1
|
Xie Y, Ella KM, Gibbs TC, Yohannan ME, Knoepp SM, Balijepalli P, Meier GP, Meier KE. Characterization of Lysophospholipase D Activity in Mammalian Cell Membranes. Cells 2024; 13:520. [PMID: 38534364 DOI: 10.3390/cells13060520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a lipid mediator that binds to G-protein-coupled receptors, eliciting a wide variety of responses in mammalian cells. Lyso-phospholipids generated via phospholipase A2 (PLA2) can be converted to LPA by a lysophospholipase D (lyso-PLD). Secreted lyso-PLDs have been studied in more detail than membrane-localized lyso-PLDs. This study utilized in vitro enzyme assays with fluorescent substrates to examine LPA generation in membranes from multiple mammalian cell lines (PC12, rat pheochromocytoma; A7r5, rat vascular smooth muscle; Rat-1, rat fibroblast; PC-3, human prostate carcinoma; and SKOV-3 and OVCAR-3, human ovarian carcinoma). The results show that membranes contain a lyso-PLD activity that generates LPA from a fluorescent alkyl-lyso-phosphatidylcholine, as well as from naturally occurring acyl-linked lysophospholipids. Membrane lyso-PLD and PLD activities were distinguished by multiple criteria, including lack of effect of PLD2 over-expression on lyso-PLD activity and differential sensitivities to vanadate (PLD inhibitor) and iodate (lyso-PLD inhibitor). Based on several lines of evidence, including siRNA knockdown, membrane lyso-PLD is distinct from autotaxin, a secreted lyso-PLD. PC-3 cells express GDE4 and GDE7, recently described lyso-PLDs that localize to membranes. These findings demonstrate that membrane-associated lyso-D activity, expressed by multiple mammalian cell lines, can contribute to LPA production.
Collapse
Affiliation(s)
- Yuhuan Xie
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Krishna M Ella
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Terra C Gibbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Marianne E Yohannan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stewart M Knoepp
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Pravita Balijepalli
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - G Patrick Meier
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
2
|
Kawai K, Sato Y, Kawakami R, Sakamoto A, Cornelissen A, Mori M, Ghosh S, Kutys R, Virmani R, Finn AV. Generalized Arterial Calcification of Infancy (GACI): Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:1261-1276. [PMID: 35677616 PMCID: PMC9167688 DOI: 10.2147/jmdh.s251861] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
It is very unusual to see evidence of arterial calcification in infants and children, and when detected, genetic disorders of calcium metabolism should be suspected. Generalized arterial calcification of infancy (GACI) is a hereditary disease, which is characterized by severe arterial calcification of medium sized arteries, mostly involving the media with marked intimal proliferation and ectopic mineralization of the extravascular tissues. It is caused by inactivating variants in genes encoding either ENPP1, in a majority of cases (70–75%), or ABCC6, in a minority (9–10%). Despite similar histologic appearances between ENPP1 and ABCC6 deficiencies, including arterial calcification, organ calcification, and cardiovascular calcification, mortality is higher in subjects carrying the ENPP1 versus ABCC6 variants (40% vs 10%, respectively). Overall mortality in individuals with GACI is high (55%) before the age of 6 months, with 24.4% dying in utero or being stillborn. Rare cases show spontaneous regression with age, while others who survive into adulthood often manifest musculoskeletal complications (osteoarthritis and interosseous membrane ossification), enthesis mineralization, and cervical spine fusion. Despite recent advances in the understanding of the genetic mechanisms underlying this disease, there is still no ideal therapy for the resolution of vascular calcification in GACI. Although bisphosphonates with anti-calcification properties have been commonly used for the treatment of CAGI, their benefit is controversial, with favorable results reported at one year and questionable benefit with delayed initiation of treatment. Enzyme replacement therapy with administration of recombinant form of ENPP1 prevents calcification and mortality, improves hypertension and cardiac function, and prevents intimal proliferation and osteomalacia in mouse models of ENPP1 deficiency. Therefore, newer treatments targeting genes are on the horizon. In this article, we review up to date knowledge of the understanding of GACI, its clinical, pathologic, and etiologic understanding and treatment in support of more comprehensive care of GACI patients.
Collapse
Affiliation(s)
| | - Yu Sato
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD, USA
- University of Maryland, School of Medicine, Baltimore, MD, USA
- Correspondence: Aloke V Finn, 19 Firstfield Road, Gaithersburg, MD, 20878, USA, Tel +301.208.3570, Fax +301.208.3745, Email
| |
Collapse
|
3
|
Structure and function of the Ecto-Nucleotide Pyrophosphatase-Phosphodiesterase (ENPP) family: tidying up diversity. J Biol Chem 2021; 298:101526. [PMID: 34958798 PMCID: PMC8808174 DOI: 10.1016/j.jbc.2021.101526] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family members (ENPP1–7) have been implicated in key biological and pathophysiological processes, including nucleotide and phospholipid signaling, bone mineralization, fibrotic diseases, and tumor-associated immune cell infiltration. ENPPs are single-pass transmembrane ecto-enzymes, with notable exceptions of ENPP2 (Autotaxin) and ENNP6, which are secreted and glycosylphosphatidylinositol (GPI)-anchored, respectively. ENNP1 and ENNP2 are the best characterized and functionally the most interesting members. Here, we review the structural features of ENPP1–7 to understand how they evolved to accommodate specific substrates and mediate different biological activities. ENPPs are defined by a conserved phosphodiesterase (PDE) domain. In ENPP1–3, the PDE domain is flanked by two N-terminal somatomedin B-like domains and a C-terminal inactive nuclease domain that confers structural stability, whereas ENPP4–7 only possess the PDE domain. Structural differences in the substrate-binding site endow each protein with unique characteristics. Thus, ENPP1, ENPP3, ENPP4, and ENPP5 hydrolyze nucleotides, whereas ENPP2, ENPP6, and ENNP7 evolved as phospholipases through adaptions in the catalytic domain. These adaptations explain the different biological and pathophysiological functions of individual members. Understanding the ENPP members as a whole advances our insights into common mechanisms, highlights their functional diversity, and helps to explore new biological roles.
Collapse
|
4
|
Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci 2021; 22:4620. [PMID: 33924852 PMCID: PMC8125640 DOI: 10.3390/ijms22094620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.
Collapse
Affiliation(s)
- Holly J. Woodward
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Patrick W. F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victoria E. MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| |
Collapse
|
5
|
Novel Insights in Anti-CD38 Therapy Based on CD38-Receptor Expression and Function: The Multiple Myeloma Model. Cells 2020; 9:cells9122666. [PMID: 33322499 PMCID: PMC7764337 DOI: 10.3390/cells9122666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma (MM) is a hematological disease characterized by the proliferation and accumulation of malignant plasmacells (PCs) in the bone marrow (BM). Despite widespread use of high-dose chemotherapy in combination with autologous stem cell transplantation (ASCT) and the introduction of novel agents (immunomodulatory drugs, IMiDs, and proteasome inhibitors, PIs), the prognosis of MM patients is still poor. CD38 is a multifunctional cell-surface glycoprotein with receptor and ectoenzymatic activities. The very high and homogeneous expression of CD38 on myeloma PCs makes it an attractive target for novel therapeutic strategies. Several anti-CD38 monoclonal antibodies have been, or are being, developed for the treatment of MM, including daratumumab and isatuximab. Here we provide an in-depth look at CD38 biology, the role of CD38 in MM progression and its complex interactions with the BM microenvironment, the importance of anti-CD38 monoclonal antibodies, and the main mechanisms of antibody resistance. We then review a number of multiparametric flow cytometry techniques exploiting CD38 antigen expression on PCs to diagnose and monitor the response to treatment in MM patients.
Collapse
|
6
|
Anbar HS, El-Gamal R, Ullah S, Zaraei SO, Al-Rashida M, Zaib S, Pelletier J, Sévigny J, Iqbal J, El-Gamal MI. Evaluation of sulfonate and sulfamate derivatives possessing benzofuran or benzothiophene nucleus as inhibitors of nucleotide pyrophosphatases/phosphodiesterases and anticancer agents. Bioorg Chem 2020; 104:104305. [PMID: 33017718 DOI: 10.1016/j.bioorg.2020.104305] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai 19099, United Arab Emirates
| | - Randa El-Gamal
- Department of Medical Biochemistry, Faculty of Medicine, University of Mansoura, Mansoura 35516, Egypt
| | - Saif Ullah
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Seyed-Omar Zaraei
- Center for Biomaterials, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Republic of Korea; Department of Biomolecular Science, Korea University of Science and Technology, 113 Gwahangno, Yuseong-gu, Daejeon 305-333, Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| |
Collapse
|
7
|
The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells 2019; 9:cells9010052. [PMID: 31878283 PMCID: PMC7016859 DOI: 10.3390/cells9010052] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The regulation of the immune microenvironment within solid tumors has received increasing attention with the development and clinical success of immune checkpoint blockade therapies, such as those that target the PD-1/PD-L1 axis. The metabolic microenvironment within solid tumors has proven to be an important regulator of both the natural suppression of immune cell functionality and the de novo or acquired resistance to immunotherapy. Enzymatic proteins that generate immunosuppressive metabolites like adenosine are thus attractive targets to couple with immunotherapies to improve clinical efficacy. CD38 is one such enzyme. While the role of CD38 in hematological malignancies has been extensively studied, the impact of CD38 expression within solid tumors is largely unknown, though most current data indicate an immunosuppressive role for CD38. However, CD38 is far from a simple enzyme, and there are several remaining questions that require further study. To effectively treat solid tumors, we must learn as much about this multifaceted protein as possible—i.e., which infiltrating immune cell types express CD38 for functional activities, the most effective CD38 inhibitor(s) to employ, and the influence of other similarly functioning enzymes that may also contribute towards an immunosuppressive microenvironment. Gathering knowledge such as this will allow for intelligent targeting of CD38, the reinvigoration of immune functionality and, ultimately, tumor elimination.
