1
|
Lyn Fortier A, Pritchard JK. The Primate Major Histocompatibility Complex: An Illustrative Example of Gene Family Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613318. [PMID: 39345418 PMCID: PMC11429698 DOI: 10.1101/2024.09.16.613318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.
Collapse
Affiliation(s)
- Alyssa Lyn Fortier
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| | - Jonathan K. Pritchard
- Department of Biology, Stanford University, Stanford, CA USA
- Department of Genetics, Stanford University, Stanford, CA USA
| |
Collapse
|
2
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cactus-associated yeasts. PLoS Biol 2024; 22:e3002832. [PMID: 39312572 PMCID: PMC11449361 DOI: 10.1371/journal.pbio.3002832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Biology Department, Villanova University, Villanova, Pennsylvania, United States of America
| | - Abigail L. LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Minias P. Evolutionary variation in gene conversion at the avian MHC is explained by fluctuating selection, gene copy numbers and life history. Mol Ecol 2024; 33:e17453. [PMID: 38953291 DOI: 10.1111/mec.17453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
The major histocompatibility complex (MHC) multigene family encodes key pathogen-recognition molecules of the vertebrate adaptive immune system. Hyper-polymorphism of MHC genes is de novo generated by point mutations, but new haplotypes may also arise by re-shuffling of existing variation through intra- and inter-locus gene conversion. Although the occurrence of gene conversion at the MHC has been known for decades, we still have limited understanding of its functional importance. Here, I took advantage of extensive genetic resources (~9000 sequences) to investigate broad scale macroevolutionary patterns in gene conversion processes at the MHC across nearly 200 avian species. Gene conversion was found to constitute a universal mechanism in birds, as 83% of species showed footprints of gene conversion at either MHC class and 25% of all allelic variants were attributed to gene conversion. Gene conversion processes were stronger at MHC-II than MHC-I, but inter-specific variation at both MHC classes was explained by similar evolutionary scenarios, reflecting fluctuating selection towards different optima and drift. Gene conversion showed uneven phylogenetic distribution across birds and was driven by gene copy number variation, supporting significant role of inter-locus gene conversion processes in the evolution of the avian MHC. Finally, MHC gene conversion was stronger in species with fast life histories (high fecundity) and in long-distance migrants, likely reflecting variation in population sizes and host-pathogen coevolutionary dynamics. The results provide a robust comparative framework for understanding macroevolutionary variation in gene conversion at the avian MHC and reinforce important contribution of this mechanism to functional MHC diversity.
Collapse
Affiliation(s)
- Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Heimeier D, Garland EC, Eichenberger F, Garrigue C, Vella A, Baker CS, Carroll EL. A pan-cetacean MHC amplicon sequencing panel developed and evaluated in combination with genome assemblies. Mol Ecol Resour 2024; 24:e13955. [PMID: 38520161 DOI: 10.1111/1755-0998.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 03/25/2024]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.
Collapse
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| | - Ellen C Garland
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Franca Eichenberger
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Claire Garrigue
- UMR ENTROPIE, (IRD, Université de La Réunion, Université de la Nouvelle-Calédonie, IFREMER, CNRS, Laboratoire d'Excellence-CORAIL), Nouméa, New Caledonia
- Opération Cétacés, Nouméa, New Caledonia
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - C Scott Baker
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Corvallis, Oregon, USA
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
5
|
Voorter CEM, Groeneweg M, Olieslagers TI, Fae I, Fischer GF, Andreani M, Troiano M, Vidan-Jeras B, Montanic S, Hepkema BG, Bungener LB, Tilanus MGJ, Wieten L. Resolving unknown nucleotides in the IPD-IMGT/HLA database by extended and full-length sequencing of HLA class I and II alleles. Immunogenetics 2024; 76:109-121. [PMID: 38400869 PMCID: PMC10944811 DOI: 10.1007/s00251-024-01333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
In the past, identification of HLA alleles was limited to sequencing the region of the gene coding for the peptide binding groove, resulting in a lack of sequence information in the HLA database, challenging HLA allele assignment software programs. We investigated full-length sequences of 19 HLA class I and 7 HLA class II alleles, and we extended another 47 HLA class I alleles with sequences of 5' and 3' UTR regions that were all not yet available in the IPD-IMGT/HLA database. We resolved 8638 unknown nucleotides in the coding sequence of HLA class I and 2139 of HLA class II. Furthermore, with full-length sequencing of the 26 alleles, more than 90 kb of sequence information was added to the non-coding sequences, whereas extension of the 47 alleles resulted in the addition of 5.5 kb unknown nucleotides to the 5' UTR and > 31.7 kb to the 3' UTR region. With this information, some interesting features were observed, like possible recombination events and lineage evolutionary origins. The continuing increase in the availability of full-length sequences in the HLA database will enable the identification of the evolutionary origin and will help the community to improve the alignment and assignment accuracy of HLA alleles.
Collapse
Affiliation(s)
- Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Ingrid Fae
- Department for Transfusion Medicine and Cell Therapy, Medical University Vienna, Vienna, Austria
| | - Gottfried F Fischer
- Department for Transfusion Medicine and Cell Therapy, Medical University Vienna, Vienna, Austria
| | - Marco Andreani
- Laboratorio di Immunogenetica dei Trapianti, Dipartimento di Oncoematologia, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Maria Troiano
- Laboratorio di Immunogenetica dei Trapianti, Dipartimento di Oncoematologia, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Blanka Vidan-Jeras
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Sendi Montanic
- Tissue Typing Center, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Bouke G Hepkema
- Transplantation Immunology, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura B Bungener
- Transplantation Immunology, Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel G J Tilanus
- Department of Transplantation Immunology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Lenz TL. HLA Genes: A Hallmark of Functional Genetic Variation and Complex Evolution. Methods Mol Biol 2024; 2809:1-18. [PMID: 38907887 DOI: 10.1007/978-1-0716-3874-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
The major histocompatibility complex (MHC) with its highly polymorphic HLA genes represents one of the most intensely studied genomic regions in the genome. MHC proteins play a key role in antigen-specific immunity and are associated with a wide range of complex diseases. Despite decades of research and many advances in the field, the characterization and interpretation of its genetic and genomic variability remain challenging. Here an overview is provided of the MHC, the nature of its exceptional variability, and the complex evolutionary processes assumed to drive this variability. Highlighted are also recent advances in the field that promise to improve our understanding of the variability in the MHC and in antigen-specific immunity more generally.
Collapse
Affiliation(s)
- Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
7
|
Gonçalves C, Harrison MC, Steenwyk JL, Opulente DA, LaBella AL, Wolters JF, Zhou X, Shen XX, Groenewald M, Hittinger CT, Rokas A. Diverse signatures of convergent evolution in cacti-associated yeasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557833. [PMID: 37745407 PMCID: PMC10515907 DOI: 10.1101/2023.09.14.557833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently ~17 times. Using machine-learning, we further found that cactophily can be predicted with 76% accuracy from functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which is likely associated with duplication and altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved through disparate molecular mechanisms. Remarkably, multiple cactophilic lineages and their close relatives are emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-may preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.
