1
|
Zhou H, Li J, Zhou D, Wu Y, Wang X, Zhou J, Ma Q, Yao X, Ma L. New insights into the germline genes and CDR3 repertoire of the TCRβ chain in Chiroptera. Front Immunol 2023; 14:1147859. [PMID: 37051236 PMCID: PMC10083501 DOI: 10.3389/fimmu.2023.1147859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionBats are recognized as natural reservoirs for many viruses, and their unique immune system enables them to coexist with these viruses without frequently exhibiting disease symptoms. However, the current understanding of the bat adaptive immune system is limited due to the lack of a database or tool capable of processing T-cell receptor (TCR) sequences for bats.MethodsWe performed germline gene annotation in three bat species using homologous genes and RSSs (Recombinational Signal Sequences) scanning method. Then we used the conserved C gene to construct the TCRβ chain receptor library of the Intermediate Horseshoe Bat. Bats' TCRβ data will be analyzed using MiXCR and constructed reference library.ResultsRegarding the annotation results, we found that the Pale Spear-nosed Bat has 37 members in the TRBV12 family, which is more than the total number of TRBV genes in the Greater Horseshoe Bat. The average number of unique TCRβ chain receptor sequences in each Intermediate Horseshoe Bat sample reached 24,904.DiscussionThe distinct variations in the distribution of TRBV genes among the three types of bats could have a direct impact on the diversity of the TCR repertoire, as evidenced by the presence of conserved amino acids that indicate the T-cell recognition of antigens in bats is MHC-restricted. The bats’ TCRβ repertoire is formed through the rearrangement of the V-D-J-C genes, with D-J/V-D deletions and insertions resulting in high diversity.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Yingjie Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xingliang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jiang Zhou
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Qingqing Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Xinsheng Yao, ; Long Ma,
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Xinsheng Yao, ; Long Ma,
| |
Collapse
|
2
|
Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med 2017; 49:e305. [PMID: 28336958 PMCID: PMC5382564 DOI: 10.1038/emm.2017.23] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.
Collapse
Affiliation(s)
- Justus Weber
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
3
|
Gloria-Soria A, Moreno MA, Yund PO, Lakkis FG, Dellaporta SL, Buss LW. Evolutionary genetics of the hydroid allodeterminant alr2. Mol Biol Evol 2012; 29:3921-32. [PMID: 22855537 DOI: 10.1093/molbev/mss197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We surveyed genetic variation in alr2, an allodeterminant of the colonial hydroid Hydractinia symbiolongicarpus. We generated cDNA from a sample of 239 Hydractinia colonies collected at Lighthouse Point, Connecticut, and identified 473 alr2 alleles, 198 of which were unique. Rarefaction analysis suggested that the sample was near saturation. Most alleles were rare, with 86% occurring at frequencies of 1% or less. Alleles were highly variable, diverging on average by 18% of the amino acids in a predicted extracellular domain of the molecule. Analysis of 152 full-length alleles confirmed the existence of two structural types, defined by exons 4-8 of the gene. Several residues of the predicted immunoglobulin superfamily-like domains display signatures of positive selection. We also identified 77 unique alr2 pseudogene sequences from 85 colonies. Twenty-seven of these sequences matched expressed alr2 sequences from other colonies. This observation is consistent with pseudogenes contributing to alr2 diversification through sequence donation. A more limited collection of animals was made from a distant, relict population of H. symbiolongicarpus. Sixty percent of the unique sequences identified in this sample were found to match sequences from the Lighthouse Point population. The large number of alr2 alleles, their degree of divergence, the predominance of rare alleles in the population, their persistence over broad spatial and temporal scales, and the signatures of positive selection in multiple residues of the putative recognition domain paint a consistent picture of negative-frequency-dependent selection operating in this system. The genetic diversity observed at alr2 is comparable to that of the most highly polymorphic genetic systems known to date.