Collapse
|
8
|
Sortica DA, Crispim D, Bauer AC, Nique PS, Nicoletto BB, Crestani RP, Staehler JT, Manfro RC, Canani LH. K121Q polymorphism in the Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 gene is associated with acute kidney rejection. PLoS One 2019; 14:e0219062. [PMID: 31318911 PMCID: PMC6639061 DOI: 10.1371/journal.pone.0219062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of risk factors for acute rejection (AR) may lead to strategies to improve success of kidney transplantation. Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides into nucleosides, modulating the purinergic signaling. Some members of the Ectonucleotidase family have been linked to transplant rejection processes. However, the association of Ectonucleotide Pyrophosphatase / Phosphodiesterase 1 (ENPP1) with AR has not yet been evaluated. The aim of this study was to evaluate the association between the K121Q polymorphism of ENPP1 gene and AR in kidney transplant patients. We analyzed 449 subjects without AR and 98 with AR from a retrospective cohort of kidney transplant patients from Southern Brazil. K121Q polymorphism was genotyped using allelic discrimination-real-time PCR. Cox regression analysis was used to evaluate freedom of AR in kidney transplant patients according to genotypes. Q allele frequency was 17.6% in recipients without AR and 21.9% in those with AR (P = 0.209). Genotype frequencies of the K121Q polymorphism were in Hardy-Weinberg equilibrium in non-AR patients (P = 0.70). The Q/Q genotype (recessive model) was associated with AR (HR = 2.83, 95% CI 1.08–7.45; P = 0.034) after adjusting for confounders factors. Our findings suggest a novel association between the ENPP1 121Q/Q genotype and AR in kidney transplant recipients.
Collapse
Affiliation(s)
- Denise A. Sortica
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C. Bauer
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pamela S. Nique
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna B. Nicoletto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Life Science Knowledge Area, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil, Nutrition Course, Área do Conhecimento de Ciências da Vida, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Ricieli P. Crestani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jennifer T. Staehler
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberto C. Manfro
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis H. Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
9
|
ENPP1 in the Regulation of Mineralization and Beyond. Trends Biochem Sci 2019; 44:616-628. [PMID: 30799235 DOI: 10.1016/j.tibs.2019.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
ENPP1 is well known for its role in regulating skeletal and soft tissue mineralization. It primarily exerts its function through the generation of pyrophosphate, a key inhibitor of hydroxyapatite formation. Several previous studies have suggested that ENPP1 also contributes to a range of human diseases including diabetes, cancer, cardiovascular disease, and osteoarthritis. In this review, we summarize the pathological roles of ENPP1 in mineralization and these soft tissue disorders. We also discuss the underlying mechanisms through which ENPP1 exerts its pathological effects. A fuller understanding of the pathways through which ENPP1 acts may help to develop novel therapeutic strategies for these commonly diagnosed morbidities.
Collapse
|
10
|
Khan T, Sinkevicius KW, Vong S, Avakian A, Leavitt MC, Malanson H, Marozsan A, Askew KL. ENPP1 enzyme replacement therapy improves blood pressure and cardiovascular function in a mouse model of generalized arterial calcification of infancy. Dis Model Mech 2018; 11:dmm.035691. [PMID: 30158213 PMCID: PMC6215426 DOI: 10.1242/dmm.035691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Generalized arterial calcification of infancy (GACI) is a rare, life-threatening disorder caused by loss-of-function mutations in the gene encoding ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), which normally hydrolyzes extracellular ATP into AMP and pyrophosphate (PPi). The disease is characterized by extensive arterial calcification and stenosis of large- and medium-sized vessels, leading to vascular-related complications of hypertension and heart failure. There is currently no effective treatment available, but bisphosphonates – nonhydrolyzable PPi analogs – are being used off-label to reduce arterial calcification, although this has no reported impact on the hypertension and cardiac dysfunction features of GACI. In this study, the efficacy of a recombinant human ENPP1 protein therapeutic (rhENPP1) was tested in Enpp1asj-2J homozygous mice (Asj-2J or Asj-2J hom), a model previously described to show extensive mineralization in the arterial vasculature, similar to GACI patients. In a disease prevention study, Asj-2J mice treated with rhENPP1 for 3 weeks showed >95% reduction in aorta calcification. Terminal hemodynamics and echocardiography imaging of Asj-2J mice also revealed that a 6-week rhENPP1 treatment normalized elevated arterial and left ventricular pressure, which translated into significant improvements in myocardial compliance, contractility, heart workload and global cardiovascular efficiency. This study suggests that ENPP1 enzyme replacement therapy could be a more effective GACI therapeutic than bisphosphonates, treating not just the vascular calcification, but also the hypertension that eventually leads to cardiac failure in GACI patients. Summary: ENPP1 enzyme replacement therapy can have important implications for generalized arterial calcification of infancy by treating both vascular calcification and hypertension, which are the leading causes of cardiac failure and mortality in patients.
Collapse
Affiliation(s)
- Tayeba Khan
- Alexion Pharmaceuticals, Lexington, MA 02421, USA
| | | | - Sylvia Vong
- Alexion Pharmaceuticals, New Haven, CT 06510, USA
| | | | | | | | | | - Kim L Askew
- Alexion Pharmaceuticals, Lexington, MA 02421, USA
| |
Collapse
|
11
|
Jin Y, Cong Q, Gvozdenovic-Jeremic J, Hu J, Zhang Y, Terkeltaub R, Yang Y. Enpp1 inhibits ectopic joint calcification and maintains articular chondrocytes by repressing hedgehog signaling. Development 2018; 145:dev.164830. [PMID: 30111653 DOI: 10.1242/dev.164830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023]
Abstract
The differentiated phenotype of articular chondrocytes of synovial joints needs to be maintained throughout life. Disruption of the articular cartilage, frequently associated with chondrocyte hypertrophy and calcification, is a central feature in osteoarthritis (OA). However, the molecular mechanisms whereby phenotypes of articular chondrocytes are maintained and pathological calcification is inhibited remain poorly understood. Recently, the ecto-enzyme Enpp1, a suppressor of pathological calcification, was reported to be decreased in joint cartilage with OA in both human and mouse, and Enpp1 deficiency causes joint calcification. Here, we found that hedgehog (Hh) signaling activation contributes to ectopic joint calcification in the Enpp1-/- mice. In the Enpp1-/- joints, Hh signaling was upregulated. Further activation of Hh signaling by removing the patched 1 gene in the Enpp1-/- mice enhanced ectopic joint calcification, whereas removing Gli2 partially rescued the ectopic calcification phenotype. In addition, reduction of Gαs in the Enpp1-/- mice enhanced joint calcification, suggesting that Enpp1 inhibits Hh signaling and chondrocyte hypertrophy by activating Gαs-PKA signaling. Our findings provide new insights into the mechanisms underlying Enpp1 regulation of joint integrity.