Collapse
Affiliation(s)
- Carla Gonçalves
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Present address: Associate Laboratory i4HB—Institute for Health and Bioeconomy and UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Present address: UCIBIO-i4HB, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Marie-Claire Harrison
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Jacob L. Steenwyk
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Dana A. Opulente
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
- Biology Department, Villanova University, Villanova, PA 19085, USA
| | - Abigail L. LaBella
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte NC 28223
| | - John F. Wolters
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Xiaofan Zhou
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Xing-Xing Shen
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
- College of Agriculture and Biotechnology and Centre for Evolutionary & Organismal Biology, Zhejiang University, Hangzhou 310058, China
| | | | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institu te, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Antonis Rokas
- Vanderbilt University, Department of Biological Sciences, VU Station B #35-1634, Nashville, TN 37235, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Fu M, Eimes JA, Kong S, Lamichhaney S, Waldman B. Identification of major histocompatibility complex genotypes associated with resistance to an amphibian emerging infectious disease. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 113:105470. [PMID: 37336279 DOI: 10.1016/j.meegid.2023.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), emerged from Asia and spread globally. By comparing functional MHC IIß1 alleles from an Asian Bd-resistant anuran species (Bufo gargarizans) with those of an Australasian Bd-susceptible species (Litoria caerulea), we identified MHC genotypes associated with Bd resistance. These alleles encode a glycine deletion (G90β1) and adjacent motifs in the deepest pathogen-derived peptide-binding groove. Every Bd-resistant individual, but no susceptible individuals, possessed at least one allele encoding the variant. We detected trans-species polymorphism at the end of the MHC IIβ1 sequences. The G90β1 deletion was encoded by different alleles in the two species, suggesting it may have evolved independently in each species rather than having been derived from a common ancestor. These results are consistent with a scenario by which MHC adaptations that confer resistance to the pathogen have evolved by convergent evolution. Immunogenetic studies such as this are critical to ongoing conservation efforts.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| | - John A Eimes
- University College, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University, Kent, OH 44243, USA
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
9
|
Lozano-Martín C, Bracamonte SE, Barluenga M. Evolution of MHC IIB Diversity Across Cichlid Fish Radiations. Genome Biol Evol 2023; 15:evad110. [PMID: 37314153 PMCID: PMC10306275 DOI: 10.1093/gbe/evad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in vertebrates and crucial for their adaptive immune response. These genes frequently show inconsistencies between allelic genealogies and species phylogenies. This phenomenon is thought to be the result of parasite-mediated balancing selection maintaining ancient alleles through speciation events (trans-species polymorphism [TSP]). However, allele similarities may also arise from postspeciation mechanisms, such as convergence or introgression. Here, we investigated the evolution of MHC class IIB diversity in the cichlid fish radiations across Africa and the Neotropics by a comprehensive review of available MHC IIB DNA sequence information. We explored what mechanism explains the MHC allele similarities found among cichlid radiations. Our results showed extensive allele similarity among cichlid fish across continents, likely due to TSP. Functionality at MHC was also shared among species of the different continents. The maintenance of MHC alleles for long evolutionary times and their shared functionality may imply that certain MHC variants are essential in immune adaptation, even in species that diverged millions of years ago and occupy different environments.
Collapse
|
10
|
Vinkler M, Fiddaman SR, Těšický M, O'Connor EA, Savage AE, Lenz TL, Smith AL, Kaufman J, Bolnick DI, Davies CS, Dedić N, Flies AS, Samblás MMG, Henschen AE, Novák K, Palomar G, Raven N, Samaké K, Slade J, Veetil NK, Voukali E, Höglund J, Richardson DS, Westerdahl H. Understanding the evolution of immune genes in jawed vertebrates. J Evol Biol 2023; 36:847-873. [PMID: 37255207 PMCID: PMC10247546 DOI: 10.1111/jeb.14181] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences. Here, we discuss current advances in our understanding of molecular evolution underpinning jawed vertebrate immunity. First, we introduce the immunome concept, a framework for characterizing genes involved in immune defence from a comparative perspective, then we outline how immune genes of interest can be identified. Second, we focus on how different selection modes are observed acting across groups of immune genes and propose hypotheses to explain these differences. We then provide an overview of the approaches used so far to study the evolutionary heterogeneity of immune genes on macro and microevolutionary scales. Finally, we discuss some of the current evidence as to how specific pathogens affect the evolution of different groups of immune genes. This review results from the collective discussion on the current key challenges in evolutionary immunology conducted at the ESEB 2021 Online Satellite Symposium: Molecular evolution of the vertebrate immune system, from the lab to natural populations.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Martin Těšický
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Anna E. Savage
- Department of BiologyUniversity of Central FloridaFloridaOrlandoUSA
| | - Tobias L. Lenz
- Research Unit for Evolutionary ImmunogenomicsDepartment of BiologyUniversity of HamburgHamburgGermany
| | | | - Jim Kaufman
- Institute for Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
- Department of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | - Daniel I. Bolnick
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | | | - Neira Dedić
- Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
| | - Andrew S. Flies
- Menzies Institute for Medical ResearchUniversity of TasmaniaHobartTasmaniaAustralia
| | - M. Mercedes Gómez Samblás
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of ParasitologyUniversity of GranadaGranadaSpain
| | | | - Karel Novák
- Department of Genetics and BreedingInstitute of Animal SciencePragueUhříněvesCzech Republic
| | - Gemma Palomar
- Faculty of BiologyInstitute of Environmental SciencesJagiellonian UniversityKrakówPoland
| | - Nynke Raven
- Department of ScienceEngineering and Build EnvironmentDeakin UniversityVictoriaWaurn PondsAustralia
| | - Kalifa Samaké
- Department of Genetics and MicrobiologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Joel Slade
- Department of BiologyCalifornia State UniversityFresnoCaliforniaUSA
| | | | - Eleni Voukali
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Jacob Höglund
- Department of Ecology and GeneticsUppsala UniversitetUppsalaSweden
| | | | | |
Collapse
|
11
|
Abstract
Immunity to infection has been extensively studied in humans and mice bearing naturally occurring or experimentally introduced germline mutations. Mouse studies are sometimes neglected by human immunologists, on the basis that mice are not humans and the infections studied are experimental and not natural. Conversely, human studies are sometimes neglected by mouse immunologists, on the basis of the uncontrolled conditions of study and small numbers of patients. However, both sides would agree that the infectious phenotypes of patients with inborn errors of immunity often differ from those of the corresponding mutant mice. Why is that? We argue that this important question is best addressed by revisiting and reinterpreting the findings of both mouse and human studies from a genetic perspective. Greater caution is required for reverse-genetics studies than for forward-genetics studies, but genetic analysis is sufficiently strong to define the studies likely to stand the test of time. Genetically robust mouse and human studies can provide invaluable complementary insights into the mechanisms of immunity to infection common and specific to these two species.
Collapse
Affiliation(s)
- Philippe Gros
- McGill University Research Center on Complex Traits, Department of Biochemistry, and Department of Human Genetics, McGill University, Montréal, Québec, Canada;
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute and St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA;
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, and University of Paris Cité, Imagine Institute and Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
12
|
Sun Y, Ma L, Li S, Wang Y, Xiao R, Yang J, Dijkstra JM, Xia C. Crystal Structure of a Classical MHC Class I Molecule in Dogs; Comparison of DLA-88*0 and DLA-88*5 Category Molecules. Cells 2023; 12:cells12071097. [PMID: 37048169 PMCID: PMC10093629 DOI: 10.3390/cells12071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
DLA-88 is a classical major histocompatibility complex (MHC) class I gene in dogs, and allelic DLA-88 molecules have been divided into two categories named "DLA-88*0" and "DLA-88*5." The defining difference between the two categories concerns an LQW motif in the α2 domain helical region of the DLA-88*5 molecules that includes the insertion of an extra amino acid compared to MHC class I consensus length. We here show that this motif has been exchanged by recombination between different DLA-88 evolutionary lineages. Previously, with pDLA-88*508:01, the structure of a molecule of the DLA-88*5 category was elucidated. The present study is the first to elucidate a structure, using X-ray crystallography, of the DLA-88*0 category, namely DLA-88*001:04 complexed with β2m and a nonamer peptide derived from canine distemper virus (CDV). The LQW motif that distinguishes DLA-88*5 from DLA-88*0 causes a shallower peptide binding groove (PBG) and a leucine exposed at the top of the α2 domain helix expected to affect T cell selection. Peptide ligand amino acid substitution and pMHC-I complex formation and stability analyses revealed that P2 and P3 are the major anchor residue positions for binding to DLA-88*001:04. We speculate that the distribution pattern of the LQW motif among canine classical MHC class I alleles represents a strategy to enhance allogeneic rejection by T cells of transmissible cancers such as canine transmissible venereal tumor (CTVT).