Collapse
|
4
|
Robbins GR, Knight KL. Mechanism for pre-B cell loss in VH-mutant rabbits. THE JOURNAL OF IMMUNOLOGY 2011; 187:4714-20. [PMID: 21957145 DOI: 10.4049/jimmunol.1101778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pre-BCR signaling is a critical checkpoint in B cell development in which B-lineage cells expressing functional IgH μ-chain are selectively expanded. B cell development is delayed in mutant ali/ali rabbits because the a-allotype encoding V(H)1 gene, which is normally used in VDJ gene rearrangements in wt rabbits, is deleted, and instead, most B-lineage cells use the a-allotype encoding V(H)4 gene [V(H)4(a)], which results in a severe developmental block at the pre-B cell stage. We found that V(H)4(a)-utilizing pre-B cells exhibit reduced pre-BCR signaling and do not undergo normal expansion in vitro. Transduction of murine 38B9 pre-B cells with chimeric rabbit-VDJ mouse-Cμ encoding retroviruses showed V(H)4(a)-encoded μ-chains do not readily form signal-competent pre-BCR, thereby explaining the reduction in pre-BCR signaling and pre-B cell expansion. Development of V(H)4(a)-utilizing B cells can be rescued in vivo by the expression of an Igκ transgene, indicating that V(H)4(a)-μ chains are not defective for conventional BCR formation and signaling. The ali/ali rabbit model system is unique because V(H)4(a)-μ chains have the capacity to pair with a variety of conventional IgL chains and yet lack the capacity to form a signal-competent pre-BCR. This system could allow for identification of critical structural parameters that govern pre-BCR formation/signaling.
Collapse
Affiliation(s)
- Gregory R Robbins
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | | |
Collapse
|
5
|
Somatic hypermutations and isotype restricted exceptionally long CDR3H contribute to antibody diversification in cattle. Vet Immunol Immunopathol 2008; 127:106-13. [PMID: 19012969 DOI: 10.1016/j.vetimm.2008.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/10/2008] [Accepted: 09/29/2008] [Indexed: 11/24/2022]
Abstract
Antibody diversification in IgM and IgG antibodies was analyzed in an 18-month old bovine (Bos taurus) suffering from naturally occurring chronic and recurrent infections due to bovine leukocyte adhesion deficiency (BLAD). The BLAD, involving impaired leukocyte beta2 integrin expression on leukocytes, develops due to a single point mutation in conserved region of the CD18 gene resulting in substitution of aspartic acid128 with glycine (D128G). Twenty four VDJCmu and 25 VDJCgamma recombinations from randomly constructed cDNA libraries, originating from peripheral blood lymphocytes, were examined for the variable-region structural characteristics in IgM and IgG antibody isotypes. These analyses led to conclude that: (a) expression of exceptionally long CDR3H is isotype restricted to cattle IgM antibody; (b) VDJ recombinations encoding IgM with exceptionally long CDR3H undergo clonal selection and affinity maturation via somatic mutations similar to conventional antibodies; (c) somatic mutations contribute significantly to both IgM and IgG antibody diversification but significant differences exist in the patterns of 'hot spot' in the FR1, FR3 and CDR1H and, also, position-dependant amino acid diversity; and (d) transition nucleotide substitutions predominate over transversions in both VDJCmu and VDJCgamma recombinations consistent with the evolutionary conservation of somatic mutation machinery. Overall, these studies suggest that both somatic mutations and exceptional CDR3H size generation contribute to IgM and IgG antibody diversification in cattle during the development of immune response to naturally occurring chronic and multiple microbial infections.
Collapse
|
6
|
Dependence of the immune response to coccidiosis on the age of rabbit suckling. Parasitol Res 2008; 103:1265-71. [PMID: 18688645 DOI: 10.1007/s00436-008-1123-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/03/2008] [Indexed: 10/21/2022]
Abstract
To study the immune response to coccidiosis, the suckling rabbits were inoculated with 2,000 oocysts of either Eimeria intestinalis or Eimeria flavescens at 19, 22, 25, 29, and 33 days of age (DA) and in the case of E. intestinalis at 14 and 16 DA as well and sacrificed 14 days later. Another group served as an uninfected control and the rabbits were killed at the same age as their infected counterparts. Unlike the antibody response, the parameters reflecting cellular immunity (total number of leukocytes in mesenteric lymph nodes, lymphocyte proliferation upon stimulation with specific antigen and the dynamics of CD4+ and CD8+ cell proportions in the intestinal epithelium at the specific site of parasite development) were significantly changed from about 25 DA onwards. In contrast to the rabbits infected with weakly immunogenic coccidium E. flavescens, the proportions of CD4+ and CD8+ lymphocytes in intraepithelial lymphocytes from the specific site of parasite development were considerably changed after infection with highly immunogenic species E. intestinalis. As the immune system of sucklings from about 25 DA reacts to the infection, this age may be considered in terms of vaccination against coccidiosis.