Collapse
Affiliation(s)
- Yunyun Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qian Cong
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | | | - Jiajie Hu
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Yiqun Zhang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| | - Robert Terkeltaub
- Department of Medicine, Veterans Affairs Healthcare System, University of California San Diego, 111K, 3350 La Jolla Village Dr., San Diego, CA 92161, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Stem Cell Institute, Boston, MA 02115, USA
| |
Collapse
|
12
|
Mohammadpour AH, Nazemi S, Mashhadi F, Rezapour A, Afshar M, Afzalnia S, Mohammadi A, Mashreghi Moghadam HR, Moradian M, Moallem SMH, Falahaty S, Zayerzadeh A, Elyasi S. Evaluation of NPP1 as a Novel Biomarker of Coronary Artery Disease: A Pilot Study in Human Beings. Adv Pharm Bull 2018; 8:489-493. [PMID: 30276146 PMCID: PMC6156488 DOI: 10.15171/apb.2018.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 05/28/2018] [Accepted: 07/19/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: Coronary artery calcification (CAC) is utilized as an important tool for global risk assessment of cardiovascular events in individuals with intermediate risk. Ecto phosphodiesterase/nucleotide phosphohydrolase-1(ENPP1) converts extracellular nucleotides into inorganic pyrophosphate and it is a key regulator of tissue calcification that adjusts calcification in tissues like vascular smooth muscle cells. The main purpose of this clinical study was to find out the correlation between ENPP1 serum concentration and CAC in human for the first time. Methods: In this study 83 patients (16 diabetic patients and 67 non-diabetic patients) with coronary artery disease who fulfilled inclusion and exclusion criteria, entered the study. For all patients a questionnaire consisting demographic data and traditional cardiovascular risk factors were completed. Computed tomography (CT)-Angiography was carried out to determine coronary artery calcium score and enzyme-linked immunosorbent assay (ELISA) method was used for measuring ENPP1 serum concentrations. Results: There was a reverse significant correlation between ENPP1 serum concentration and total CAC score and also CAC of right coronary artery (RCA) (P<0.05) in non-diabetic patients. Conclusion: On the basis of our results, ENPP1 serum concentration may be a suitable biomarker for coronary artery disease at least in non-diabetic patients. However, more studies with higher sample size are necessary for its confirmation.
Collapse
Affiliation(s)
- Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Nazemi
- Research and Education Department, Razavi Hospital, Mashhad, Iran
| | - Fatemeh Mashhadi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Rezapour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Afshar
- Department of Anatomy, Birjand University of Medical Sciences, Birjand, Iran.,Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Afzalnia
- Research and Education Department, Razavi Hospital, Mashhad, Iran
| | | | - Hamid Reza Mashreghi Moghadam
- Birjand Cardiovascular Disease Research Center; Department of Cardiology, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradian
- Department of Pediatric Cardiology, Rajaie Cardiovascular Medical and Research Center, Tehran, Iran
| | | | - Saeed Falahaty
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Zayerzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Ferrero E, Faini AC, Malavasi F. A phylogenetic view of the leukocyte ectonucleotidases. Immunol Lett 2018; 205:51-58. [PMID: 29958894 DOI: 10.1016/j.imlet.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 12/12/2022]
Abstract
The leukocyte ectonucleotidases are a recently defined family included in the last Human Leukocyte Differentiation Antigens Workshop, giving prominence to these membrane proteins whose catalytic activity is expressed outside the cell. Among the most important substrates of the leukocyte ectonucleotidases are extracellular ATP and NAD+ whose transient increases are not immunologically silent but rather perceived as danger signals by the host. Among the host responses to the release of ATP, NAD+ and related small molecules is their breakdown on behalf of a panel of leukocyte ectonucleotidases - CD38, CD39, CD73, CD157, CD203a and CD203c -, whose activities are concatenated to form two nucleotide-catabolizing channels defined as the canonical and non-canonical adenosinergic pathways. Here, after briefly reviewing the structure and function of the proteins involved in these pathwys, we focus on the genes encoding the ectoenzymes of these adenosinergic pathways. The chromosomal localizations of the enzyme-encoding genes yield a first level of information concerning their origins by duplication and modes of regulation. Further information was obtained from phylogenetic analyses that show ectoenzyme orthologs are conserved in major tetrapod species whereas examination of synteny conservation revealed that the chromosomal regions harboring the ADP-ribosyl cyclases on human chromosome 4 and the ENTPDase CD39 on chromosome 10 show striking similarities in gene content consistent with their being paralogous chromosomal regions derived from a vertebrate whole genome duplication. Thus the connections between some of the leukocyte ectoenzymes run deeper than previously imagined.
Collapse
Affiliation(s)
- Enza Ferrero
- Immunogenetics Laboratory, Department of Medical Sciences, University of Torino, Torino, Italy.
| | - Angelo C Faini
- Immunogenetics Laboratory, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Fabio Malavasi
- Immunogenetics Laboratory, Department of Medical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
14
|
Horenstein AL, Chillemi A, Zini R, Quarona V, Bianchi N, Manfredini R, Gambari R, Malavasi F, Ferrari D. Cytokine-Induced Killer Cells Express CD39, CD38, CD203a, CD73 Ectoenzymes and P1 Adenosinergic Receptors. Front Pharmacol 2018; 9:196. [PMID: 29731713 PMCID: PMC5920153 DOI: 10.3389/fphar.2018.00196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/21/2018] [Indexed: 11/16/2022] Open
Abstract
Cytokine-induced killer (CIK) cells, a heterogeneous T cell population obtained by in vitro differentiation of peripheral blood mononuclear cells (PBMC), represent a promising immunological approach in cancer. Numerous studies have explored the role of CD38, CD39, CD203a/PC-1, and CD73 in generating extracellular adenosine (ADO) and thus in shaping the tumor niche in favor of proliferation. The findings shown here reveal that CIK cells are able to produce extracellular ADO via traditional (CD39/CD73) and/or alternative (CD38/CD203a/CD73 or CD203a/CD73) pathways. Transcriptome analysis showed the mRNA expression of these molecules and their modulation during PBMC to CIK differentiation. When PBMC from normal subjects or cancer bearing patients were differentiated into CIK cells under normoxic conditions, CD38 and CD39 were greatly up-regulated while the number of CD203a, and CD73 positive cells underwent minor changes. Since hypoxic conditions are often found in tumors, we asked whether CD39, CD38, CD203a, and CD73 expressed by CIK cells were modulated by hypoxia. PBMC isolated from cancer patients and differentiated into CIK cells in hypoxic conditions did not show relevant changes in CD38, CD39, CD73, CD203a, and CD26. CIK cells also expressed A1, A2A, and A2B ADO receptors and they only underwent minor changes as a consequence of hypoxia. The present study sheds light on a previously unknown functional aspect of CIK cells, opening the possibility of pharmacologically modulated ADO-generating ectoezymes to improve CIK cells performance.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Antonella Chillemi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valeria Quarona
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Nicoletta Bianchi
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Gambari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Tassone EJ, Cimellaro A, Perticone M, Hribal ML, Sciacqua A, Andreozzi F, Sesti G, Perticone F. Uric Acid Impairs Insulin Signaling by Promoting Enpp1 Binding to Insulin Receptor in Human Umbilical Vein Endothelial Cells. Front Endocrinol (Lausanne) 2018; 9:98. [PMID: 29619007 PMCID: PMC5879120 DOI: 10.3389/fendo.2018.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/28/2018] [Indexed: 12/22/2022] Open
Abstract
High levels of uric acid (UA) are associated with type-2 diabetes and cardiovascular disease. Recent pieces of evidence attributed to UA a causative role in the appearance of diabetes and vascular damage. However, the molecular mechanisms by which UA induces these alterations have not been completely elucidated so far. Among the mechanisms underlying insulin resistance, it was reported the role of a transmembrane glycoprotein, named either ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) or plasma cell antigen 1, which is able to inhibit the function of insulin receptor (IR) and it is overexpressed in insulin-resistant subjects. In keeping with this, we stimulated human umbilical vein endothelial cells (HUVECs) with insulin and UA to investigate the effects of UA on insulin signaling pathway, testing the hypothesis that UA can interfere with insulin signaling by the activation of ENPP1. Cultures of HUVECs were stimulated with insulin, UA and the urate transporter SLC22A12 (URAT1) inhibitor probenecid. Akt and endothelial nitric oxide synthase (eNOS) phosphorylation levels were investigated by immunoblotting. ENPP1 binding to IR and its tyrosine phosphorylation levels were tested by immunoprecipitation and immunoblotting. UA inhibited insulin-induced Akt/eNOS axis. Moreover, UA induced ENPP1 binding to IR that resulted in an impairment of insulin signaling cascade. Probenecid reverted UA effects, suggesting that UA intracellular uptake is required for its action. In endothelial cells, UA directly interferes with insulin signaling pathway at receptor level, through ENPP1 recruitment. This evidence suggests a new molecular model of UA-induced insulin resistance and vascular damage.
Collapse
Affiliation(s)
- Eliezer J. Tassone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Antonio Cimellaro
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Maria Perticone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- *Correspondence: Maria Perticone,
| | - Marta L. Hribal
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
16
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Wang H, Lin JX, Li P, Skinner J, Leonard WJ, Morse HC. New insights into heterogeneity of peritoneal B-1a cells. Ann N Y Acad Sci 2015; 1362:68-76. [PMID: 25988856 PMCID: PMC4651667 DOI: 10.1111/nyas.12791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peritoneal B-1a cells are characterized by their expression of CD5 and enrichment for germline-encoded IgM B cell receptors. Early studies showing expression of a diverse array of VDJ sequences among purified B-1a cells provided a molecular basis for understanding the heterogeneity of the B-1a cell repertoire. Antigen-driven positive selection and the identification of B-1a specific progenitors suggest multiple origins of B-1a cells. The introduction of new markers such as PD-L2, CD25, CD73, and PC1 (plasma cell alloantigen 1, also known as ectonucleotide phosphodiesterase/pyrophosphatase 1) further helped to identify phenotypically and functionally distinct B-1a subsets. Among many B-1a subsets defined by these new markers, PC1 is unique in that it subdivides B-1a cells into PC1(hi) and PC1(lo) subpopulations with distinct functions, such as production of natural IgM and gut IgA, response to the pneumococcal antigen PPS-3, secretion of interleukin-10, and support for T helper 1 (TH 1) cell differentiation. RNA sequencing of these subsets revealed differential expression of genes involved in cellular movement and immune cell trafficking. We will discuss these new insights underlying the heterogeneous nature of the B-1a cell repertoire.
