1
|
Mahla RS. TLR7 signaling: a central nexus in autoimmunity and cGVHD. Blood Adv 2024; 8:3186-3188. [PMID: 38696714 PMCID: PMC11225663 DOI: 10.1182/bloodadvances.2024012598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Affiliation(s)
- Ranjeet Singh Mahla
- Kennedy Institute of Rheumatology, Medical Science Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Ullah MA, Garcillán B, Whitlock E, Figgett WA, Infantino S, Eslami M, Yang S, Rahman MA, Sheng YH, Weber N, Schneider P, Tam CS, Mackay F. An unappreciated cell survival-independent role for BAFF initiating chronic lymphocytic leukemia. Front Immunol 2024; 15:1345515. [PMID: 38469292 PMCID: PMC10927009 DOI: 10.3389/fimmu.2024.1345515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Background Chronic Lymphocytic Leukemia (CLL) is characterized by the expansion of CD19+ CD5+ B cells but its origin remains debated. Mutated CLL may originate from post-germinal center B cells and unmutated CLL from CD5+ mature B cell precursors. Irrespective of precursor types, events initiating CLL remain unknown. The cytokines BAFF and APRIL each play a significant role in CLL cell survival and accumulation, but their involvement in disease initiation remains unclear. Methods We generated novel CLL models lacking BAFF or APRIL. In vivo experiments were conducted to explore the impact of BAFF or APRIL loss on leukemia initiation, progression, and dissemination. Additionally, RNA-seq and quantitative real-time PCR were performed to unveil the transcriptomic signature influenced by BAFF in CLL. The direct role of BAFF in controlling the expression of tumor-promoting genes was further assessed in patient-derived primary CLL cells ex-vivo. Results Our findings demonstrate a crucial role for BAFF, but not APRIL, in the initiation and dissemination of CLL cells. In the absence of BAFF or its receptor BAFF-R, the TCL1 transgene only increases CLL cell numbers in the peritoneal cavity, without dissemination into the periphery. While BAFF binding to BAFF-R is dispensable for peritoneal CLL cell survival, it is necessary to activate a tumor-promoting gene program, potentially linked to CLL initiation and progression. This direct role of BAFF in controlling the expression of tumor-promoting genes was confirmed in patient-derived primary CLL cells ex-vivo. Conclusions Our study, involving both mouse and human CLL cells, suggests that BAFF might initiate CLL through mechanisms independent of cell survival. Combining current CLL therapies with BAFF inhibition could offer a dual benefit by reducing peripheral tumor burden and suppressing transformed CLL cell output.
Collapse
Affiliation(s)
- Md Ashik Ullah
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Beatriz Garcillán
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Eden Whitlock
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - William A. Figgett
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Garvan Institute of Medical Research, Kinghorn Centre for Clinical Genomics, Darlinghurst, NSW, Australia
| | - Simona Infantino
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Mahya Eslami
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, Zürich, Switzerland
| | - SiLing Yang
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - M. Arifur Rahman
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Yong H. Sheng
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
| | - Nicholas Weber
- Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Constantine S. Tam
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Haematology, Monash University, Melbourne, VIC, Australia
| | - Fabienne Mackay
- Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Cancer Program, Herston, QLD, Australia
- The Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- The Department of Immunology and Pathology, Monash University, VIC, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Udoye CC, Ehlers M, Manz RA. The B Cell Response and Formation of Allergenic and Anti-Allergenic Antibodies in Food Allergy. BIOLOGY 2023; 12:1501. [PMID: 38132327 PMCID: PMC10740584 DOI: 10.3390/biology12121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Food allergies are a growing public health concern worldwide, especially in children and young adults. Allergen-specific IgE plays a central role in the pathogenesis of food allergies, but their titers poorly correlate with allergy development. Host immune systems yield allergen-specific immunoglobulin (Ig)A, IgE and IgG subclasses with low or high affinities and differential Fc N-glycosylation patterns that can affect the allergic reaction to food in multiple ways. High-affinity IgE is required to induce strong mast cell activation eventually leading to allergic anaphylaxis, while low-affinity IgE can even inhibit the development of clinically relevant allergic symptoms. IgA and IgG antibodies can inhibit IgE-mediated mast cell activation through various mechanisms, thereby protecting IgE-positive individuals from allergy development. The production of IgE and IgG with differential allergenic potential seems to be affected by the signaling strength of individual B cell receptors, and by cytokines from T cells. This review provides an overview of the diversity of the B cell response and the diverse roles of antibodies in food allergy.