Collapse
|
7
|
Abstract
This review discusses evolution of the process of Ig heavy chain class switching, relating it to the first appearance of somatic hypermutation (SHM) of variable region genes. First, we discuss recent findings on the mechanism of class switch recombination (CSR) in mice and humans, and then review the mechanisms of expression of Ig heavy chain isotypes from fishes to mammals. Importantly, activation-induced cytidine deaminase (AID), which is essential for CSR and somatic hypermutation, is found in fishes. Although at least some fishes are likely to undergo SHM, CSR is highly unlikely to occur in this group. We discuss the first appearance of CSR in amphibians and how it differs in birds and mammals.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Molecular Genetics and Microbiology, Program in Immunology and Virology, University of Massachusetts Medical School, 55 Lake Ave N, Worcester, MA 01655-0122, USA.
| | | |
Collapse
|
8
|
MacDonald TT, Monteleone G. Human Gut-Associated Lymphoid Tissues. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Jenne CN, Kennedy LJ, McCullagh P, Reynolds JD. A new model of sheep Ig diversification: shifting the emphasis toward combinatorial mechanisms and away from hypermutation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3739-50. [PMID: 12646640 DOI: 10.4049/jimmunol.170.7.3739] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The current model of Ig repertoire development in sheep focuses on the rearrangement of a small number (approximately 20) of Vlambda gene segments. It is believed that this limited combinatorial repertoire is then further diversified through postrearrangement somatic hypermutation. This process has been reported to introduce as many as 110 mutations/1000 nucleotides. In contrast, our data have that indicated somatic hypermutation may diversify the preimmune repertoire to a much lesser extent. We have identified 64 new Vlambda gene segments within the rearranged Ig repertoire. As a result, many of the unique nucleotide patterns thought to be the product of somatic hypermutation are actually hard-coded within the germline. We suggest that combinatorial rearrangement makes a much larger contribution, and somatic hypermutation makes a much smaller contribution to the generation of diversity within the sheep Ig repertoire than is currently acknowledged.
Collapse
Affiliation(s)
- Craig N Jenne
- Immunology Research Group, University of Calgary, Calgary, Canada
| | | | | | | |
Collapse
|
10
|
Popkov M, Mage RG, Alexander CB, Thundivalappil S, Barbas CF, Rader C. Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: the impact of kappa allotype-correlated variation in cysteine content on antibody libraries selected by phage display. J Mol Biol 2003; 325:325-35. [PMID: 12488098 DOI: 10.1016/s0022-2836(02)01232-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rabbit immune repertoire has long been a rich source of diagnostic polyclonal antibodies. Now it also holds great promise as a source of therapeutic monoclonal antibodies. On the basis of phage display technology, we recently reported the first humanization of a rabbit monoclonal antibody. The allotypic diversity of rabbit immunoglobulins prompted us to compare different rabbit immune repertoires for the generation and humanization of monoclonal antibodies that bind with strong affinity to antigens involved in tumor angiogenesis. In particular, we evaluated the diversity of unselected and selected chimeric rabbit/human Fab libraries that were derived from different kappa light chain allotypes. Most rabbit light chains have an extra disulfide bridge that links the variable and constant domains in addition to the two intrachain disulfide bridges shared with mouse and human kappa light chains. Here we evaluate the impact of this increased disulfide bridge complexity on the generation and selection of chimeric rabbit/human Fab libraries. We demonstrate that rabbits with mutant bas and wild-type parental b9 allotypes are excellent sources for therapeutic monoclonal antibodies. Featured among the selected clones with b9 allotype is a rabbit/human Fab that binds with a dissociation constant of 1nM to both human and mouse Tie-2, which will facilitate its evaluation in mouse models of human cancer. Examination of 228 new rabbit antibody sequences allowed for a comprehensive comparison of the LCDR3 and HCDR3 length diversity in rabbits. This study revealed that rabbits exhibit an HCDR3 length distribution more closely related to human antibodies than mouse antibodies.
