Truncation of the mu heavy chain alters BCR signalling and allows recruitment of CD5+ B cells. Int Immunol 2001; 13:1489-99. [PMID: 11717190 DOI: 10.1093/intimm/13.12.1489] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ig are multifunctional molecules with distinct properties assigned to individual domains. To assess the importance of IgM domain assembly in B cell development we generated two transgenic mouse lines with truncated muH chains by homologous integration of the neomycin resistance gene (neo(r)) into exons C(mu)1 and C(mu)2. Upon DNA rearrangement shortened muH chain transcripts, V(H)-D-J(H)-C(mu)3-C(mu)4, are produced independent of the transcriptional orientation and termination signals provided by neo(r). The truncated muH chain of approximately 52 kDa associates non-covalently with the L chain to form a monovalent HL heterodimer. Surface IgM is assembled into a defective BCR complex which has lost important signalling capacity. In immunizations with T-dependent and T-independent antigens, specific IgM antibodies cannot be detected, whilst IgG responses remain normal. B cell development in the bone marrow is characterized by an increase in early B cells, but a decrease of B220(+) cells from the stage when muH chain rearrangement is completed. The peritoneal lymphocyte population has elevated levels of CD5(+) B cells and their expansion may be the result of a negative feedback mechanism. The results show that antigenic stimulation is compromised by truncated monovalent IgM and that this deficit in stimulation leads to reduced levels of conventional B-2 lymphocytes, but dramatically increased levels of B-1 cells.
Collapse
Affiliation(s)
- X Zou
- Laboratory of Developmental Immunology, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | | | | | | | |
Collapse
|
33
|
Espelid S, Halse M, Solem ST, Jørgensen TO. Immunoglobulin genes and antibody responses in the spotted wolffish (Anarhichas minor Olafsen). FISH & SHELLFISH IMMUNOLOGY 2001; 11:399-413. [PMID: 11478516 DOI: 10.1006/fsim.2000.0327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The spotted wolffish Anarhichas minor Olafsen is a promising new species in aquaculture in the cold waters of northern Norway. In this paper, some basic immunological studies of this marine species are reported. Of comparative interest are the cDNA sequences of the immunoglobulin transcript and the antibody responses to model antigens. Of more practical importance are the humoral immune responses and antibody specificities to potentially pathogenic bacteria. Full length cDNA clones encoding the immunoglobulin heavy and light chains in the spotted wolffish were sequenced demonstrating variable degrees of similarity to other teleost fish species. Also in the spotted wolffish the CH4 domain was deleted in the transmembrane form of the immunoglobulin heavy chain (IgH) as a receptor on B cells, with the transmembrane exon spliced directly to the CH3 domain. The antibody responses to various antigens like hapten-carrier molecules, protein antigens and bacterial pathogens were relatively high, but with some interesting exceptions. Anti-hapten responses to NIP and FITC were high while anti-DNS responses were low, but more surprisingly, there was hardly any B-cell response to the carrier molecule LPH. On the other hand, protein antigens like CGG and BSA were highly immunogenic in the spotted wolffish as were the bacterial antigens Vibrio anguillarum, V. salmonicida and Aeromonas salmonicida.
Collapse
Affiliation(s)
- S Espelid
- Norwegian Institute of Fisheries and Aquaculture Ltd, Tromsø.
| | | | | | | |
Collapse
|
34
|
Bengtén E, Wilson M, Miller N, Clem LW, Pilström L, Warr GW. Immunoglobulin isotypes: structure, function, and genetics. Curr Top Microbiol Immunol 2000; 248:189-219. [PMID: 10793479 DOI: 10.1007/978-3-642-59674-2_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E Bengtén
- Department of Microbiology, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hordvik I, Thevarajan J, Samdal I, Bastani N, Krossøy B. Molecular cloning and phylogenetic analysis of the Atlantic salmon immunoglobulin D gene. Scand J Immunol 1999; 50:202-10. [PMID: 10447926 DOI: 10.1046/j.1365-3083.1999.00583.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene homologous to the IgD heavy chain (delta) gene in channel catfish (Ictalurus punctatus) was found 0.9 kb downstream of the IgM heavy chain (mu) gene in Atlantic salmon (Salmo salar). As in catfish, the first constant mu exon is spliced into the delta transcripts. In agreement with the tetraploid ancestry of the salmonid fish family there are two highly similar delta genes in Atlantic salmon. Characterization of these genes showed that they encode seven 'unique' Ig domains, three of which are tandem duplicated, i.e. like delta1-(delta2-delta3-delta4)*-(delta2- delta3-delta4)-delta5-delta6-d elta7. Sequence analysis indicates that delta1-delta7 arose from two duplication events. Accordingly, salmon delta can be reduced to a unit of three Ig domains corresponding to the three C-terminal domains of a prototypic Ig molecule. The ancestral three-domain unit is apparently best conserved in delta1-delta5-delta6. Phylograms indicate a relationship between teleost and mammalian IgD mainly because of the similarity between the teleost delta5 and human delta2. The corresponding domain in mouse IgD has been deleted during evolution. The teleost delta1 and delta6 sequences are most similar to domains of other non-IgM isotypes, including those in cartilaginous fishes.
Collapse
Affiliation(s)
- I Hordvik
- Department of Fisheries and Marine Biology, University of Bergen, Bergen, Norway
| | | | | | | | | |
Collapse
|
36
|
Miller N, Wilson M, Bengtén E, Stuge T, Warr G, Clem W. Functional and molecular characterization of teleost leukocytes. Immunol Rev 1998; 166:187-97. [PMID: 9914913 DOI: 10.1111/j.1600-065x.1998.tb01263.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The coupling of immunologically relevant in vitro assay systems, cell separation techniques, and the development of distinct clonal leukocyte lines has established the existence of T, B, natural killer, and accessory cell equivalents in teleosts. B cells are directly defined by monoclonal antibodies to teleost immunoglobulin (Ig) and identification of Ig H and L chain genes. As in mammals, fish B cells show Ig H-chain gene rearrangements, allelic exclusion, produce both membrane-bound and secreted forms of Ig, and transduce intracellular proliferative signals upon anti-Ig cross-linking. It has also been found that some fish B cells express a unique chimeric Ig chain with sequence homology to mammalian Ig delta. Teleost T cells are still indirectly defined as sIg- lymphocytes due to a lack of definitive surface markers. These mIg- lymphocytes are the responding cells in mixed leukocyte cultures, proliferate specifically to autologously processed and presented antigen, provide helper function for in vitro antibody responses, and produce interleukin-like factors upon activation. Recent identification of teleost T-cell receptor alpha and beta genes has now permitted the unequivocal genetic demonstration that some of these mIg- cells are bona fide T cells. It is anticipated that such long-term clonal cell lines will be indispensable tools for dissecting the physiology, biochemistry and molecular biology of teleost immune responses.
Collapse
Affiliation(s)
- N Miller
- Department of Microbiology, University of Mississippi Medical Center, Jackson, USA.
| | | | | | | | | | | |
Collapse
|