Collapse
Affiliation(s)
- Christopher C. Udoye
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
4
|
Yi P, Cao P, Yang M, Xiong F, Jiang J, Mei Y, Xin Y, Zhao M, Wu H, Lu Q. Overexpressed CD44 is associated with B-cell activation via the HA-CD44-AIM2 pathway in lupus B cells. Clin Immunol 2023; 255:109710. [PMID: 37499961 DOI: 10.1016/j.clim.2023.109710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by aberrant development of B cells and excess production of autoantibodies. Our team previously reported that absent in melanoma 2 (AIM2) regulates B-cell differentiation via the Bcl-6-Blimp-1 axis. Notably, in keyhole limpet hemocyanin (KLH)-immunized CD19creAim2f/f mice, the frequency of CD19+CD44+ B cells was decreased, accompanied by a weakened KLH response, indicating that AIM2 deficiency suppressed the antigen-induced B-cell immune response by downregulating the expression of CD44. CD44, a surface marker of T-cell activation and memory, was overexpressed in T cells of SLE patients, but its roles and mechanism in B cells have not been elucidated. In the current work, we revealed that CD44 expression was upregulated in the B cells of SLE patients and MRL/lpr mice, accompanied by elevated AIM2 expression in CD19+CD44+ B-cell subsets, and that its ligand hyaluronan (HA) was also abnormally increased in the serum of SLE patients. Notably, the extrafollicular (EF) region serves as an important site of B-cell activation and differentiation separate from the germinal center, while CD44 expression is concentrated in EF B cells. In addition, in vitro experiments demonstrated that the HA-CD44 interaction stimulated B-cell activation and upregulated the expression of AIM2 and the transcription factor STAT3. Either blocking CD44, knocking down AIM2 expression or suppressing the activity of STAT3 in B cells suppressed B-cell activation and proliferation. Moreover, blocking CD44 downregulated the expression of STAT3 and AIM2, while suppressing the activity of STAT3 decreased the expression of CD44 and AIM2. In summary, overexpressed CD44 in B cells might participate in B-cell activation and proliferation in the EF region via the HA-CD44-AIM2 pathway, providing potential targets for SLE therapy.
Collapse
Affiliation(s)
- Ping Yi
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengpeng Cao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Feng Xiong
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Jiao Jiang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yue Xin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Mingming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Zheremyan EA, Ustiugova AS, Uvarova AN, Karamushka NM, Stasevich EM, Gogoleva VS, Bogolyubova AV, Mitkin NA, Kuprash DV, Korneev KV. Differentially activated B cells develop regulatory phenotype and show varying immunosuppressive features: a comparative study. Front Immunol 2023; 14:1178445. [PMID: 37731503 PMCID: PMC10509016 DOI: 10.3389/fimmu.2023.1178445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
Regulatory B lymphocytes (Bregs) are B cells with well-pronounced immunosuppressive properties, allowing them to suppress the activity of effector cells. A broad repertoire of immunosuppressive mechanisms makes Bregs an attractive tool for adoptive cell therapy for diseases associated with excessive activation of immune reactions. Such therapy implies Breg extraction from the patient's peripheral blood, ex vivo activation and expansion, and further infusion into the patient. At the same time, the utility of Bregs for therapeutic approaches is limited by their small numbers and extremely low survival rate, which is typical for all primary B cell cultures. Therefore, extracting CD19+ cells from the patient's peripheral blood and specifically activating them ex vivo to make B cells acquire a suppressive phenotype seems to be far more productive. It will allow a much larger number of B cells to be obtained initially, which may significantly increase the likelihood of successful immunosuppression after adoptive Breg transfer. This comparative study focuses on finding ways to efficiently manipulate B cells in vitro to differentiate them into Bregs. We used CD40L, CpG, IL4, IL21, PMA, and ionomycin in various combinations to generate immunosuppressive phenotype in B cells and performed functional assays to test their regulatory capacity. This work shows that treatment of primary B cells using CD40L + CpG + IL21 mix was most effective in terms of induction of functionally active regulatory B lymphocytes with high immunosuppressive capacity ex vivo.