Collapse
Affiliation(s)
- Mikhail Popkov
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sehgal D, Obiakor H, Mage RG. Distinct clonal Ig diversification patterns in young appendix compared to antigen-specific splenic clones. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5424-33. [PMID: 12023335 DOI: 10.4049/jimmunol.168.11.5424] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The young rabbit appendix is a dynamic site for primary B cell repertoire development. To study diversification patterns during clonal expansion, we collected single appendix B cells from 3- to 9-wk-old rabbits and sequenced rearranged H and L chain genes. Single cells obtained by hydraulic micromanipulation or laser capture microdissection were lysed, PCR amplified, and products directly sequenced. Gene conversion-like changes occurred in rearranged H and L chain sequences by 3-4 wk of age. Somatic mutations were found in the D regions that lack known conversion donors and probably also occurred in the V genes. A few small sets of clonally related appendix B cells were found at 3-5 wk; by 5.5 wk, some larger clones were recovered. The diversification patterns in the clones from appendix were strikingly different from those found previously in splenic germinal centers where an immunizing Ag was driving the expansion and selection process toward high affinity. Clonally related appendix B cells developed different amino acid sequences in each complementarity-determining region (CDR) including CDR3, whereas dominant clones from spleen underwent few changes in CDR3. The variety of combining sites generated by diversification within individual clones suggests that at least some clonal expansion and selection, known to require normal gut flora, may be driven through indirect effects of microbial components rather than solely by their recognition as specific foreign Ags. This diversity of combining sites within B cell clones supports the proposed role of appendix in generating the preimmune repertoire.
Collapse
Affiliation(s)
- Devinder Sehgal
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
12
|
Kong Q, Maizels N. DNA breaks in hypermutating immunoglobulin genes: evidence for a break-and-repair pathway of somatic hypermutation. Genetics 2001; 158:369-78. [PMID: 11333245 PMCID: PMC1461619 DOI: 10.1093/genetics/158.1.369] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To test the hypothesis that immunoglobulin gene hypermutation in vivo employs a pathway in which DNA breaks are introduced and subsequently repaired to produce mutations, we have used a PCR-based assay to detect and identify single-strand DNA breaks in lambda1 genes of actively hypermutating primary murine germinal center B cells. We find that there is a two- to threefold excess of breaks in lambda1 genes of hypermutating B cells, relative to nonhypermutating B cells, and that 1.3% of germinal center B cells contain breaks in the lambda1 gene that are associated with hypermutation. Breaks were found in both top and bottom DNA strands and were localized to the region of lambda1 that actively hypermutates, but duplex breaks accounted for only a subset of breaks identified. Almost half of the breaks in hypermutating B cells occurred at hotspots, sites at which two or more independent breaks were identified. Breaksite hotspots were associated with characteristic sequence motifs: a pyrimidine-rich motif, either RCTYT or CCYC; and RGYW, a sequence motif associated with hypermutation hotspots. The sequence motifs identified at breaksite hotspots should inform the design of substrates for characterization of activities that participate in the hypermutation pathway.
Collapse
Affiliation(s)
- Q Kong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
13
|
Sehgal D, Schiaffella E, Anderson AO, Mage RG. Generation of heterogeneous rabbit anti-DNP antibodies by gene conversion and hypermutation of rearranged VL and VH genes during clonal expansion of B cells in splenic germinal centers. Eur J Immunol 2000; 30:3634-44. [PMID: 11169406 DOI: 10.1002/1521-4141(200012)30:12<3634::aid-immu3634>3.0.co;2-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms described here account for development of the heterogeneous high-affinity anti-DNP antibodies that rabbits can produce. Rearranged immunoglobulin light and heavy chain genes from single DNP-specific splenic germinal center B cells were amplified by PCR. We found that in clonal lineages, rearranged V[kappa] and V[H] are further diversified by gene conversion and somatic hypermutation. The positive and negative selection of amino acids in complementarity-determining regions observed allows emergence of a variety of different combining site structures. A by-product of the germinal center reaction may be cells with sequences altered by gene conversion that no longer react with the immunizing antigen but are a source of new repertoire. The splenic germinal center would thus play an additional role in adults similar to that of the appendix and other gut-associated lymphoid tissues of young rabbits.