Collapse
Affiliation(s)
- Hongsheng Wang
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jian-xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeff Skinner
- Malaria Infection Biology and Immunity Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Warren J. Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Herbert C. Morse
- The Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| |
Collapse
|
18
|
Li L, Yin Q, Kuss P, Maliga Z, Millán JL, Wu H, Mitchison TJ. Hydrolysis of 2'3'-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol 2014; 10:1043-8. [PMID: 25344812 PMCID: PMC4232468 DOI: 10.1038/nchembio.1661] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/28/2014] [Indexed: 12/13/2022]
Abstract
Agonists of mouse STING (TMEM173) shrink and even cure solid tumors by activating innate immunity; human STING (hSTING) agonists are needed to test this therapeutic hypothesis in humans. The endogenous STING agonist is 2'3'-cGAMP, a second messenger that signals the presence of cytosolic double-stranded DNA. We report activity-guided partial purification and identification of ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) to be the dominant 2'3'-cGAMP hydrolyzing activity in cultured cells. The hydrolysis activity of ENPP1 was confirmed using recombinant protein and was depleted in tissue extracts and plasma from Enpp1(-/-) mice. We synthesized a hydrolysis-resistant bisphosphothioate analog of 2'3'-cGAMP (2'3'-cG(s)A(s)MP) that has similar affinity for hSTING in vitro and is ten times more potent at inducing IFN-β secretion from human THP1 monocytes. Studies in mouse Enpp1(-/-) lung fibroblasts indicate that resistance to hydrolysis contributes substantially to its higher potency. 2'3'-cG(s)A(s)MP is therefore improved over natural 2'3'-cGAMP as a model agonist and has potential as a vaccine adjuvant and cancer therapeutic.
Collapse
Affiliation(s)
- Lingyin Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Qian Yin
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Pia Kuss
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zoltan Maliga
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - José L. Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Gondoin A, Morzyglod L, Desbuquois B, Burnol AF. [Control of insulin signalisation and action by the Grb14 protein]. Biol Aujourdhui 2014; 208:119-36. [PMID: 25190572 DOI: 10.1051/jbio/2014013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 11/15/2022]
Abstract
The action of insulin on metabolism and cell growth is mediated by a specific receptor tyrosine kinase, which, through phosphorylation of several substrates, triggers the activation of two major signaling pathways, the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway and the Ras/extracellular signal-regulated kinase (ERK) pathway. Insulin-induced activation of the receptor and downstream signaling is also subjected to a negative feedback control involving several mechanisms, among which the interaction of the insulin receptor and its substrates with inhibitory proteins. After summarizing the major mechanisms underlying the activation and attenuation of insulin signaling, this review focuses on its control by the Grb14 adaptor protein. Grb14 has been identif-ied as an inhibitor of insulin signaling and action, and is involved in insulin resistance associated with type 2 diabetes and obesity. Studies on the molecular mechanism of action of Grb14 have shown that, through interaction with the activated insulin receptor, Grb14 inhibits its catalytic activity and the activation of downstream signaling. However, the consequences of Grb14 gene invalidation are complex and tissue-specific, and some effects of Grb14 on insulin signaling appear to be linked to its interaction with effector proteins downstream the insulin receptor. Pharmacological inhibition of Grb14 should allow to enhance insulin sensitivity and improve energy homeostasis in insulin-resistant states.
Collapse
Affiliation(s)
- Anaïs Gondoin
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Lucie Morzyglod
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Bernard Desbuquois
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Anne-Françoise Burnol
- INSERM, U1016, Institut Cochin, 22 rue Méchain, 75014 Paris, France - CNRS, UMR 8104, Institut Cochin, 22 rue Méchain, 75014 Paris, France - Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| |
Collapse
|
20
|
Kikuchi K. Design, synthesis, and biological application of fluorescent sensor molecules for cellular imaging. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 119:63-78. [PMID: 19649586 DOI: 10.1007/10_2008_42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Cellular imaging has achieved many new biological findings, among them GFP and other fluorescent proteins and small molecule based fluorescent sensors have been widely used, especially in the last decade. The design concept and application of chemical sensors are described, these being FRET based sensors and Zn(2+) sensors.Fluorescence resonance energy transfer (FRET) has been used extensively as the designing principle for fluorescent sensor molecules. One of the most significant advantages of designing sensor molecules with FRET modulation is that it can enable ratiometric measurement in living cells, which reduces the artifact from microscopic imaging systems. The design strategy for the development of small molecular FRET sensors is described in terms of avoiding close contact of donor fluorophore and acceptor fluorophore in aqueous solution. Furthermore, a strategy to design FRET sensors with modulating overlap integrals of donor and acceptor is introduced.Numerous tools for Zn(2+) sensing in living cells have become available in the last 8 years. Among them, fluorescence imaging using fluorescent sensor molecules has been the most popular approach. Some of these sensor molecules can be used to visualize Zn(2+) in living cells. Some of the biological functions of Zn(2+) were clarified using these sensor molecules, especially in neuronal cells, which contain a high concentration of free Zn(2) (+).
Collapse
Affiliation(s)
- Kazuya Kikuchi
- Department of Materials and Life Sciences, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita City, 565-0871, Osaka, Japan,
| |
Collapse
|
21
|
Danino O, Grossman S, Fischer B. Nucleoside 5'-phosphorothioate derivatives as oxidative stress protectants in PC12 cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:333-53. [PMID: 23742060 DOI: 10.1080/15257770.2013.789107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron-induced oxidative damage of mitochondria contributes to cellular death seen in neurodegenerative diseases, therefore, there is a demand for nontoxic, biocompatible, and effective Fe-ion chelators. We evaluated the chelation of Fe(II) by phosphate derivatives using ferrozine as an indicator. We studied the effect of phosphate derivatives on inhibiting Fe(II)-induced oxidative stress in PC12 cells, and metabolic stability in PC12 cells was evaluated. Nucleotides containing phosphorothioate moieties inhibited ROS formation better than natural nucleotides and were more metabolically stable in PC12 cells. Finally, we elucidated that these nucleotides activate the MAP-kinase pathway that contributes to protection of PC12 cells under oxidative stress.
Collapse
Affiliation(s)
- Ortal Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
22
|
Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A, Serra S, Malavasi F. A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2013; 2:e26246. [PMID: 24319640 PMCID: PMC3850273 DOI: 10.4161/onci.26246] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
The tumor microenvironment is characterized by of high levels of extracellular nucleotides that are metabolized through the dynamic and sequential action of cell surface enzymes (ectoenzymes). These ectoenzymes operate according to their spatial arrangement, as part of (1) continuous (molecules on the same cell) or (2) discontinuous (molecules on different cells) pathways, the latter being facilitated by restricted cellular microenvironment. The outcome of this catabolic activity is an increase in the local concentration of adenosine, a nucleoside involved in the control of inflammation and immune responses. The aim of the work presented here was to demonstrate that a previously unexplored enzymatic pathway may be an alternate route to produce extracellular adenosine. Our data show that this new axis is driven by the nucleotide-metabolizing ectoenzymes CD38 (an NAD+ nucleosidase), the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1, also known as CD203a or PC-1) and the 5′ ectonucleotidase (5′-NT) CD73, while bypassing the canonical catabolic pathway mediated by the nucleoside tri- and diphosphohydrolase (NTPDase) CD39. To determine the relative contributions of these cell surface enzymes to the production of adenosine, we exploited a human T-cell model allowing for the modular expression of the individual components of this alternative pathway upon activation and transfection. The biochemical analysis of the products of these ectoenzymes by high-performance liquid chromatography (HPLC) fully substantiated our working hypothesis. This newly characterized pathway may facilitate the emergence of an adaptive immune response in selected cellular contexts. Considering the role for extracellular adenosine in the regulation of inflammation and immunogenicity, this pathway could constitute a novel strategy of tumor evasion, implying that these enzymes may represent ideal targets for antibody-mediated therapy.