Collapse
Affiliation(s)
- Elina A Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nina M Karamushka
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina M Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Apollinariya V Bogolyubova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
6
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Jeon Y, Lim JY, Im KI, Kim N, Cho SG. BAFF blockade attenuates acute graft-versus-host disease directly via the dual regulation of T- and B-cell homeostasis. Front Immunol 2022; 13:995149. [PMID: 36561743 PMCID: PMC9763883 DOI: 10.3389/fimmu.2022.995149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction B-cell-activating factor (BAFF) is associated with donor-specific antibodies and chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the effects of BAFF on T-cell physiological function have not been fully elucidated in acute GVHD. Methods We examined the effects of belimumab, a monoclonal antibody targeting BAFF, for the treatment of acute GVHD. We examined the effects of T cells and B cells separately when inducing GVHD in mouse model. Results Therapeutic functional manipulation of endogenous BAFF can improve acute GVHD during the early post-transplant period. In this study, BAFF was shown to increase the proportions of CD4+IL-17+, CD4+IL-6+ Th17, and CD4+IFN-γ+ Th1 cells and to reduce the proportion of regulatory T (Treg) cells. Furthermore, the belimumab therapy group showed increased B220+IgD+IgM+ mature B cells but decreased B220+IgD-IgM- memory B cells, B220+Fas+GL-7+ germinal center formation, and B220+IgD-CD138+ plasma cells. These results indicate that BAFF can alleviate acute GVHD by simultaneously regulating T and B cells. Interestingly, the BAFF level was higher in patients with acute GVHD after HSCT compared with patients receiving chemotherapy. Conclusion This study suggests that BAFF blockade might modulate CD4 +T-cell-induced acute GVHD early after allo-HSCT and the possibility of simultaneously controlling chronic GVHD, which may appear later after allo-HSCT.
Collapse
Affiliation(s)
- Youngwoo Jeon
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Yeon Lim
- Department of Biomedical Laboratory Science, Inje University, Kimhae, South Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok-Goo Cho
- Department of Hematology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Lymphoma and Cell Therapy-Research Center, Yeouido St. Mary Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, South Korea,Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea,*Correspondence: Seok-Goo Cho,
| |
Collapse
|
8
|
Plüß M, Piantoni S, Tampe B, Kim AHJ, Korsten P. Belimumab for systemic lupus erythematosus - Focus on lupus nephritis. Hum Vaccin Immunother 2022; 18:2072143. [PMID: 35588699 PMCID: PMC9359396 DOI: 10.1080/21645515.2022.2072143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, advances in the treatment and management of patients with systemic lupus erythematosus (SLE) have improved their life expectancy and quality of life. However, lupus nephritis (LN) still represents a major life-threatening complication of the disease. Belimumab (BEL), a fully human monoclonal IgG1λ antibody neutralizing soluble B cell activating factor, was approved more than ten years ago as add-on therapy in adults and pediatric patients with a highly active, autoantibody-positive disease despite standard of care (SoC). Recently, the superiority of the addition of BEL to SoC was also demonstrated in LN. In this review, we provide a comprehensive overview of the study landscape, available therapeutic options for SLE (focusing on BEL in renal and non-renal SLE), and new perspectives in the treatment field of this disease. A personalized treatment approach will likely become available with the advent of novel therapeutic agents for SLE and LN.