Collapse
Affiliation(s)
- Yujiao Sun
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yawen Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiqi Xiao
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junqi Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Johannes M Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Chun Xia
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| |
Collapse
|
13
|
Xu N, Ye W, Sun C, He K, Zhu Y, Lan H, Lu C, Liu H. Genetic Diversity and Differentiation of MHC Class I Genes in Red-Crowned Crane Populations. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.898581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The red-crowned crane (Grus japonensis) has been demoted to “vulnerable species” because its populations have apparently stabilized in Japan and Korea. Low variation and genetic drift may cause damage to the nascent recovery of the G. japonensis population. The major histocompatibility complex (MHC) is one of the most polymorphic gene families in the vertebrate genome and can reflect information on the adaptive evolution of endangered species. In this study, variations in MHC I exon 3 of captive G. japonensis in China were assessed and compared with those in cranes from Japan. Forty MHC alleles of 274 base pairs were isolated from 32 individuals from two captive populations in China. There was high variability in the nucleotide and amino acid composition, showing the proportion of polymorphic sites of 18.98 and 32.97%, respectively. Comparative analyses of the Chinese and Japanese populations based on 222 base pair sequences revealed more alleles and higher variation in the Chinese population. The lack of significant geographical differentiation of G. japonensis was supported by the genetic differentiation coefficient (0.04506) between the Chinese and Japanese populations. Positive selection of antigen-binding sites was observed, which contributed to maintaining the diversity of MHC class I genes. Phylogenetic analysis suggested the persistence of trans-species polymorphisms among MHC class I genes in Gruidae species. Our results may contribute to optimizing the management of G. japonensis populations and population recovery of this threatened species.
Collapse
|
14
|
Ghani MU, Bo L, Buyang A, Yanchun X, Hussain S, Yasir M. Molecular Characterization of MHC Class I Genes in Four Species of the Turdidae Family to Assess Genetic Diversity and Selection. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5585687. [PMID: 33937397 PMCID: PMC8055405 DOI: 10.1155/2021/5585687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
In vertebrate animals, the molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immunity. MHC class I deals with intracellular pathogens (virus) in birds. MHC class I diversity depends on the consequence of local and global environment selective pressure and gene flow. Here, we evaluated the MHC class I gene in four species of the Turdidae family from a broad geographical area of northeast China. We isolated 77 MHC class I sequences, including 47 putatively functional sequences and 30 pseudosequences from 80 individuals. Using the method based on analysis of cloned amplicons (n = 25) for each species, we found two and seven MHC I sequences per individual indicating more than one MHC I locus identified in all sampled species. Results revealed an overall elevated genetic diversity at MHC class I, evidence of different selection patterns among the domains of PBR and non-PBR. Alleles are found to be divergent with overall polymorphic sites per species ranging between 58 and 70 (out of 291 sites). Moreover, transspecies alleles were evident due to convergent evolution or recent speciation for the genus. Phylogenetic relationships among MHC I show an intermingling of alleles clustering among the Turdidae family rather than between other passerines. Pronounced MHC I gene diversity is essential for the existence of species. Our study signifies a valuable tool for the characterization of evolutionary relevant difference across a population of birds with high conservational concerns.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Li Bo
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - An Buyang
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka 810-0000, Japan
| | - Xu Yanchun
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Shakeel Hussain
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Muhammad Yasir
- Department of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Genetic diversity of major histocompatibility complex class I genes in Zootoca vivipara. Biosci Rep 2021; 40:222642. [PMID: 32285916 PMCID: PMC7182658 DOI: 10.1042/bsr20193809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/26/2020] [Accepted: 04/08/2020] [Indexed: 11/18/2022] Open
Abstract
The Major Histocompatibility Complex (MHC), as a family of highly polymorphic genes associated with immunity in the genome of the vertebrate, has become an important indicator for assessing the evolutionary potential of wildlife. In order to better protect Zootoca vivipara in the Greater Khingan Range and Lesser Khingan Range, to understand the genetic structure of Z. vivipara, and to explore the mechanism and phylogenetic relationship of the gene polymorphisms, the MHC molecular marker method was used to analyze Z. vivipara population. Forty-seven alleles were obtained from four populations. The four populations were highly polymorphic, rich in genetic information, and had significant genetic diversity. There were certain inbreeding phenomena. There was a high degree of genetic differentiation among populations, which was caused by genetic drift and natural selection. The sequence undergoes genetic duplication and recombination. The existence of trans-species polymorphism was found in the constructed phylogenetic tree. The present study provides a theoretical basis for species protection of Z. vivipara.
Collapse
|
16
|
Almeida T, Gaigher A, Muñoz-Mérida A, Neves F, Castro LFC, Flajnik MF, Ohta Y, Esteves PJ, Veríssimo A. Cartilaginous fish class II genes reveal unprecedented old allelic lineages and confirm the late evolutionary emergence of DM. Mol Immunol 2020; 128:125-138. [PMID: 33126081 PMCID: PMC8010645 DOI: 10.1016/j.molimm.2020.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Cartilaginous fish (chimaeras, rays and sharks) are the most basal extant jawed vertebrates with an adaptive immune system based on the Major Histocompatibility Complex (MHC). Despite being a key taxon in the evolution of vertebrate adaptive immunity, no comprehensive characterization of MHC class II genes has been undertaken for the group. We performed extensive bioinformatic searches on a taxonomically diverse dataset of transcriptomes and genomes of cartilaginous fish targeting MHC class II sequences. Class IIα and IIβ sequences were retrieved from all taxa analyzed and showed typical features of classical class II genes. Phylogenetic trees of the immunoglobulin superfamily domain showed two divergent and remarkably ancient lineages of class II genes in Selachians (sharks), originating >350 million years ago. Close linkage of lineage-specific pairs of IIα and IIβ genes was found, confirming previous results, with genes from distinct lineages segregating as alleles. Nonclassical class II DM sequences were not retrieved from these data and classical class II sequences lacked the conserved residues shown to interact with DM molecules, supporting claims that the DM system arose only in the lobe-finned fish lineage leading to tetrapods. Based on our search methods, other divergent class II genes are unlikely in cartilaginous fish.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences - University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Arnaud Gaigher
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - Fabiana Neves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences - University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Pedro J Esteves
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Department of Biology, Faculty of Sciences - University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Ana Veríssimo
- CIBIO-InBIO, Centro de Investigacão em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
17
|
Těšický M, Velová H, Novotný M, Kreisinger J, Beneš V, Vinkler M. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Mol Ecol 2020; 29:3056-3070. [PMID: 32652716 DOI: 10.1111/mec.15547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll-like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand-binding regions of bacteria-sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N-glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post-translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state-of-the-art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein-coding polymorphisms.
Collapse
Affiliation(s)
- Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Laboratory Heidelberg, Heidelberg, Germany
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
18
|
Latitudinal diversity gradient and cetaceans from the perspective of MHC genes. Immunogenetics 2020; 72:393-398. [PMID: 32564115 DOI: 10.1007/s00251-020-01171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/05/2020] [Indexed: 01/07/2023]
Abstract
Pathogen diversity is a key source of selective pressure on immune system genes, shaping molecular evolution mainly on widely distributed or migratory organisms such as cetaceans. Here, we investigated the effects of latitudinal span migration, different biomes occupation, and pathogen-mediated selection on MHC DQB locus divergence on cetaceans. We applied some evolutionary genetics methods using a dataset of 15 species and 121 sequences, and we found a trend on greater MHC divergence on tropical species when compared with either temperate or migratory species. In addition, oceanic cetaceans exhibit greater MHC divergence. Here, we show that, despite there was a correlation between the diversity of MHC DQB alleles with the distribution of organisms, the pattern of diversity found is not completely explained by pathogenic pressure, suggesting that other factors must be investigated for a better understanding of the processes related to the diversity of MHC in cetaceans.