Collapse
Affiliation(s)
- Alberto L Horenstein
- Laboratory of Immunogenetics; Department of Medical Sciences; University of Torino; Torino, Italy ; Research Center for Experimental Medicine; University of Torino; Torino, Italy ; Transplantation Immunology; "Città della Salute e della Scienza" Hospital; Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Grozio A, Sociali G, Sturla L, Caffa I, Soncini D, Salis A, Raffaelli N, De Flora A, Nencioni A, Bruzzone S. CD73 protein as a source of extracellular precursors for sustained NAD+ biosynthesis in FK866-treated tumor cells. J Biol Chem 2013; 288:25938-25949. [PMID: 23880765 DOI: 10.1074/jbc.m113.470435] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
NAD(+) is mainly synthesized in human cells via the "salvage" pathways starting from nicotinamide, nicotinic acid, or nicotinamide riboside (NR). The inhibition with FK866 of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), catalyzing the first reaction in the "salvage" pathway from nicotinamide, showed potent antitumor activity in several preclinical models of solid and hematologic cancers. In the clinical studies performed with FK866, however, no tumor remission was observed. Here we demonstrate that low micromolar concentrations of extracellular NAD(+) or NAD(+) precursors, nicotinamide mononucleotide (NMN) and NR, can reverse the FK866-induced cell death, this representing a plausible explanation for the failure of NAMPT inhibition as an anti-cancer therapy. NMN is a substrate of both ectoenzymes CD38 and CD73, with generation of NAM and NR, respectively. In this study, we investigated the roles of CD38 and CD73 in providing ectocellular NAD(+) precursors for NAD(+) biosynthesis and in modulating cell susceptibility to FK866. By specifically silencing or overexpressing CD38 and CD73, we demonstrated that endogenous CD73 enables, whereas CD38 impairs, the conversion of extracellular NMN to NR as a precursor for intracellular NAD(+) biosynthesis in human cells. Moreover, cell viability in FK866-treated cells supplemented with extracellular NMN was strongly reduced in tumor cells, upon pharmacological inhibition or specific down-regulation of CD73. Thus, our study suggests that genetic or pharmacologic interventions interfering with CD73 activity may prove useful to increase cancer cell sensitivity to NAMPT inhibitors.
Collapse
Affiliation(s)
- Alessia Grozio
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Giovanna Sociali
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Laura Sturla
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Irene Caffa
- the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and
| | - Debora Soncini
- the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and
| | - Annalisa Salis
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Nadia Raffaelli
- the Department of Agricultural, Food, Environmental Science, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Antonio De Flora
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and
| | - Alessio Nencioni
- the Department of Internal Medicine, University of Genova, Viale Benedetto XV 1, 16132 Genova, Italy and
| | - Santina Bruzzone
- From the Department of Experimental Medicine, Section of Biochemistry, and Center of Excellence for Biomedical Research (CEBR) and.
| |
Collapse
|
24
|
Chillemi A, Zaccarello G, Quarona V, Ferracin M, Ghimenti C, Massaia M, Horenstein AL, Malavasi F. Anti-CD38 antibody therapy: windows of opportunity yielded by the functional characteristics of the target molecule. Mol Med 2013; 19:99-108. [PMID: 23615966 DOI: 10.2119/molmed.2013.00009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/16/2013] [Indexed: 01/20/2023] Open
Abstract
In vivo use of monoclonal antibodies (mAbs) has become a mainstay of routine clinical practice in the treatment of various human diseases. A number of molecules can serve as targets, according to the condition being treated. Now entering human clinical trials, CD38 molecule is a particularly attractive target because of its peculiar pattern of expression and its twin role as receptor and ectoenzyme. This review provides a range of analytical perspectives on the current progress in and challenges to anti-CD38 mAb therapy. We present a synopsis of the evidence available on CD38, particularly in myeloma and chronic lymphocytic leukemia (CLL). Our aim is to make the data from basic science helpful and accessible to a diverse clinical audience and, at the same time, to improve its potential for in vivo use. The topics covered include tissue distribution and signal implementation by mAb ligation and the possibility of increasing cell density on target cells by exploiting information about the molecule's regulation in combination with drugs approved for in vivo use. Also analyzed is the behavior of CD38 as an enzyme: CD38 is a component of a pathway leading to the production of adenosine in the tumor microenvironment, thus inducing local anergy. Consequently, not only might CD38 be a prime target for mAb-mediated therapy, but its functional block may contribute to general improvement in cancer immunotherapy and outcomes.
Collapse
Affiliation(s)
- Antonella Chillemi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino Medical School, Torino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Quarona V, Zaccarello G, Chillemi A, Brunetti E, Singh VK, Ferrero E, Funaro A, Horenstein AL, Malavasi F. CD38 and CD157: a long journey from activation markers to multifunctional molecules. CYTOMETRY PART B-CLINICAL CYTOMETRY 2013; 84:207-17. [PMID: 23576305 DOI: 10.1002/cyto.b.21092] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/06/2013] [Accepted: 03/21/2013] [Indexed: 12/17/2022]
Abstract
CD38 (also known as T10) was identified in the late 1970s in the course of pioneering work carried out at the Dana-Farber Cancer Center (Boston, MA) that focused on the identification of surface molecules involved in antigen recognition. CD38 was initially found on thymocytes and T lymphocytes, but today we know that the molecule is found throughout the immune system, although its expression levels vary. Because of this, CD38 was considered an "activation marker," a term still popular in routine flow cytometry. This review summarizes the findings obtained from different approaches, which led to CD38 being re-defined as a multifunctional molecule. CD38 and its homologue CD157 (BST-1), contiguous gene duplicates on human chromosome 4 (4p15), are part of a gene family encoding products that modulate the social life of cells by means of bidirectional signals. Both CD38 and CD157 play dual roles as receptors and ectoenzymes, endowed with complex activities related to signaling and cell homeostasis. The structure-function analysis presented here is intended to give clinical scientists and flow cytometrists a background knowledge of these molecules. The link between CD38/CD157 and human diseases will be explored here in the context of chronic lymphocytic leukemia, myeloma and ovarian carcinoma, although other disease associations are also known. Thus CD38 and CD157 have evolved from simple leukocyte activation markers to multifunctional molecules involved in health and disease. Future tasks will be to explore their potential as targets for in vivo therapeutic interventions and as regulators of the immune response.
Collapse
Affiliation(s)
- Valeria Quarona
- Department of Medical Sciences, Laboratory of Immunogenetics, University of Torino Medical School, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
27
|
Synthesis and biological studies of a novel series of 4-(4-(1H-imidazol-1-yl)phenyl)-6-arylpyrimidin-2-amines. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0523-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Mackenzie NCW, Huesa C, Rutsch F, MacRae VE. New insights into NPP1 function: lessons from clinical and animal studies. Bone 2012; 51:961-8. [PMID: 22842219 DOI: 10.1016/j.bone.2012.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
The recent elucidation of rare human genetic disorders resulting from mutations in ectonucleotide pyrophosphotase/phosphodiesterase (ENPP1), also known as plasma cell membrane glycoprotein 1 (PC-1), has highlighted the vital importance of this molecule in human health and disease. Generalised arterial calcification in infants (GACI), a frequently lethal disease, has been reported in recessive inactivating mutations in ENPP1. Recent findings have also linked hypophosphataemia to a lack of NPP1 function. A number of human genetic studies have indicated that NPP1 is a vital regulator that influences a wide range of tissues through various signalling pathways and when disrupted can lead to significant pathology. The function of Enpp1 has been widely studied in rodent models, where both the mutant tiptoe walking (ttw/ttw) mouse and genetically engineered Enpp1(-/-) mice show significant alterations in skeletal and soft tissue mineralisation, calcium/phosphate balance and glucose homeostasis. These models therefore provide important tools with which to study the potential mechanisms underpinning the human diseases associated with altered NPP1. This review will focus on the recent advances in our current knowledge of the actions of NPP1 in relation to bone disease, cardiovascular pathologies and diabetes. A fuller understanding of the mechanisms through which NPP1 exerts its pathological effects may stimulate the development of novel therapeutic strategies for patients at risk from the devastating clinical outcomes associated with disrupted NPP1 function.
Collapse
Affiliation(s)
- N C W Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, EH25 9RG, Scotland, UK
| | | | | | | |
Collapse
|
29
|
Heuts DPHM, Weissenborn MJ, Olkhov RV, Shaw AM, Gummadova J, Levy C, Scrutton NS. Crystal structure of a soluble form of human CD73 with ecto-5'-nucleotidase activity. Chembiochem 2012; 13:2384-91. [PMID: 22997138 DOI: 10.1002/cbic.201200426] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Indexed: 01/14/2023]
Abstract
CD73 is a dimeric ecto-5'-nucleotidase that is expressed on the exterior side of the plasma membrane. CD73 has important regulatory functions in the extracellular metabolism of certain nucleoside monophosphates, in particular adenosine monophosphate, and has been linked to a number of pathological conditions such as cancer and myocardial ischaemia. Here, we present the crystal structure of a soluble form of human soluble CD73 (sCD73) at 2.2 Å resolution, a truncated form of CD73 that retains ecto-5'-nucleotidase activity. With this structure we obtained insight into the dimerisation of CD73, active site architecture, and a sense of secondary modifications of the protein. The crystal structure reveals a conserved loop that is directly involved in the dimer-dimer interaction showing that the two subunits of the dimer are not linked by disulfide bridges. Using biophotonic microarray imaging we were able to confirm glycosylation of the enzyme and show that the enzyme is decorated with a variety of oligosaccharide structures. The crystal structure of sCD73 will aid the design of inhibitors or activator molecules for the treatment of several diseases and prove useful in explaining the possible roles of single nucleotide polymorphisms in physiology and disease.