Collapse
Affiliation(s)
- Marlene Plüß
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Silvia Piantoni
- Rheumatology and Clinical Immunology Unit, Department of Clinical and Experimental Sciences, ASST Spedali Civili and University of Brescia, Brescia, Italy
| | - Björn Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Alfred H. J. Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Andrew M. and Jane M. Bursky Center of Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Peter Korsten
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Zehentmeier S, Lim VY, Ma Y, Fossati J, Ito T, Jiang Y, Tumanov AV, Lee HJ, Dillinger L, Kim J, Csomos K, Walter JE, Choi J, Pereira JP. Dysregulated stem cell niches and altered lymphocyte recirculation cause B and T cell lymphopenia in WHIM syndrome. Sci Immunol 2022; 7:eabo3170. [PMID: 36149943 PMCID: PMC9614684 DOI: 10.1126/sciimmunol.abo3170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gain-of-function (GOF) mutations in CXCR4 cause WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, characterized by infections, leukocyte retention in bone marrow (BM), and blood leukopenias. B lymphopenia is evident at early progenitor stages, yet why do CXCR4 GOF mutations that cause B (and T) lymphopenia remain obscure? Using a CXCR4 R334X GOF mouse model of WHIM syndrome, we showed that lymphopoiesis is reduced because of a dysregulated mesenchymal stem cell (MSC) transcriptome characterized by a switch from an adipogenic to an osteolineage-prone program with limited lymphopoietic activity. We identify lymphotoxin beta receptor (LTβR) as a critical pathway promoting interleukin-7 (IL-7) down-regulation in MSCs. Blocking LTβR or CXCR4 signaling restored IL-7 production and B cell development in WHIM mice. LTβR blocking also increased production of IL-7 and B cell activating factor (BAFF) in secondary lymphoid organs (SLOs), increasing B and T cell numbers in the periphery. These studies revealed that LTβR signaling in BM MSCs and SLO stromal cells limits the lymphocyte compartment size.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Takeshi Ito
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Yawen Jiang
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
| | - Lukas Dillinger
- X4 Pharmaceuticals Inc., Cambridge, MA, USA
- X4 Pharmaceuticals Inc., Vienna, Austria
| | - Jihyun Kim
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Krisztian Csomos
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Division Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jungmin Choi
- Department of Genetics and Yale Center for Genome Analysis, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, USA
| |
Collapse
|
10
|
Lee J, Liao H, Wang Q, Han J, Han J, Shin HE, Ge M, Park W, Li F. Exploration of nanozymes in viral diagnosis and therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210086. [PMID: 37324577 PMCID: PMC10191057 DOI: 10.1002/exp.20210086] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 06/15/2023]
Abstract
Nanozymes are nanomaterials with similar catalytic activities to natural enzymes. Compared with natural enzymes, they have numerous advantages, including higher physiochemical stability, versatility, and suitability for mass production. In the past decade, the synthesis of nanozymes and their catalytic mechanisms have advanced beyond the simple replacement of natural enzymes, allowing for fascinating applications in various fields such as biosensing and disease treatment. In particular, the exploration of nanozymes as powerful toolkits in diagnostic viral testing and antiviral therapy has attracted growing attention. It can address the great challenges faced by current natural enzyme-based viral testing technologies, such as high cost and storage difficulties. Therefore, nanozyme can provide a novel nanozyme-based antiviral therapeutic regime with broader availability and generalizability that are keys to fighting a pandemic such as COVID-19. Herein, we provide a timely review of the state-of-the-art nanozymes regarding their catalytic activities, as well as a focused discussion on recent research into the use of nanozymes in viral testing and therapy. The remaining challenges and future perspectives will also be outlined. Ultimately, this review will inform readers of the current knowledge of nanozymes and inspire more innovative studies to push forward the frontier of this field.