Collapse
Affiliation(s)
- D Sehgal
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892-1892, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Most descriptions of mutation have emphasized its negative consequences, and randomness with respect to biological function. This book seeks to balance the discussion by emphasizing mechanisms that both diversify the genome and increase the probability that a genome's descendants will survive. This chapter provides a framework for, and overview of, the diverse contributions to this book; these contributions will be stimulating companions, well into the 21st Century, as we work to comprehend the information contained in genomic databases. Genomes that encode "better" amino acid sequences are at a selective advantage. Genomes that generate diversity also are at an advantage to the extent that they can navigate efficiently through the space of possible sequence changes. Biochemical systems that tend to increase the ratio of useful to destructive genetic change may harness preexisting information (horizontal gene transfer, DNA translocation and/or DNA duplication), focus the location, timing, and extent of genetic change, adjust the dynamic range of a gene's activity, and/or sample regulatory connections between sites distributed across the genome. Rejecting entirely random genetic variation as the substrate of genome evolution is not a refutation, but rather provides a deeper understanding, of the theory of natural selection of Darwin and Wallace. The fittest molecular strategies survive, along with descendants of the genomes that encode them.
Collapse
|
15
|
Schiaffella E, Sehgal D, Anderson AO, Mage RG. Gene Conversion and Hypermutation During Diversification of VH Sequences in Developing Splenic Germinal Centers of Immunized Rabbits. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The young rabbit appendix and the chicken bursa of Fabricius are primary lymphoid organs where the B cell Ab repertoire develops in germinal centers (GCs) mainly by a gene conversion-like process. In human and mouse, V-gene diversification by somatic hypermutation in GCs of secondary lymphoid organs leads to affinity maturation. We asked whether gene conversion, somatic hypermutation, or both occur in rabbit splenic GCs during responses to the hapten DNP. We determined DNA sequences of rearranged heavy and light chain V region gene segments in single cells from developing DNP-specific GCs after immunization with DNP-bovine γ-globulin and conclude that the changes at the DNA level that may lead to affinity maturation occur by both gene conversion and hypermutation. Selection was suggested by finding some recurrent amino acid replacements that may contribute increased affinity for antigen in the complementarity-determining region sequences of independently evolved clones, and a narrower range of complementarity-determining region 3 lengths at day 15. Some of the alterations of sequence may also lead to new members of the B cell repertoire in adult rabbits comparable with those produced in gut associated lymphoid tissues of young rabbits.
Collapse
Affiliation(s)
- Enrico Schiaffella
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Devinder Sehgal
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Arthur O. Anderson
- †U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702
| | - Rose G. Mage
- *Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
16
|
Diaz M, Greenberg AS, Flajnik MF. Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci U S A 1998; 95:14343-8. [PMID: 9826702 PMCID: PMC24375 DOI: 10.1073/pnas.95.24.14343] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/1998] [Accepted: 10/02/1998] [Indexed: 11/18/2022] Open
Abstract
The new antigen receptor (NAR) gene in the nurse shark diversifies extensively by somatic hypermutation. It is not known, however, whether NAR somatic hypermutation generates the primary repertoire (like in the sheep) or rather is used in antigen-driven immune responses. To address this issue, the sequences of NAR transmembrane (Tm) and secretory (Sec) forms, presumed to represent the primary and secondary repertoires, respectively, were examined from the peripheral blood lymphocytes of three adult nurse sharks. More than 40% of the Sec clones but fewer than 11% of Tm clones contained five mutations or more. Furthermore, more than 75% of the Tm clones had few or no mutations. Mutations in the Sec clones occurred mostly in the complementarity-determining regions (CDR) with a significant bias toward replacement substitutions in CDR1; in Tm clones there was no significant bias toward replacements and only a low level of targeting to the CDRs. Unlike the Tm clones where the replacement mutational pattern was similar to that seen for synonymous changes, Sec replacements displayed a distinct pattern of mutations. The types of mutations in NAR were similar to those found in mouse Ig genes rather than to the unusual pattern reported for shark and Xenopus Ig. Finally, an oligoclonal family of Sec clones revealed a striking trend toward acquisition of glutamic/aspartic acid, suggesting some degree of selection. These data strongly suggest that hypermutation of NAR does not generate the repertoire, but instead is involved in antigen-driven immune responses.
Collapse
Affiliation(s)
- M Diaz
- University of Miami School of Medicine, Department of Microbiology and Immunology, Miami, FL 33136, USA
| | | | | |
Collapse
|