Collapse
|
19
|
Zhao B, Zhang X, Li B, Du P, Shi L, Dong Y, Gao X, Sha W, Zhang H. Evolution of major histocompatibility complex class I genes in the sable Martes zibellina (Carnivora, Mustelidae). Ecol Evol 2020; 10:3439-3449. [PMID: 32274000 PMCID: PMC7141072 DOI: 10.1002/ece3.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.
Collapse
Affiliation(s)
- Baojun Zhao
- College of Life Science Qufu Normal University Qufu China
| | - Xue Zhang
- College of Life Science Qufu Normal University Qufu China
| | - Bo Li
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Pengfei Du
- College of Life Science Qufu Normal University Qufu China
| | - Lupeng Shi
- College of Life Science Qufu Normal University Qufu China
| | - Yuehuan Dong
- College of Life Science Qufu Normal University Qufu China
| | - Xiaodong Gao
- College of Life Science Qufu Normal University Qufu China
| | - Weilai Sha
- College of Life Science Qufu Normal University Qufu China
| | - Honghai Zhang
- College of Life Science Qufu Normal University Qufu China
| |
Collapse
|
20
|
Gupta MK, Vadde R. Genetic Basis of Adaptation and Maladaptation via Balancing Selection. ZOOLOGY 2019; 136:125693. [PMID: 31513936 DOI: 10.1016/j.zool.2019.125693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
|
21
|
Giannoulis T, Plageras D, Stamatis C, Chatzivagia E, Tsipourlianos A, Birtsas P, Billinis C, Suchentrunk F, Mamuris Z. Islands and hybrid zones: combining the knowledge from "Natural Laboratories" to explain phylogeographic patterns of the European brown hare. BMC Evol Biol 2019; 19:17. [PMID: 30630408 PMCID: PMC6329171 DOI: 10.1186/s12862-019-1354-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/02/2019] [Indexed: 12/30/2022] Open
Abstract
Background The aim of the study was to use hybrid populations as well as island populations of the European brown hare (Lepus europaeus) to explore the effect of evolutionary events, such as the post-deglaciation translocations, spontaneous and human-mediated, local adaptation and the genetic drift in the shaping of the phylogeographic patterns of the species. For this purpose, we used molecular markers, both nuclear and mitochondrial, that are indicative for local adaptation as well as neutral markers to elucidate the patterns of population differentiation based on geographic isolation and the clade of origin. To broaden our analysis, we included data from our previous studies concerning mainland populations, to explore the genetic differentiation in the base of the geographic origin (mainland/island) of the populations. Results Our results suggest that local adaptation shapes the differentiation in both genomes, favoring specific alleles in nuclear genes (e.g. DQA) or haplotypes in mtDNA (e.g. Control Region, CR). mtDNA variation was found to be in a higher level and was able to give a phylogeographic signal for the populations. Furthermore, the degree of variation was influenced not only by the geographic origin, but also by the clade of origin, since specific island populations of Anatolian origin showed a greater degree of variation compared to specific mainland populations of the European clade. Concerning the hybrid population, we confirmed the existence of both clades in the territory and we provided a possible explanation for the lack of introgression between the clades. Conclusion Our results indicate that the Quaternary’s climatic oscillations played a major role in the shaping of the phylogeographic patterns of the species, by isolating populations in the distinct refugia, where they adapted and differentiate in allopatry, leading to genome incompatibilities observed nowadays. Electronic supplementary material The online version of this article (10.1186/s12862-019-1354-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Themistoklis Giannoulis
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, Larissa, Greece
| | - Dimitrios Plageras
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, Larissa, Greece
| | - Costas Stamatis
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, Larissa, Greece
| | - Eleni Chatzivagia
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, Larissa, Greece
| | - Andreas Tsipourlianos
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, Larissa, Greece
| | - Periklis Birtsas
- Department of Forestry and Natural Environment Administration, TEI of Thessaly, Larissa, Greece
| | | | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, Larissa, Greece.
| |
Collapse
|
22
|
Awadi A, Ben Slimen H, Smith S, Knauer F, Makni M, Suchentrunk F. Positive selection and climatic effects on MHC class II gene diversity in hares (Lepus capensis) from a steep ecological gradient. Sci Rep 2018; 8:11514. [PMID: 30065344 PMCID: PMC6068193 DOI: 10.1038/s41598-018-29657-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/16/2018] [Indexed: 11/24/2022] Open
Abstract
In natural populations, allelic diversity of the major histocompatibility complex (MHC) is commonly interpreted as resulting from positive selection in varying spatiotemporal pathogenic landscapes. Composite pathogenic landscape data are, however, rarely available. We studied the spatial distribution of allelic diversity at two MHC class II loci (DQA, DQB) in hares, Lepus capensis, along a steep ecological gradient in North Africa and tested the role of climatic parameters for the spatial distribution of DQA and DQB proteins. Climatic parameters were considered to reflect to some extent pathogenic landscape variation. We investigated historical and contemporary forces that have shaped the variability at both genes, and tested for differential selective pressure across the ecological gradient by comparing allelic variation at MHC and neutral loci. We found positive selection on both MHC loci and significantly decreasing diversity from North to South Tunisia. Our multinomial linear models revealed significant effects of geographical positions that were correlated with mean annual temperature and precipitation on the occurrence of protein variants, but no effects of co-occurring DQA or DQB proteins, respectively. Diversifying selection, recombination, adaptation to local pathogenic landscapes (supposedly reflected by climate parameters) and neutral demographic processes have shaped the observed MHC diversity and differentiation patterns.
Collapse
Affiliation(s)
- Asma Awadi
- Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Hichem Ben Slimen
- Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.,Institut Supérieur de Biotechnologie de Béja, University of Jendouba, Avenue Habib Bourguiba Béja 9000, BP. 382, Béja, Tunisia
| | - Steve Smith
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Felix Knauer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| | - Mohamed Makni
- Unité de Recherche Génomique des Insectes Ravageurs des Cultures d'Intérêt Agronomique, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Franz Suchentrunk
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstrasse 1, 1160, Vienna, Austria
| |
Collapse
|
23
|
Whittingham LA, Dunn PO, Freeman-Gallant CR, Taff CC, Johnson JA. Major histocompatibility complex variation and blood parasites in resident and migratory populations of the common yellowthroat. J Evol Biol 2018; 31:1544-1557. [DOI: 10.1111/jeb.13349] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Linda A. Whittingham
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | - Peter O. Dunn
- Behavioral and Molecular Ecology Group; Department of Biological Sciences; University of Wisconsin-Milwaukee; Milwaukee WI USA
| | | | - Conor C. Taff
- Cornell Laboratory of Ornithology; Cornell University; Ithaca NY USA
| | - Jeff A. Johnson
- Department of Biological Sciences; Institute of Applied Sciences; University of North Texas; Denton TX USA
| |
Collapse
|
24
|
Horn RL, Marques AJD, Manseau M, Golding B, Klütsch CFC, Abraham K, Wilson PJ. Parallel evolution of site-specific changes in divergent caribou lineages. Ecol Evol 2018; 8:6053-6064. [PMID: 29988428 PMCID: PMC6024114 DOI: 10.1002/ece3.4154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
The parallel evolution of phenotypes or traits within or between species provides important insight into the basic mechanisms of evolution. Genetic and genomic advances have allowed investigations into the genetic underpinnings of parallel evolution and the independent evolution of similar traits in sympatric species. Parallel evolution may best be exemplified among species where multiple genetic lineages, descended from a common ancestor, colonized analogous environmental niches, and converged on a genotypic or phenotypic trait. Modern North American caribou (Rangifer tarandus) originated from three ancestral sources separated during the Last Glacial Maximum (LGM): the Beringian-Eurasian lineage (BEL), the North American lineage (NAL), and the High Arctic lineage (HAL). Historical introgression between the NAL and the BEL has been found throughout Ontario and eastern Manitoba. In this study, we first characterized the functional differentiation in the cytochrome-b (cytB) gene by identifying nonsynonymous changes. Second, the caribou lineages were used as a direct means to assess site-specific parallel changes among lineages. There was greater functional diversity within the NAL despite the BEL having greater neutral diversity. The patterns of amino acid substitutions occurring within different lineages supported the parallel evolution of cytB amino acid substitutions suggesting different selective pressures among lineages. This study highlights the independent evolution of identical amino acid substitutions within a wide-ranging mammal species that have diversified from different ancestral haplogroups and where ecological niches can invoke parallel evolution.