Collapse
Affiliation(s)
- Jiyoung Lee
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Hongwei Liao
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qiyue Wang
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jieun Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Jun‐Hyeok Han
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of Biological ScienceKorea UniversitySeoulRepublic of Korea
| | - Ha Eun Shin
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Minghua Ge
- Zhejiang Provincial People's Hospital HangzhouHangzhouP. R. China
| | - Wooram Park
- Department of Biomedical‐Chemical Engineering and BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
- Department of BiotechnologyThe Catholic University of KoreaBucheonGyeonggiRepublic of Korea
| | - Fangyuan Li
- Institute of PharmaceuticsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangP. R. China
- Hangzhou Institute of Innovative MedicineCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouP. R. China
| |
Collapse
|
11
|
Damianidou O, Theotokis P, Grigoriadis N, Petratos S. Novel contributors to B cell activation during inflammatory CNS demyelination; An oNGOing process. Int J Med Sci 2022; 19:164-174. [PMID: 34975310 PMCID: PMC8692119 DOI: 10.7150/ijms.66350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/11/2021] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the development of targeted immunotherapeutics for relapsing-remitting multiple sclerosis has been successfully orchestrated through the efficacious modulation of neuroinflammatory outcomes demonstrated in the experimental autoimmune encephalomyelitis (EAE) model. In this model, the focus of developing immunomodulatory therapeutics has been demonstrated through their effectiveness in modifying the pro-inflammatory Th1 and Th17-dependent neuropathological outcomes of demyelination, oligodendrocytopathy and axonal dystrophy. However, recent successful preclinical and clinical trials have advocated for the significance of B cell-dependent immunopathogenic responses and has led to the development of novel biologicals that target specific B cell phenotypes. In this context, a new molecule, B-cell activating factor (BAFF), has emerged as a positive regulator of B cell survival and differentiation functioning through various signaling pathways and potentiating the activity of various receptor complexes through pleiotropic means. One possible cognate receptor for BAFF includes the Nogo receptor (NgR) and its homologs, previously established as potent inhibitors of axonal regeneration during central nervous system (CNS) injury and disease. In this review we provide current evidence for BAFF-dependent signaling through the NgR multimeric complex, elucidating their association within the CNS compartment and underlying the importance of these potential pathogenic molecular regulators as possible therapeutic targets to limit relapse rates and potentially MS progression.
Collapse
Affiliation(s)
- Olympia Damianidou
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Paschalis Theotokis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Nikolaos Grigoriadis
- B' Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki 54636, Macedonia, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia
| |
Collapse
|
12
|
Zhang Y, Tian J, Xiao F, Zheng L, Zhu X, Wu L, Zhao C, Wang S, Rui K, Zou H, Lu L. B cell-activating factor and its targeted therapy in autoimmune diseases. Cytokine Growth Factor Rev 2021; 64:57-70. [DOI: 10.1016/j.cytogfr.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
13
|
Kuley R, Draves KE, Fuller DH, Giltiay NV, Clark EA, Giordano D. B cell activating factor (BAFF) from neutrophils and dendritic cells is required for protective B cell responses against Salmonella typhimurium infection. PLoS One 2021; 16:e0259158. [PMID: 34705890 PMCID: PMC8550399 DOI: 10.1371/journal.pone.0259158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Mice lacking B cells are more susceptible to S. typhimurium infection. How B cells contribute to protective immunity against Salmonella and what signals drive their activation are still unclear. Neutrophils (Nphs), monocytes (MOs), and dendritic cells (DCs) are involved in early immune responses to control the initial replication of S. typhimurium. These cells can produce B cell activating factor (BAFF) required for mature B cell survival and may help regulate B cell responses during Salmonella infection. Using BAFF reporter mice (BAFF-RFP+/-), we discovered that an i.p. infection with a virulent strain of S. typhimurium increased BAFF expression in splenic conventional DCs (cDC) and inflammatory Ly6Chi MOs/DCs four days post-infection. S. typhimurium infection induced the release of BAFF from Nphs, a decrease of BAFF-RFP expression and expansion of BAFF-RFP+ Nphs in the spleen and peritoneal cavity. After S. typhimurium infection, serum BAFF levels and immature and mature B cell subsets and plasma cells increased substantially. Conditional knockout (cKO) mice lacking BAFF in either Nphs or cDCs compared to control Bafffl/fl mice had reduced up-regulation of systemic BAFF levels and reduced expansion of mature and germinal center B cell subsets after infection. Importantly, the cKO mice lacking BAFF from either Nphs or cDCs had impaired induction of Salmonella-specific IgM Abs, and were more susceptible to S. typhimurium infection. Thus, Nphs and cDCs are major cellular sources of BAFF driving B cell responses, required for mounting optimal protective immunity against lethal Salmonella infection.