Collapse
Affiliation(s)
- Dominic P H M Heuts
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Rey D, Fernandez-Honrado M, Areces C, Algora M, Abd-El-Fatah-Khalil S, Enriquez-de-Salamanca M, Coca C, Arribas I, Arnaiz-Villena A. Amerindians show no association of PC-1 gene Gln121 allele and obesity: a thrifty gene population genetics. Mol Biol Rep 2012; 39:7687-93. [PMID: 22327785 DOI: 10.1007/s11033-012-1604-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 02/02/2012] [Indexed: 01/06/2023]
Abstract
PC-1 Gln121 gene is a risk factor for type 2 diabetes, obesity and insulin resistance in European/American Caucasoids and Orientals. We have aimed to correlate for the first time this gene in Amerindians with obesity and their corresponding individuals genotypes with obesity in order to establish preventive medicine programs for this population and also studying the evolution of gene frequencies in world populations. Central obesity was diagnosed by waist circumference perimeter and food intake independent HDL-cholesterol plasma levels were measured. HLA genes were determined in order to more objectively ascertain participants Amerindians origin. 321 Amerindian blood donors who were healthy according to the blood doning parameters were studied. No association was found between PC-1 Gln121 variant and obesity. Significant HDL-cholesterol lower values were found in the PC-1 Lys121 bearing gene individuals versus PC-1 Gln121 bearing gene ones (45.1 ± 12.7 vs. 48.7 ± 15.2 mg/dl, p < 0.05). Population analyses showed a world geographical gradient in the PC-1 Gln121 allele frequency: around 9% in Orientals, 15% in European Caucasoids and 76% in Negroids. The conclusions are: (1) No association of PC-1 Gln121 gene is found with obesity in Amerindians when association is well established in Europeans. (2) PC-1 Gln121 gene is associated to higher levels of HDL-cholesterol than the alternative PC-1 Lys121 allele. This may be specific for Amerindians. (3) Amerindians have an intermediate frequency of this possible PC-1 Gln121 thrifty gene when compared with Negroid African Americans (78.5%) or Han Chinese (7.5%, p < 0.0001). Historical details of African and other groups may support the hypothesis that PC-1 Gln121 is indeed a thrifty gene.
Collapse
Affiliation(s)
- Diego Rey
- Departamento de Inmunología, Facultad de Medicina, The Madrid Regional Blood Center, University Complutense, Pabellón 5, planta 4 Avda Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Khan KM, Shah Z, Ahmad VU, Ambreen N, Khan M, Taha M, Rahim F, Noreen S, Perveen S, Choudhary MI, Voelter W. 6-Nitrobenzimidazole derivatives: potential phosphodiesterase inhibitors: synthesis and structure-activity relationship. Bioorg Med Chem 2011; 20:1521-6. [PMID: 22264761 DOI: 10.1016/j.bmc.2011.12.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022]
Abstract
6-Nitrobenzimidazole derivatives (1-30) synthesized and their phosphodiesterase inhibitory activities determined. Out of thirty tested compounds, ten showed a varying degrees of phosphodiesterase inhibition with IC(50) values between 1.5±0.043 and 294.0±16.7 μM. Compounds 30 (IC(50)=1.5±0.043 μM), 1 (IC(50)=2.4±0.049 μM), 11 (IC(50)=5.7±0.113 μM), 13 (IC(50)=6.4±0.148 μM), 14 (IC(50)=10.5±0.51 μM), 9 (IC(50)=11.49±0.08 μM), 3 (IC(50)=63.1±1.48 μM), 10 (IC(50)=120.0±4.47 μM), and 6 (IC(50)=153.2±5.6 μM) showed excellent phosphodiesterase inhibitory activity, much superior to the standard EDTA (IC(50)=274±0.007 μM), and thus are potential molecules for the development of a new class of phosphodiesterase inhibitors. A structure-activity relationship is evaluated. All compounds are characterized by spectroscopic parameters.
Collapse
Affiliation(s)
- K M Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
33
|
Abbasi S, Shin DM, Beaty N, Masiuk M, Chen S, Gonzalez-Garcia I, Zhao M, Goding J, Morse HC, Wang H. Characterization of monoclonal antibodies to the plasma cell alloantigen ENPP1. Hybridoma (Larchmt) 2011; 30:11-7. [PMID: 21466281 DOI: 10.1089/hyb.2010.0089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) has documented roles in mineralization, nucleotide recycling, and insulin resistance. While ENPP1 was first identified as an alloantigen on mouse plasma cells (PCs), later studies revealed expression in many tissues. Previously described monoclonal antibodies against ENPP1 expressed at the cell surface recognized cells only from mice bearing the a allotype, ENPP1(a), precluding studies of mice bearing the alternative allele, ENPP1(b). Here, we characterize a novel anti-ENPP1 monoclonal antibody that recognizes both alleles and can be used for flow cytometry.
Collapse
Affiliation(s)
- Sadia Abbasi
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saberi H, Mohammadtaghvaei N, Gulkho S, Bakhtiyari S, Mohammadi M, Hanachi P, Gerayesh-nejad S, Zargari M, Ataei F, Parvaneh L, Larijani B, Meshkani R. The ENPP1 K121Q polymorphism is not associated with type 2 diabetes and related metabolic traits in an Iranian population. Mol Cell Biochem 2010; 350:113-8. [DOI: 10.1007/s11010-010-0687-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023]
|
35
|
Abstract
Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.
Collapse
|
36
|
Abstract
Vascular calcification is common in patients with advanced chronic kidney disease and is associated with poorer outcomes. Although the pathophysiology is not completely understood, it is clear that it is a multifactorial process involving altered mineral metabolism, as well as changes in systemic and local factors that can promote or inhibit vascular calcification, and all of these are potential therapeutic targets. Current therapy is closely linked to strategies for preventing disordered bone and mineral metabolism in advanced kidney disease and involves lowering the circulating levels of both phosphate and calcium. The efficacy of compounds that specifically target calcification, such as bisphosphonates and thiosulfate, has been shown in animals but only in small numbers of humans, and safety remains an issue. Additional therapies, such as pyrophosphate, vitamin K, and lowering of pH, are supported by animal studies, but are yet to be investigated clinically. As the mineral composition of vascular calcifications is the same as in bone, potential effects on bone must be addressed with any therapy for vascular calcification.
Collapse
Affiliation(s)
- W Charles O'Neill
- Renal Division, Emory University School of Medicine, Atlanta, Georgia, USA.
| | | |
Collapse
|
37
|
Mookerjee-Basu J, Vantourout P, Martinez LO, Perret B, Collet X, Périgaud C, Peyrottes S, Champagne E. F1-adenosine triphosphatase displays properties characteristic of an antigen presentation molecule for Vgamma9Vdelta2 T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:6920-8. [PMID: 20483757 DOI: 10.4049/jimmunol.0904024] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Vgamma9Vdelta2 T lymphocytes are activated by phosphoantigens provided exogenously or produced by tumors and infected cells. Activation requires a contact between Vgamma9Vdelta2 cells and neighboring cells. We previously reported a role for cell surface F1-adenosine triphosphatase (ATPase) in T cell activation by tumors and specific interactions between Vgamma9Vdelta2 TCRs and purified F1-ATPase. 721.221 cells do not express surface F1-ATPase and do not support phosphoantigen responses unless they are rendered apoptotic by high doses of zoledronate, a treatment that promotes F1-expression as well as endogenous phosphoantigen production. By monitoring calcium flux in single cells, we show in this study that contact of T cells with F1-ATPase on polystyrene beads can partially replace the cell-cell contact stimulus during phosphoantigen responses. Triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester, an adenylated derivative of isopentenyl pyrophosphate, can stably bind to F1-ATPase-coated beads and promotes TCR aggregation, lymphokine secretion, and activation of the cytolytic process provided that nucleotide pyrophosphatase activity is present. It also acts as an allosteric activator of F1-ATPase. In the absence of Vgamma9Vdelta2 cells, triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester immobilized on F1-ATPase is protected from nucleotide pyrophosphatase activity, as is the antigenic activity of stimulatory target cells. Our experiments support the notion that Vgamma9Vdelta2 T cells are dedicated to the recognition of phosphoantigens on cell membranes in the form of nucleotide derivatives that can bind to F1-ATPase acting as a presentation molecule.