Collapse
Affiliation(s)
| | | | - Micheline Manseau
- Science and TechnologyEnvironment and Climate Change CanadaOttawaONCanada
- Natural Resources InstituteUniversity of ManitobaWinnipegMBCanada
| | - Brian Golding
- Department of BiologyMcMaster UniversityHamiltonONCanada
| | | | | | | |
Collapse
|
25
|
Fabreti-Oliveira R, Lasmar M, Oliveira C, Vale E, Nascimento E. Genetic Mechanisms Involved in the Generation of HLA Alleles in Brazilians: Description and Comparison of HLA Alleles. Transplant Proc 2018; 50:835-840. [DOI: 10.1016/j.transproceed.2018.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Lee C, Moroldo M, Perdomo-Sabogal A, Mach N, Marthey S, Lecardonnel J, Wahlberg P, Chong AY, Estellé J, Ho SYW, Rogel-Gaillard C, Gongora J. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing. Immunogenetics 2017; 70:401-417. [PMID: 29256177 DOI: 10.1007/s00251-017-1048-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022]
Abstract
The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.
Collapse
Affiliation(s)
- Carol Lee
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Marco Moroldo
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alvaro Perdomo-Sabogal
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia.,Institute of Animal Science (460i), Department of Bioinformatics, University of Hohenheim, Stuttgart, Germany
| | - Núria Mach
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sylvain Marthey
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jérôme Lecardonnel
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Per Wahlberg
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Amanda Y Chong
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia.,Earlham Institute, Norwich Research Park, Norwich, UK
| | - Jordi Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Simon Y W Ho
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, Australia
| | | | - Jaime Gongora
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia.
| |
Collapse
|
27
|
Kaesler E, Kappeler PM, Brameier M, Demeler J, Kraus C, Rakotoniaina JH, Hämäläinen AM, Huchard E. Shared evolutionary origin of major histocompatibility complex polymorphism in sympatric lemurs. Mol Ecol 2017; 26:5629-5645. [PMID: 28833696 DOI: 10.1111/mec.14336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite-mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection ("trans-species polymorphism"), or alternatively favouring the independent emergence of functionally similar alleles post-speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut-parasite communities in four sympatric lemurs. We tested for parasite-MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co-ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC-parasite co-evolution should be envisaged at the community level. We further show that balancing selection maintaining trans-species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.
Collapse
Affiliation(s)
- Eva Kaesler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany
| | - Peter M Kappeler
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Markus Brameier
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Janina Demeler
- Institut für Parasitologie und Tropenveterinärmedizin, Berlin, Germany
| | - Cornelia Kraus
- Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung, Verhaltensökologie & Soziobiologie, Göttingen, Germany.,Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Josué H Rakotoniaina
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Anni M Hämäläinen
- Johann Friedrich Blumenbach Institut für Zoologie & Anthropologie, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elise Huchard
- Institute for Evolutionary Biology, Montpellier (ISEM, UMR 5554), CNRS, Université Montpellier, Montpellier Cedex 5, France
| |
Collapse
|
28
|
Alter I, Gragert L, Fingerson S, Maiers M, Louzoun Y. HLA class I haplotype diversity is consistent with selection for frequent existing haplotypes. PLoS Comput Biol 2017; 13:e1005693. [PMID: 28846675 PMCID: PMC5590998 DOI: 10.1371/journal.pcbi.1005693] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/08/2017] [Accepted: 07/20/2017] [Indexed: 01/03/2023] Open
Abstract
The major histocompatibility complex (MHC) contains the most polymorphic genetic system in humans, the human leukocyte antigen (HLA) genes of the adaptive immune system. High allelic diversity in HLA is argued to be maintained by balancing selection, such as negative frequency-dependent selection or heterozygote advantage. Selective pressure against immune escape by pathogens can maintain appreciable frequencies of many different HLA alleles. The selection pressures operating on combinations of HLA alleles across loci, or haplotypes, have not been extensively evaluated since the high HLA polymorphism necessitates very large sample sizes, which have not been available until recently. We aimed to evaluate the effect of selection operating at the HLA haplotype level by analyzing HLA A~C~B~DRB1~DQB1 haplotype frequencies derived from over six million individuals genotyped by the National Marrow Donor Program registry. In contrast with alleles, HLA haplotype diversity patterns suggest purifying selection, as certain HLA allele combinations co-occur in high linkage disequilibrium. Linkage disequilibrium is positive (Dij'>0) among frequent haplotypes and negative (Dij'<0) among rare haplotypes. Fitting the haplotype frequency distribution to several population dynamics models, we found that the best fit was obtained when significant positive frequency-dependent selection (FDS) was incorporated. Finally, the Ewens-Watterson test of homozygosity showed excess homozygosity for 5-locus haplotypes within 23 US populations studied, with an average Fnd of 28.43. Haplotype diversity is most consistent with purifying selection for HLA Class I haplotypes (HLA-A, -B, -C), and was not inferred for HLA Class II haplotypes (-DRB1 and—DQB1). We discuss our empirical results in the context of evolutionary theory, exploring potential mechanisms of selection that maintain high linkage disequilibrium in MHC haplotype blocks. The adaptive immune system presents antigens derived from pathogenic and normal self proteins on the cell surface using human leukocyte antigen (HLA) molecules. The HLA loci coding for these molecules are found in major histocompatibility complex (MHC) region, the most polymorphic region in the human genome, with over 15,000 HLA alleles observed so far in the world population. A high frequency of many different HLA alleles is thought be sustained by balancing selection. New HLA alleles may have an advantage over existing frequent alleles since immune escape mutations in pathogens within a population are maintained primarily in epitopes presented on frequent HLA alleles. Host immune function is not determined by single HLA alleles, but by both copies of autosomal HLA genes together (genotypes). Complementarity in function across the two potentially-variant copies of HLA at each locus can result in overdominance and heterozygote advantage at the genotype level. Less explored are selection mechanisms that may be operating across combinations of HLA alleles across loci (haplotypes). Indeed, in addition to high allelic diversity, HLA also has distinctive patterns of haplotype diversity, as certain HLA alleles co-occur in high linkage disequilibrium across five classical HLA loci (HLA-A, -B, -C, -DRB1, -DQB1). We applied multiple population genetic models to a dataset of HLA haplotype frequencies derived from over six million individuals with the goal of determining what type of selection may impact HLA haplotype diversity. We found frequent haplotypes were preferentially maintained in the population across 23 US populations studied. Thus, balancing selection at the allele level and purifying selection at the haplotype level may together affect HLA diversity in human populations.