Collapse
Affiliation(s)
- Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (RK); (DG)
| | - Kevin E. Draves
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (RK); (DG)
| |
Collapse
|
14
|
Ren A, Sun J, Yin W, Westerberg LS, Miller H, Lee P, Candotti F, Guan F, Lei J, Gong Q, Chen Y, Liu C. Signaling networks in B cell development and related therapeutic strategies. J Leukoc Biol 2021; 111:877-891. [PMID: 34528729 DOI: 10.1002/jlb.2ru0221-088rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
B cells are essential for Ab production during humoral immune responses. From decades of B cell research, there is now a detailed understanding of B cell subsets, development, functions, and most importantly, signaling pathways. The complicated pathways in B cells and their interactions with each other are stage-dependent, varying with surface marker expression during B cell development. With the increasing understanding of B cell development and signaling pathways, the mechanisms underlying B cell related diseases are being unraveled as well, making it possible to provide more precise and effective treatments. In this review, we describe several essential and recently discovered signaling pathways in B cell development and take a look at newly developed therapeutic strategies targeted at B cell signaling.
Collapse
Affiliation(s)
- Anwen Ren
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Heather Miller
- The Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Yan Chen
- The Second Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Nakajima H, Murakami K. O-GlcNAcylation: Implications in normal and malignant hematopoiesis. Exp Hematol 2021; 101-102:16-24. [PMID: 34302904 DOI: 10.1016/j.exphem.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Posttranslational protein modification through addition of the O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) moiety to serine or threonine residues, termed O-GlcNAcylation, is a highly dynamic process conserved throughout eukaryotes. O-GlcNAcylation is reversibly catalyzed by a single pair of enzymes, O-GlcNAc transferase and O-GlcNAcase, and it acts as a fundamental regulator for a wide variety of biological processes including gene expression, cell cycle regulation, metabolism, stress response, cellular signaling, epigenetics, and proteostasis. O-GlcNAcylation is regulated by various intracellular or extracellular cues such as metabolic status, nutrient availability, and stress. Studies over decades have unveiled the profound biological significance of this unique protein modification in normal physiology and pathologic processes of diverse cell types or tissues. In hematopoiesis, recent studies have indicated the essential and pleiotropic roles of O-GlcNAcylation in differentiation, proliferation, and function of hematopoietic cells including T cells, B cells, myeloid progenitors, and hematopoietic stem and progenitor cells. Moreover, aberrant O-GlcNAcylation is implicated in the development of hematologic malignancies with dysregulated epigenetics, metabolism, and gene transcription. Thus, it is now recognized that O-GlcNAcylation is one of the key regulators of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Koichi Murakami
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
16
|
Ali J, Elahi SN, Ali A, Waseem H, Abid R, Mohamed MM. Unveiling the Potential Role of Nanozymes in Combating the COVID-19 Outbreak. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1328. [PMID: 34069866 PMCID: PMC8157354 DOI: 10.3390/nano11051328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/22/2022]
Abstract
The current coronavirus disease 2019 (COVID-19) outbreak is considered as one of the biggest public health challenges and medical emergencies of the century. A global health emergency demands an urgent development of rapid diagnostic tools and advanced therapeutics for the mitigation of COVID-19. To cope with the current crisis, nanotechnology offers a number of approaches based on abundance and versatile functioning. Despite major developments in early diagnostics and control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is still a need to find effective nanomaterials with low cost, high stability and easy use. Nanozymes are nanomaterials with innate enzyme-like characteristics and exhibit great potential for various biomedical applications such as disease diagnosis and anti-viral agents. Overall the potential and contribution of nanozymes in the fight against SARS-CoV-2 infection i.e., rapid detection, inhibition of the virus at various stages, and effective vaccine development strategies, is not fully explored. This paper discusses the utility and potential of nanozymes from the perspective of COVID-19. Moreover, future research directions and potential applications of nanozymes are highlighted to overcome the challenges related to early diagnosis and therapeutics development for the SARS-CoV-2. We anticipate the current perspective will play an effective role in the existing response to the COVID-19 crisis.