Collapse
Affiliation(s)
- Jayati Mookerjee-Basu
- Centre de Physiopathologie de Toulouse Purpan, Institut National de la Santé et de la Recherche Médicale, U563, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakano Y, Forsprecher J, Kaartinen MT. Regulation of ATPase activity of transglutaminase 2 by MT1-MMP: implications for mineralization of MC3T3-E1 osteoblast cultures. J Cell Physiol 2010; 223:260-9. [PMID: 20049897 DOI: 10.1002/jcp.22034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A pro-mineralization function for transglutaminase 2 (TG2) has been suggested in numerous studies related to bone, cartilage, and vascular calcification. TG2 is an enzyme which can perform protein crosslinking functions, or act as a GTPase/ATPase depending upon different stimuli. We have previously demonstrated that TG2 can act as an ATPase in a Ca(2+)-rich environment and that it can regulate phosphate levels in osteoblast cultures. In this study, we investigate the role MT1-MMP in regulating the ATPase activity of TG2. We report that proteolytic cleavage of TG2 by MT1-MMP in vitro results in nearly a 3-fold increase in the ATPase activity of TG2 with a concomitant reduction in its protein-crosslinking activity. We show that MC3T3-E1 osteoblasts secreted full-length TG2 and major smaller fragments of 66 and 56 kDa, the latter having ATP-binding abilities. MT1-MMP inhibition by a neutralizing antibody suppressed mineralization of osteoblast cultures to 35% of control, and significantly reduced phosphate levels in conditioned medium (CM). Furthermore, MT1-MMP inhibition abolished two of TG2 fragments in the cultures, one of which, the 56-kDa fragment, has ATPase activity. Neutralization of MT1-MMP at early phases of mineralization significantly reduced mineral deposition, but had no effect in later phases implying MT1-MMP and TG2 might contribute to the initiation of mineralization. The cleavage of TG2 by MT1-MMP likely occurs on the cell surface/pericellular matrix where MT1-MMP and TG2 were co-localized. Based on these data, we propose that MT1-MMP modulates the extracellular function TG2 as part of a regulatory mechanism activates the pro-mineralization function of TG2.
Collapse
Affiliation(s)
- Yukiko Nakano
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
39
|
Bogan KL, Brenner C. 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. NEW J CHEM 2010. [DOI: 10.1039/b9nj00758j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Abstract
Autotaxin is a protein of approximately 900 amino acids discovered in the early 1990s. Over the past 15 years, a strong association between cancer cells and autotaxin production has been observed. Recent publications indicate that autotaxin and the capacity of cancer to metastasise are intimately linked. The discovery of new molecular targets in pharmacology is a mixture of pure luck, hard work and industrial strategy. Despite a crucial and desperate need for new therapeutic tools, many targets are approached in oncology, but only a few are validated and end up at the patient bed. Outside the busy domain of kinases, few targets have been discovered that can be useful in treating cancer, particularly metastatic processes. The fortuitous relationship between autotaxin and lysophosphatidic acid renders the results of observations made in the diabetes/obesity context considerably important. The literature provides observations that may aid in redesigning experiments to validate autotaxin as a potential oncology target.
Collapse
Affiliation(s)
- Jean A Boutin
- Pharmacologie Moléculaire et Cellulaire, Institut de Recherches SERVIER, Croissy-sur-Seine, France.
| | | |
Collapse
|
41
|
Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B, Seman M, Haag F, Koch-Nolte F. NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:2898-908. [PMID: 19234185 DOI: 10.4049/jimmunol.0801711] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular NAD(+) and ATP trigger the shedding of CD62L and the externalization of phosphatidylserine on murine T cells. These events depend on the P2X(7) ion channel. Although ATP acts as a soluble ligand to activate P2X(7), gating of P2X(7) by NAD(+) requires ecto-ADP-ribosyltransferase ART2.2-catalyzed transfer of the ADP-ribose moiety from NAD(+) onto Arg125 of P2X(7). Steady-state concentrations of NAD(+) and ATP in extracellular compartments are highly regulated and usually are well below the threshold required for activating P2X(7). The goal of this study was to identify possible endogenous sources of these nucleotides. We show that lysis of erythrocytes releases sufficient levels of NAD(+) and ATP to induce activation of P2X(7). Dilution of erythrocyte lysates or incubation of lysates at 37 degrees C revealed that signaling by ATP fades more rapidly than that by NAD(+). We further show that the routine preparation of primary lymph node and spleen cells induces the release of NAD(+) in sufficient concentrations for ART2.2 to ADP-ribosylate P2X(7), even at 4 degrees C. Gating of P2X(7) occurs when T cells are returned to 37 degrees C, rapidly inducing CD62L-shedding and PS-externalization by a substantial fraction of the cells. The "spontaneous" activation of P2X(7) during preparation of primary T cells could be prevented by i.v. injection of either the surrogate ART substrate etheno-NAD or ART2.2-inhibitory single domain Abs 10 min before sacrificing mice.
Collapse
|
42
|
Vuaden FC, Furstenau CR, Savio LEB, Sarkis JJF, Bonan CD. Endotoxemia alters nucleotide hydrolysis in platelets of rats. Platelets 2009; 20:83-9. [PMID: 19235049 DOI: 10.1080/09537100802657743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Platelets play a critical role in homeostasis and blood clotting at sites of vascular injury, and also in various ways in innate immunity and inflammation. Platelets are one of the first cells to accumulate at an injured site, and local release of their secretome at some point initiate an inflammatory cascade that attracts leukocytes, activates target cells, stimulates vessel growth and repair. The level of exogenous ATP in the body may be increased in various inflammatory and shock conditions, primarily as a consequence of nucleotide release from platelets, endothelium and blood vessel cells. An increase of ATP release has been described during inflammation and this compound presents proinflammatory properties. ADP is a nucleotide known to induce changes in platelets shape and aggregation, to promote the exposure of fibrinogen-binding sites and to inhibit the stimulation of adenylate cyclase. Adenosine, the final product of the nucleotide hydrolysis, is a vasodilator and an inhibitor of platelet aggregation. There is a group of ecto-enzymes responsible for extracellular nucleotide hydrolysis named ectonucleotidases, which includes the NTPDase (nucleoside triphosphate diphosphohydrolase) family, the NPP (nucleoside pyrophosphatase/phosphodiesterase) family and an ecto-5'-nucleotidase. Therefore, we have aimed to investigate the effect of lipopolysaccharide endotoxin from Escherichia coli on ectonucleotidases in platelets from adult rats in order to better understand the role of extracellular adenine nucleotides and nucleosides in the maintenance of blood homeostasis in inflammatory processes. LPS administered in vitro was not able to alter the ATP, ADP, AMP and rho-Nph-5'-TMP hydrolysis of platelets from untreated rats in all concentrations tested (25-100 microg/ml). There was a significant decrease in ATP, ADP, AMP and rho-Nph-5'-TMP hydrolysis in rat platelets after 48 hours of LPS exposure (2 mg/Kg, i.p.). ATP and ADP hydrolysis has been reduced about 28% whereas it has been observed a significant 30% and 26% decrease on AMP and rho-Nph-5'-TMP hydrolysis. Platelet aggregation and platelet number have shown a significant decrease in LPS-treated rats (40% and 55%, respectively) when compared to control group. These results suggest that changes observed in platelet count and, consequently, in nucleotidase activities from circulatory system could alter extracellular nucleotide and nucleoside levels, which might modulate the inflammatory process.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, RS, Brazil
| | | | | | | | | |
Collapse
|
43
|
Lomashvili KA, Monier-Faugere MC, Wang X, Malluche HH, O'Neill WC. Effect of bisphosphonates on vascular calcification and bone metabolism in experimental renal failure. Kidney Int 2009; 75:617-25. [PMID: 19129793 DOI: 10.1038/ki.2008.646] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although it is known that bisphosphonates prevent medial vascular calcification in vivo, their mechanism of action remains unknown and, in particular, whether they act directly on the blood vessels or indirectly through inhibition of bone resorption. To determine this, we studied the effects of two bisphosphonates on calcification of rat aortas in vitro and on in vivo aortic calcification and bone metabolism in rats with renal failure. We produced vascular calcification in rats with adenine-induced renal failure fed a high-phosphate diet. Daily treatment with either etidronate or pamidronate prevented aortic calcification, with the latter being 100-fold more potent. Both aortic calcification and bone formation were reduced in parallel; however, bone resorption was not significantly affected. In all uremic rats, aortic calcium content correlated with bone formation but not with bone resorption. Bisphosphonates also inhibited calcification of rat aortas in culture and arrested further calcification of precalcified vessels but did not reverse their calcification. Expression of osteogenic factors or calcification inhibitors was not altered by etidronate in vitro. Hence, these studies show that bisphosphonates can directly inhibit uremic vascular calcification independent of bone resorption. The correlation between inhibition of aortic calcification and bone mineralization is consistent with a common mechanism such as the prevention of hydroxyapatite formation and suggests that bisphosphonates may not be able to prevent vascular calcification without inhibiting bone formation in uremic rats.