Collapse
Affiliation(s)
- Idan Alter
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Loren Gragert
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Stephanie Fingerson
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
| | - Martin Maiers
- National Marrow Donor Program, Minneapolis, Minnesota, United States of America
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
29
|
Liu G, Zhang H, Sun G, Zhao C, Shang S, Gao X, Xia T, Yang X. Characterization of the peripheral blood transcriptome and adaptive evolution of the MHC I and TLR gene families in the wolf (Canis lupus). BMC Genomics 2017; 18:584. [PMID: 28784091 PMCID: PMC5545864 DOI: 10.1186/s12864-017-3983-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/01/2017] [Indexed: 01/25/2023] Open
Abstract
Background The wolf (Canis lupus) is one of the most widely distributed terrestrial mammals, because it is well adapted to various ecological niches and their corresponding pathogen environments. Immunological competence is a crucial factor involved in adapting to a changing environment and fighting pathogen infection in animals. In this study, the peripheral blood transcriptome of wolves was generated via RNA-seq to advance understanding of the wolf immunome, with a special focus on the major histocompatibility complex class I (MHC I) and toll-like receptor (TLR) gene families, which are involved in pathogen recognition and defense. Results The blood transcriptomic libraries of eight wolves originating from Tibet and Inner Mongolia were sequenced, and approximately 383 million reads were generated. Using a genome-guided assembly strategy, we obtained 123,851 unigenes, with a mean length of 845 bp and an N50 length of 1121 bp. On the basis of BLAST searches against the NCBI non-redundant protein database (Nr), a total of 36,192 (29.22%) unigenes were annotated. For functional classification, 24,663 unigenes were assigned to 13,016 Gene Ontology (GO) terms belonging to 51 sub-categories of the three main GO categories. Additionally, 7682 unigenes were classified into 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) categories, in which the most represented functional sub-categories were signal transduction and the immune system, and 16,238 unigenes were functionally classified into 25 Eukaryotic Orthologous Groups (KOG) categories. We observed an overall higher ω (dN/dS) value at antigen-binding sites (ABSs) than at non-ABS regions as well as clear evidence of intergenic/intragenic recombination events at wolf MHC I loci. Additionally, our analysis revealed that carnivorous TLRs were dominated by purifying selection, with mean ω values at each TLR locus ranging from 0.173 to 0.527. However, we also found significant instances of positive selection that acted on several codons in pathogen recognition domains and were linked to species-specific differences in pathogen recognition. Conclusions This study represents the first attempt to characterize the blood transcriptome of the wolf and to highlight the value of investigating the immune system. Balancing selection and recombination have contributed to the historical evolution of wolf MHC I genes. Moreover, TLRs in carnivores have undergone adaptive evolution against the background of purifying selection, and a high level of adaptive evolution was detected in the wolf TLR system. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3983-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangshuai Liu
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Honghai Zhang
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China.
| | - Guolei Sun
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Chao Zhao
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Shuai Shang
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Xiaodong Gao
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Tian Xia
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| | - Xiufeng Yang
- Qufu Normal University, Jingxuan Street No. 57, Qufu, Shandong province, China
| |
Collapse
|
30
|
Spatial distribution of microsatellite and MHC-DRB exon 2 gene variability in the Jamaican fruit bat (Artibeus jamaicensis) in Mexico. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
John M, Gaudieri S, Mallal S. Immunogenetics and Vaccination. HUMAN VACCINES 2017. [DOI: 10.1016/b978-0-12-802302-0.00005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Krasnec KV, Papenfuss AT, Miller RD. The UT family of MHC class I loci unique to non-eutherian mammals has limited polymorphism and tissue specific patterns of expression in the opossum. BMC Immunol 2016; 17:43. [PMID: 27825298 PMCID: PMC5101759 DOI: 10.1186/s12865-016-0181-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Major Histocompatibility Complex (MHC) class I family of genes encode for molecules that have well-conserved structures, but have evolved to perform diverse functions. The availability of the gray, short-tailed opossum, Monodelphis domestica whole genome sequence has allowed for analysis of MHC class I gene content in this marsupial. Utilization of a novel method to search for MHC related domain structures revealed a previously unknown family of MHC class I-related genes. These genes, named UT1-17, are clustered on chromosome 1 in the opossum, unlinked to the MHC region. UT genes are only found in marsupial and monotreme genomes, consistent with being ancient in mammals yet lost in eutherian mammals. This study investigates the expression and polymorphism of the UT loci in the opossum to gain insight into their possible function. RESULTS Of the 17 opossum UT genes, most have restricted tissue transcription patterns, with the thymus and skin being the most common sites. Full-length structure of 11 UT transcripts revealed genes varying between five and eight exons, typical for class I family members. There were only two alternative splice variants found. The UT genes also have limited polymorphism and little evidence of positive selection. One locus, UT8, was chosen for further analysis due to its conservation amongst marsupials and generic characteristics. UT8 transcription is limited to developing αβ thymocytes, and is absent from mature αβ T cells in peripheral lymphoid tissues. CONCLUSION The overall characteristics and features of UT genes including low polymorphism and restricted tissue expression make it likely that the molecules encoded by UT genes perform roles other than antigenic peptide presentation.
Collapse
Affiliation(s)
- Katina V Krasnec
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, East Melbourne, 3002, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Robert D Miller
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
33
|
Migalska M, Sebastian A, Konczal M, Kotlík P, Radwan J. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus). Heredity (Edinb) 2016; 118:348-357. [PMID: 27782121 DOI: 10.1038/hdy.2016.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.
Collapse
Affiliation(s)
- M Migalska
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - A Sebastian
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - M Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - P Kotlík
- Laboratory of Molecular Ecology, Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Liběchov, Czech Republic
| | - J Radwan
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
34
|
MHC class II β exon 2 variation in pardalotes (Pardalotidae) is shaped by selection, recombination and gene conversion. Immunogenetics 2016; 69:101-111. [PMID: 27717988 DOI: 10.1007/s00251-016-0953-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022]
Abstract
The high levels of polymorphism and allelic diversity which characterise genes in the major histocompatibility complex (MHC) are thought to be generated and maintained through the combined effects of different evolutionary processes. Here, we characterised exon 2 of the MHC class II β genes in two congeneric passerine species, the spotted (Pardalotus punctatus) and striated pardalote (Pardalotus striatus). We estimated the levels of allelic diversity and tested for signatures of recombination, gene conversion and balancing selection to determine if these processes have influenced MHC variation in the two species. Both species showed high levels of polymorphism and allelic diversity, as well as evidence of multiple gene loci and putative pseudogenes based on the presence of stop codons. We found higher levels of MHC diversity in the striated pardalote than the spotted pardalote, based on the levels of individual heterozygosity, sequence divergence and number of polymorphic sites. The observed differences may reflect variable selection pressure on the species, resulting from differences in patterns of movement among populations. We identified strong signatures of historical balancing selection, recombination and gene conversion at the sequence level, indicating that MHC variation in the two species has been shaped by a combination of processes.
Collapse
|
35
|
Lau Q, Igawa T, Komaki S, Satta Y. Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs. Immunogenetics 2016; 68:797-806. [PMID: 27418258 PMCID: PMC5056945 DOI: 10.1007/s00251-016-0934-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022]
Abstract
The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (dS) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher dN/dS ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.
Collapse
Affiliation(s)
- Quintin Lau
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan.
| | - Takeshi Igawa
- Global Career Design Center, Hiroshima University, 1-7-1, Higashi-Hiroshima, Hiroshima, 739-8514, Japan
| | - Shohei Komaki
- Division of Developmental Science, Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1, Higashi-Hiroshima, Hiroshima, 739-8529, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Sokendai (The Graduate University for Advanced Studies), Kamiyamaguchi 1560-35, Hayama, Kanagawa, 240-0193, Japan
| |
Collapse
|
36
|
Kashyap M, Farooq U, Jaiswal V. Homology modelling of frequent HLA class-II alleles: A perspective to improve prediction of HLA binding peptide and understand the HLA associated disease susceptibility. INFECTION GENETICS AND EVOLUTION 2016; 44:234-244. [PMID: 27421208 DOI: 10.1016/j.meegid.2016.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/24/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Human leukocyte antigen (HLA) plays significant role via the regulation of immune system and contribute in the progression and protection of many diseases. HLA molecules bind and present peptides to T- cell receptors which generate the immune response. HLA peptide interaction and molecular function of HLA molecule is the key to predict peptide binding and understanding its role in different diseases. The availability of accurate three dimensional (3D) structures is the initial step towards this direction. In the present work, homology modelling of important and frequent HLA-DRB1 alleles (07:01, 11:01 and 09:01) was done and acceptable models were generated. These modelled alleles were further refined and cross validated by using several methods including Ramachandran plot, Z-score, ERRAT analysis and root mean square deviation (RMSD) calculations. It is known that numbers of allelic variants are related to the susceptibility or protection of various infectious diseases. Difference in amino acid sequences and structures of alleles were also studied to understand the association of HLA with disease susceptibility and protection. Susceptible alleles showed more amino acid variations than protective alleles in three selected diseases caused by different pathogens. Amino acid variations at binding site were found to be more than other part of alleles. RMSD values were also higher at variable positions within binding site. Higher RMSD values indicate that mutations occurring at peptide binding site alter protein structure more than rest of the protein. Hence, these findings and modelled structures can be used to design HLA-DRB1 binding peptides to overcome low prediction accuracy of HLA class II binding peptides. Furthermore, it may help to understand the allele specific molecular mechanisms involved in susceptibility/resistance against pathogenic diseases.