Collapse
Affiliation(s)
- Jafar Ali
- Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot 51310, Pakistan; (S.N.E.); (H.W.)
| | - Saira Naveed Elahi
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot 51310, Pakistan; (S.N.E.); (H.W.)
| | - Asghar Ali
- FMH College of Medicine & Dentistry, Lahore, Punjab 54000, Pakistan;
| | - Hassan Waseem
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot 51310, Pakistan; (S.N.E.); (H.W.)
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
| | - Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
| | - Mohamed M. Mohamed
- Civil and Environmental Engineering Department, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
17
|
Kwang D, Tjin G, Purton LE. Regulation of murine B lymphopoiesis by stromal cells. Immunol Rev 2021; 302:47-67. [PMID: 34002391 DOI: 10.1111/imr.12973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
B lymphocytes are crucial for the body's humoral immune response, secreting antibodies generated against foreign antigens to fight infection. Adult murine B lymphopoiesis is initiated in the bone marrow and additional maturation occurs in the spleen. In both these organs, B lymphopoiesis involves interactions with numerous different non-hematopoietic cells, also known as stromal or microenvironment cells, which provide migratory, maturation, and survival signals. A variety of conditional knockout and transgenic mouse models have been used to identify the roles of distinct microenvironment cell types in the regulation of B lymphopoiesis. These studies have revealed that mesenchymal lineage cells and endothelial cells comprise the non-hematopoietic microenvironment cell types that support B lymphopoiesis in the bone marrow. In the spleen, various types of stromal cells and endothelial cells contribute to B lymphocyte maturation. More recently, comprehensive single cell RNA-seq studies have also been used to identify clusters of stromal cell types in the bone marrow and spleen, which will aid in further identifying key regulators of B lymphopoiesis. Here, we review the different types of microenvironment cells and key extrinsic regulators that are known to be involved in the regulation of murine B lymphopoiesis in the bone marrow and spleen.
Collapse
Affiliation(s)
- Diannita Kwang
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Gavin Tjin
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia.,Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Vic., Australia
| |
Collapse
|
18
|
Li G, Zhang Q, Liu Z, Shen H, Zhu Y, Zhou Z, Ding W, Han S, Zhou J, Ou R, Luo M, Liu S. TriBAFF-CAR-T cells eliminate B-cell malignancies with BAFFR-expression and CD19 antigen loss. Cancer Cell Int 2021; 21:223. [PMID: 33865370 PMCID: PMC8052726 DOI: 10.1186/s12935-021-01923-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background To investigate the effect of TriBAFF-CAR-T cells on hematological tumor cells. Methods TriBAFF-CAR-T and CD19-CAR-T cells were co-cultured with BAFFR-bearing B-cell malignancies at different effector/target ratios to evaluate the anti-tumor effects. In vivo, TriBAFF-CAR-T and CD19-CAR-T cells were intravenously injected into Raji-luciferase xenograft mice. CD19 antigens losing lymphoblasts was simulated by Raji knocking out CD19 (CD19KO) to investigate the effect of TriBAFF-CAR-T cells on CD19KO Raji. Results Both TriBAFF-CAR-T and CD19-CAR-T cells significantly induced the lysis of Raji, BALL-1, and Jeko-1. Moreover, when CD19-CAR-T cells specifically caused the lysis of K562 with overexpressed CD19, the lethal effect of TriBAFF-CAR-T cells was also specific for BAFFR-bearing K562 with increasing levels of interleukin-2 and INF-γ. The TriBAFF-CAR-T have the same effect with CD19-CAR-T cells in treating Raji xenofraft mice. TriBAFF-CAR-T cells also have great effect in CD19KO Raji cells. Conclusions In this study, we successfully constructed novel TriBAFF-CAR-T cells to eliminate BAFFR-bearing and CD19 antigen loss in hematological tumor cells.