Collapse
Affiliation(s)
- Koba A Lomashvili
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
44
|
Santoro N, Cirillo G, Lepore MG, Palma A, Amato A, Savarese P, Marzuillo P, Grandone A, Perrone L, Del Giudice EM. Effect of the rs997509 polymorphism on the association between ectonucleotide pyrophosphatase phosphodiesterase 1 and metabolic syndrome and impaired glucose tolerance in childhood obesity. J Clin Endocrinol Metab 2009; 94:300-5. [PMID: 18940878 DOI: 10.1210/jc.2008-1659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
CONTEXT Variants on the nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP-1) gene have been associated with obesity and insulin resistance. Because insulin resistance is a pivotal factor in the development of metabolic syndrome (MS) and impaired glucose tolerance (IGT), we aimed to test the association between the K121Q and rs997509 ENPP-1 variants with obesity, MS and IGT in obese children and adolescents. METHODS We screened 809 children, 409 obese and 400 lean controls. Obese subjects underwent a standard oral glucose tolerance test, whole body insulin sensitivity index (WBISI) and homeostasis model assessment (HOMA) were calculated. RESULTS No difference in prevalence for K121Q and rs997509 polymorphisms between obese and controls (P > 0.05) were observed. Obese children carrying the rs997509 rare allele showed higher insulin (P = 0.001), HOMA (P < .001) and lower WBISI values (P = 0.04) compared with common allele homozygous. A similar observation was done for K121Q variant, with 121Q allele carriers showing higher insulin (P = 0.03) and HOMA (P = 0.04) values than 121K homozygotes. Moreover, subjects carrying the rs997509 rare allele had higher risk of MS (odds ratio 2.4, 95% confidence interval: 1.3-4.3) and IGT (odds ratio 4.7, 95% confidence interval: 1.9-11.4) than common allele homozygotes. Evaluating combined effects of both polymorphisms, which are in strong linkage disequilibrium, we showed that the effect on insulin sensitivity was due to the rs997509 T variant. CONCLUSION We conclude that the ENPP1 rs997509T allele can predispose obese children to MS and IGT and that this variant might drive the association between the ENPP1 121Q allele and insulin resistance.
Collapse
Affiliation(s)
- Nicola Santoro
- Dipartimento di Pediatria, Seconda Università di Napoli, Via Luigi De Crecchio No. 2, 80138 Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Foster BL, Tompkins KA, Rutherford RB, Zhang H, Chu EY, Fong H, Somerman MJ. Phosphate: known and potential roles during development and regeneration of teeth and supporting structures. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2008; 84:281-314. [PMID: 19067423 PMCID: PMC4526155 DOI: 10.1002/bdrc.20136] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inorganic phosphate (P(i)) is abundant in cells and tissues as an important component of nucleic acids and phospholipids, a source of high-energy bonds in nucleoside triphosphates, a substrate for kinases and phosphatases, and a regulator of intracellular signaling. The majority of the body's P(i) exists in the mineralized matrix of bones and teeth. Systemic P(i) metabolism is regulated by a cast of hormones, phosphatonins, and other factors via the bone-kidney-intestine axis. Mineralization in bones and teeth is in turn affected by homeostasis of P(i) and inorganic pyrophosphate (PPi), with further regulation of the P(i)/PP(i) ratio by cellular enzymes and transporters. Much has been learned by analyzing the molecular basis for changes in mineralized tissue development in mutant and knock-out mice with altered P(i) metabolism. This review focuses on factors regulating systemic and local P(i) homeostasis and their known and putative effects on the hard tissues of the oral cavity. By understanding the role of P(i) metabolism in the development and maintenance of the oral mineralized tissues, it will be possible to develop improved regenerative approaches.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yuelling LM, Fuss B. Autotaxin (ATX): a multi-functional and multi-modular protein possessing enzymatic lysoPLD activity and matricellular properties. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1781:525-30. [PMID: 18485925 PMCID: PMC2564869 DOI: 10.1016/j.bbalip.2008.04.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/15/2008] [Accepted: 04/19/2008] [Indexed: 01/02/2023]
Abstract
Recent studies have established that autotaxin (ATX), also known as phosphodiesterase Ialpha/autotaxin (PD-Ialpha/ATX) or (ecto)nucleotide pyrophosphatase/phosphodiesterase 2 [(E)NPP2], represents a multi-functional and multi-modular protein. ATX was initially thought to function exclusively as a phosphodiesterase/pyrophosphatase. However, it has become apparent that this enzymatically active site, which is ultimately responsible for ATX's originally discovered property of tumor cell motility stimulation, mediates the conversion of lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA). In addition, a separate functionally active domain, here referred to as the Modulator of Oligodendrocyte Remodeling and Focal adhesion Organization (MORFO) domain, was discovered in studies analyzing the role of ATX during the differentiation of myelinating cells of the central nervous system (CNS), namely oligodendrocytes. This novel domain was found to mediate anti-adhesive, i.e. matricellular, properties and to promote morphological maturation of oligodendrocytes. In this review, we summarize our current understanding of ATX's structure-function domains and discuss their contribution to the presently known main functional roles of ATX.
Collapse
Affiliation(s)
- Larra M Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, PO Box 980709, Richmond, VA 23298, USA
| | | |
Collapse
|
47
|
Goldfine ID, Maddux BA, Youngren JF, Reaven G, Accili D, Trischitta V, Vigneri R, Frittitta L. The role of membrane glycoprotein plasma cell antigen 1/ectonucleotide pyrophosphatase phosphodiesterase 1 in the pathogenesis of insulin resistance and related abnormalities. Endocr Rev 2008; 29:62-75. [PMID: 18199690 PMCID: PMC2244935 DOI: 10.1210/er.2007-0004] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Insulin resistance is a major feature of most patients with type 2 diabetes mellitus (T2D). A number of laboratories have observed that PC-1 (membrane [corrected] glycoprotein plasma cell antigen 1; also termed [corrected] ectonucleotide pyrophosphatase phosphodiesterase 1 or ENPP1) [corrected] is either overexpressed or overactive in muscle, adipose tissue, fibroblasts, and other tissues of insulin-resistant individuals, both nondiabetic and diabetic. Moreover, PC-1 (ENPP1) overexpression [corrected] in cultured cells in vitro and in transgenic mice in vivo, [corrected] impairs insulin stimulation of insulin receptor (IR) activation and downstream signaling. PC-1 binds to the connecting domain of the IR alpha-subunit that is located in residues 485-599. The connecting domain transmits insulin binding in the alpha-subunit to activation of tyrosine kinase activation in the beta-subunit. When PC-1 is overexpressed, it inhibits insulin [corrected]induced IR beta-subunit tyrosine kinase activity. In addition, a polymorphism of PC-1 (K121Q) in various ethnic populations is closely associated with insulin resistance, T2D, and cardio [corrected] and nephrovascular diseases. The product of this polymorphism has a 2- to 3-fold increased binding affinity for the IR and is more potent than the wild-type PC-1 protein (K121K) in inhibiting the IR. These data suggest therefore that PC-1 is a candidate protein that may play a role in human insulin resistance and T2D by its overexpression, its overactivity, or both.
Collapse
Affiliation(s)
- Ira D Goldfine
- Department of Medicine and Diabetes Center, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC. The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. FRONT BIOSCI-LANDMRK 2008; 13:2588-603. [PMID: 17981736 DOI: 10.2741/2868] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Collapse
Affiliation(s)
- Guido Beldi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Haga A, Hashimoto K, Tanaka N, Nakamura KT, Deyashiki Y. Scalable purification and characterization of the extracellular domain of human autotaxin from prokaryotic cells. Protein Expr Purif 2008; 59:9-17. [PMID: 18249559 DOI: 10.1016/j.pep.2007.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/04/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
Autotaxin (ATX) is an approximately 125kDa transmembrane protein known as a tumor progression factor based on its lysophospholipase D (lysoPLD) activity. There are many reports of the biological and biochemical properties of ATX, but crystallographic or structural studies have not been reported because a large-scale production process using prokaryotic cells has not been established. Here we report a bulk purification process and soluble expression of the recombinant human ATX (rhATX S48) from prokaryotic cells. The extracellular domain of human ATX cDNA was cloned into a pET101/D-TOPO vector and transformed to an Escherichia coliBL21 strain which was co-transformed with a pTF16 chaperone plasmid. The rhATX S48 was purified with chaperone and it was removed by Mg(2+)-ATP treatment. The final yield of purified rhATX S48 was approximately 3.5mg/l culture of recombinant strain. The rhATX S48 shows lysoPLD enzymatic activity and effectively stimulates the growth and motile activity of the human tumor cells as well as native ATX. This is a first report for scalable purification of the ATX molecule and the rhATX S48 should be a good tool for immunization of anti-ATX or crystallographic analysis of ATX.
Collapse
Affiliation(s)
- Arayo Haga
- Research Institute for Health and Environmental Science, Gifu Prefectural Government, 1-1, Naka-Fudougaoka, Kakamigahara 504-0838, Japan.
| | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND AND PURPOSE cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. EXPERIMENTAL APPROACH cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. KEY RESULTS Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5'-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5'-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. CONCLUSIONS AND IMPLICATIONS Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine.
Collapse
|