Collapse
Affiliation(s)
- Manju Kashyap
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India
| | - Umar Farooq
- Faculty of Applied sciences and Biotechnology, Shoolini University, Solan, Himachal, Pradesh, India
| | - Varun Jaiswal
- School of Electrical and Computer Science Engineering, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
37
|
Cobble KR, Califf KJ, Stone NE, Shuey MM, Birdsell DN, Colman RE, Schupp JM, Aziz M, Van Andel R, Rocke TE, Wagner DM, Busch JD. Genetic variation at the MHC DRB1 locus is similar across Gunnison's prairie dog (Cynomys gunnisoni) colonies regardless of plague history. Ecol Evol 2016; 6:2624-51. [PMID: 27066243 PMCID: PMC4798151 DOI: 10.1002/ece3.2077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 01/16/2023] Open
Abstract
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague‐related die‐offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two other DRB1 alleles appear to be trans‐species polymorphisms shared with the black‐tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an FST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.
Collapse
Affiliation(s)
- Kacy R Cobble
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| | - Katy J Califf
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| | - Nathan E Stone
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| | - Megan M Shuey
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| | - Dawn N Birdsell
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| | - Rebecca E Colman
- Translational Genomics Research Institute North 3051 W. Shamrell Blvd #106 Flagstaff Arizona 86001 USA
| | - James M Schupp
- Translational Genomics Research Institute North 3051 W. Shamrell Blvd #106 Flagstaff Arizona 86001 USA
| | - Maliha Aziz
- Translational Genomics Research Institute North 3051 W. Shamrell Blvd #106 Flagstaff Arizona 86001 USA
| | - Roger Van Andel
- University of California Berkeley MC 7150 Berkeley California 94720 USA
| | - Tonie E Rocke
- United States Geological Survey National Wildlife Health Center 6006 Schroeder Road Madison Wisconsin 53711 USA
| | - David M Wagner
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| | - Joseph D Busch
- Center for Microbial Genetics and Genomics Northern Arizona University PO Box 4073 Flagstaff Arizona 86011 USA
| |
Collapse
|
38
|
Wamala D, Buteme HK, Kirimunda S, Kallenius G, Joloba M. Association between human leukocyte antigen class II and pulmonary tuberculosis due to mycobacterium tuberculosis in Uganda. BMC Infect Dis 2016; 16:23. [PMID: 26803588 PMCID: PMC4724396 DOI: 10.1186/s12879-016-1346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is reported to infect about a third of the world's population but only 10% are thought to develop active tuberculosis (TB) disease. Host immunity regulated by human leukocyte antigens (HLA) is an important determinant of the outcome of the disease. Here we investigate HLA class II gene polymorphisms in susceptibility to TB, and whether particular HLA class II alleles were associated with TB in Uganda. METHODS HIV negative patients with pulmonary TB (n = 43) and genetically related healthy household controls (n = 42) were typed for their HLA II class alleles using polymerase chain reaction sequence specific primer amplification. RESULTS The HLA-DQB1*03:03 allele was significantly less frequent in patients compared to healthy controls (10% in controls versus 0% in patients, p = 0.003). After correction for multiple comparisons the difference remained significant (p = 0.018). CONCLUSIONS Our results suggest that the HLA-DQB1*03:03 allele may be associated with resistance to TB.
Collapse
Affiliation(s)
- Dan Wamala
- Department of Pathology, Mulago Hospital and Makerere University, Kampala, Uganda. .,Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.
| | - Helen Koyokoyo Buteme
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Samuel Kirimunda
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gunilla Kallenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Moses Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
39
|
Zeng QQ, Zhong GH, He K, Sun DD, Wan QH. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus). Int J Immunogenet 2015; 43:8-17. [PMID: 26700854 DOI: 10.1111/iji.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 11/22/2015] [Indexed: 11/29/2022]
Abstract
Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.
Collapse
Affiliation(s)
- Q-Q Zeng
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - G-H Zhong
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - K He
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - D-D Sun
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Q-H Wan
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
40
|
Gillingham MAF, Courtiol A, Teixeira M, Galan M, Bechet A, Cezilly F. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species. J Evol Biol 2015; 29:438-54. [DOI: 10.1111/jeb.12798] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 11/30/2022]
Affiliation(s)
- M. A. F. Gillingham
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
- Centre de Recherche de la Tour du Valat; Arles France
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Institute of Evolutionary Ecology and Conservation Genomics; University of Ulm; Ulm Germany
| | - A. Courtiol
- Department of Evolutionary Genetics; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - M. Teixeira
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| | - M. Galan
- UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro); INRA EFPA; Montferrier-sur-Lez Cedex France
| | - A. Bechet
- Centre de Recherche de la Tour du Valat; Arles France
| | - F. Cezilly
- Equipe Ecologie Evolutive; UMR CNRS 6282 Biogéosciences; Université de Bourgogne; Dijon France
| |
Collapse
|
41
|
Human Leukocyte Antigen Diversity: A Southern African Perspective. J Immunol Res 2015; 2015:746151. [PMID: 26347896 PMCID: PMC4549606 DOI: 10.1155/2015/746151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/26/2015] [Indexed: 12/30/2022] Open
Abstract
Despite the increasingly well-documented evidence of high genetic, ethnic, and linguistic diversity amongst African populations, there is limited data on human leukocyte antigen (HLA) diversity in these populations. HLA is part of the host defense mechanism mediated through antigen presentation to effector cells of the immune system. With the high disease burden in southern Africa, HLA diversity data is increasingly important in the design of population-specific vaccines and the improvement of transplantation therapeutic interventions. This review highlights the paucity of HLA diversity data amongst southern African populations and defines a need for information of this kind. This information will support disease association studies, provide guidance in vaccine design, and improve transplantation outcomes.
Collapse
|
42
|
Trans-Species Polymorphism in Immune Genes: General Pattern or MHC-Restricted Phenomenon? J Immunol Res 2015; 2015:838035. [PMID: 26090501 PMCID: PMC4458282 DOI: 10.1155/2015/838035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 11/24/2022] Open
Abstract
Immunity exhibits extraordinarily high levels of variation. Evolution of the immune system in response to host-pathogen interactions in particular ecological contexts appears to be frequently associated with diversifying selection increasing the genetic variability. Many studies have documented that immunologically relevant polymorphism observed today may be tens of millions years old and may predate the emergence of present species. This pattern can be explained by the concept of trans-species polymorphism (TSP) predicting the maintenance and sharing of favourable functionally important alleles of immune-related genes between species due to ongoing balancing selection. Despite the generality of this concept explaining the long-lasting adaptive variation inherited from ancestors, current research in TSP has vastly focused only on major histocompatibility complex (MHC). In this review we summarise the evidence available on TSP in human and animal immune genes to reveal that TSP is not a MHC-specific evolutionary pattern. Further research should clearly pay more attention to the investigation of TSP in innate immune genes and especially pattern recognition receptors which are promising candidates for this type of evolution. More effort should also be made to distinguish TSP from convergent evolution and adaptive introgression. Identification of balanced TSP variants may represent an accurate approach in evolutionary medicine to recognise disease-resistance alleles.
Collapse
|
43
|
Eimes JA, Townsend AK, Sepil I, Nishiumi I, Satta Y. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism. PeerJ 2015; 3:e853. [PMID: 25802816 PMCID: PMC4369332 DOI: 10.7717/peerj.853] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/04/2015] [Indexed: 12/02/2022] Open
Abstract
A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of positively selected amino acids by supertyping revealed a single supertype shared by only jungle and carrion crows, a pattern consistent with convergence, the overall phylogenetic patterns we observed suggest that TSP, rather than convergence, explains the interspecific allelic similarity of MHC IIB genes in these species of crows.
Collapse
Affiliation(s)
- John A Eimes
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| | | | - Irem Sepil
- Department of Zoology, University of Oxford , Oxford , UK
| | - Isao Nishiumi
- Department of Zoology, National Museum of Nature and Science , Tsukuba , Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, Graduate University for Advanced Studies (SOKENDAI) , Hayama , Japan
| |
Collapse
|
44
|
Wilson AB, Whittington CM, Bahr A. High intralocus variability and interlocus recombination promote immunological diversity in a minimal major histocompatibility system. BMC Evol Biol 2014; 14:273. [PMID: 25526691 PMCID: PMC4302578 DOI: 10.1186/s12862-014-0273-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/12/2014] [Indexed: 12/03/2022] Open
Abstract
Background The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. Results The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Conclusions Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.
Collapse
Affiliation(s)
- Anthony B Wilson
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Department of Biology, Brooklyn College and The Graduate Center, City University of New York, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA. .,Department of Biology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York, 11210, USA.
| | - Camilla M Whittington
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,School of Biological Sciences, University of Sydney, Heydon-Laurence Building A08, Sydney, NSW, 2006, Australia.
| | - Angela Bahr
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Institute of Medical Molecular Genetics, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| |
Collapse
|
45
|
Adamek M, Klages C, Bauer M, Kudlek E, Drechsler A, Leuser B, Scherer S, Opelz G, Tran TH. Seven novel HLA alleles reflect different mechanisms involved in the evolution of HLA diversity: description of the new alleles and review of the literature. Hum Immunol 2014; 76:30-5. [PMID: 25500251 DOI: 10.1016/j.humimm.2014.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/22/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
The human leukocyte antigen (HLA) loci are among the most polymorphic genes in the human genome. The diversity of these genes is thought to be generated by different mechanisms including point mutation, gene conversion and crossing-over. During routine HLA typing, we discovered seven novel HLA alleles which were probably generated by different evolutionary mechanisms. HLA-B*41:21, HLA-DQB1*02:10 and HLA-DQA1*01:12 likely emerged from the common alleles of their groups by point mutations, all of which caused non-synonymous amino acid substitutions. In contrast, a deletion of one nucleotide leading to a frame shift with subsequent generation of a stop codon is responsible for the appearance of a null allele, HLA-A*01:123N. Whereas HLA-B*35:231 and HLA-B*53:31 were probably products of intralocus gene conversion between HLA-B alleles, HLA-C*07:294 presumably evolved by interlocus gene conversion between an HLA-C and an HLA-B allele. Our analysis of these novel alleles illustrates the different mechanisms which may have contributed to the evolution of HLA polymorphism.
Collapse
Affiliation(s)
- Martina Adamek
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Cornelia Klages
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Manuela Bauer
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Evelina Kudlek
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Alina Drechsler
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Birte Leuser
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Sabine Scherer
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Opelz
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Thuong Hien Tran
- Department of Transplantation Immunology, Institute of Immunology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
46
|
Li L, Wang BB, Ge YF, Wan QH. Major histocompatibility complex class II polymorphisms in forest musk deer (Moschus berezovskii) and their probable association with purulent disease. Int J Immunogenet 2014; 41:401-12. [PMID: 25053118 DOI: 10.1111/iji.12135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/20/2014] [Accepted: 06/12/2014] [Indexed: 11/26/2022]
Abstract
Genes of the major histocompatibility complex (MHC) family are crucial in immune responses because they present pathogenic peptides to T cells. In this study, we analysed the genetic variation in forest musk deer (Moschus berezovskii) MHC II genes and its potential association with musk deer purulent disease. In total, 53 purulent disease-susceptible and 46 purulent disease-resistant individuals were selected for MHC II exon 2 fragment analysis. Among them, 16 DQ alleles and four additional DR alleles were identified, with DQ exon 2 fragments displaying a low level of polymorphism. The nonsynonymous substitutions exceeded the synonymous substitutions in the peptide-binding sites of DQA2, DQB1 and DQB2. Then, 28 MHC II alleles were used to analyse the distribution patterns of purulent disease between the susceptible and resistant groups. Among them, three alleles (DQA1*01, DQA1*02 and DQA2*04) were found to be resistant, and five alleles (DRB3*07, DQA1*03, DQA1*04, DQA2*05 and DQA2*06) were found to increase susceptibility. Additionally, three haplotypes were found to be putatively associated with musk deer purulent disease. However, these three haplotypes were only found in the resistant or susceptible group, and their frequencies were low. The results from our study support a contributory role of MHC II polymorphisms in the development of purulent disease in forest musk deer.
Collapse
Affiliation(s)
- L Li
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and State Conservation Center for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
47
|
López C, Suárez CF, Cadavid LF, Patarroyo ME, Patarroyo MA. Characterising a microsatellite for DRB typing in Aotus vociferans and Aotus nancymaae (Platyrrhini). PLoS One 2014; 9:e96973. [PMID: 24820773 PMCID: PMC4018467 DOI: 10.1371/journal.pone.0096973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Non-human primates belonging to the Aotus genus have been shown to be excellent experimental models for evaluating drugs and vaccine candidates against malaria and other human diseases. The immune system of this animal model must be characterised to assess whether the results obtained here can be extrapolated to humans. Class I and II major histocompatibility complex (MHC) proteins are amongst the most important molecules involved in response to pathogens; in spite of this, the techniques available for genotyping these molecules are usually expensive and/or time-consuming. Previous studies have reported MHC-DRB class II gene typing by microsatellite in Old World primates and humans, showing that such technique provides a fast, reliable and effective alternative to the commonly used ones. Based on this information, a microsatellite present in MHC-DRB intron 2 and its evolutionary patterns were identified in two Aotus species (A. vociferans and A. nancymaae), as well as its potential for genotyping class II MHC-DRB in these primates.
Collapse
Affiliation(s)
- Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
- MSc Microbiology Programme, Instituto de Biotecnología (IBUN), Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Carlos F. Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
| | - Luis F. Cadavid
- Genetics Institute, Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Manuel E. Patarroyo
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Cundinamarca, Colombia
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Cundinamarca, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Cundinamarca, Colombia
- * E-mail:
| |
Collapse
|
48
|
Scherman K, Råberg L, Westerdahl H. Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus). J Mol Evol 2014; 78:293-305. [PMID: 24748547 DOI: 10.1007/s00239-014-9618-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.
Collapse
Affiliation(s)
- Kristin Scherman
- Department of Biology, MEMEG, Lund University, Sölvegatan 37, 223 62, Lund, Sweden,
| | | | | |
Collapse
|
49
|
Koutsogiannouli EA, Moutou KA, Stamatis C, Walter L, Mamuris Z. Genetic variation in the major histocompatibility complex of the European brown hare (Lepus europaeus) across distinct phylogeographic areas. Immunogenetics 2014; 66:379-92. [DOI: 10.1007/s00251-014-0772-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
50
|
Tobler M, Plath M, Riesch R, Schlupp I, Grasse A, Munimanda GK, Setzer C, Penn DJ, Moodley Y. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations. J Evol Biol 2014; 27:960-74. [PMID: 24725091 DOI: 10.1111/jeb.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
Abstract
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution).
Collapse
Affiliation(s)
- M Tobler
- Department of Zoology, Oklahoma State University, Stillwater, OK, USA
| | | | | | | | | | | | | | | | | |
Collapse
|