Collapse
Affiliation(s)
- Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China.,Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Zhao Zhou
- Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China
| | - Wen Ding
- Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, 210002, China
| | - Jie Zhou
- Department of Hematology, People's Hospital of Deyang City, Deyang, Sichuan Province, 618000, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China. .,Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, Guangdong Province, 510317, China.
| | - Min Luo
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China. .,Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China. .,Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, Guangdong Province, 510317, China.
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China. .,Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
19
|
Rönnberg C, Lugaajju A, Nyman A, Hammar U, Bottai M, Lautenbach MJ, Sundling C, Kironde F, Persson KEM. A longitudinal study of plasma BAFF levels in mothers and their infants in Uganda, and correlations with subsets of B cells. PLoS One 2021; 16:e0245431. [PMID: 33465125 PMCID: PMC7815132 DOI: 10.1371/journal.pone.0245431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/03/2021] [Indexed: 01/05/2023] Open
Abstract
Malaria is a potentially life-threatening disease with approximately half of the world’s population at risk. Young children and pregnant women are hit hardest by the disease. B cells and antibodies are part of an adaptive immune response protecting individuals continuously exposed to the parasite. An infection with Plasmodium falciparum can cause dysregulation of B cell homeostasis, while antibodies are known to be key in controlling symptoms and parasitemia. BAFF is an instrumental cytokine for the development and maintenance of B cells. Pregnancy alters the immune status and renders previously clinically immune women at risk of severe malaria, potentially due to altered B cell responses associated with changes in BAFF levels. In this prospective study, we investigated the levels of BAFF in a malaria-endemic area in mothers and their infants from birth up to 9 months. We found that BAFF-levels are significantly higher in infants than in mothers. BAFF is highest in cord blood and then drops rapidly, but remains significantly higher in infants compared to mothers even at 9 months of age. We further correlated BAFF levels to P. falciparum-specific antibody levels and B cell frequencies and found a negative correlation between BAFF and both P. falciparum-specific and total proportions of IgG+ memory B cells, as well as CD27− memory B cells, indicating that exposure to both malaria and other diseases affect the development of B-cell memory and that BAFF plays a part in this. In conclusion, we have provided new information on how natural immunity against malaria is formed.
Collapse
Affiliation(s)
- Caroline Rönnberg
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Infectious Diseases, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Allan Lugaajju
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Makerere University, Kampala, Uganda
| | - Anna Nyman
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Ulf Hammar
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Fred Kironde
- Makerere University, Kampala, Uganda
- Habib Medical School, Islamic University in Uganda (IUIU), Mbale, Uganda
| | - Kristina E. M. Persson
- Department of Laboratory Medicine, Lund University, Skåne University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
20
|
Yamazaki T, Biswas M, Kosugi K, Nagashima M, Inui M, Tomono S, Takagi H, Ichimonji I, Nagaoka F, Ainai A, Hasegawa H, Chiba J, Akashi-Takamura S. A Novel Gene Delivery Vector of Agonistic Anti-Radioprotective 105 Expressed on Cell Membranes Shows Adjuvant Effect for DNA Immunization Against Influenza. Front Immunol 2020; 11:606518. [PMID: 33414788 PMCID: PMC7783388 DOI: 10.3389/fimmu.2020.606518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/18/2020] [Indexed: 11/17/2022] Open
Abstract
Radioprotective 105 (RP105) (also termed CD180) is an orphan and unconventional Toll-like receptor (TLR) that lacks an intracellular signaling domain. The agonistic anti-RP105 monoclonal antibody (mAb) can cross-link RP105 on B cells, resulting in the proliferation and activation of B cells. Anti-RP105 mAb also has a potent adjuvant effect, providing higher levels of antigen-specific antibodies compared to alum. However, adjuvanticity is required for the covalent link between anti-RP105 mAb and the antigen. This is a possible obstacle to immunization due to the link between anti-RP105 mAb and some antigens, especially multi-transmembrane proteins. We have previously succeeded in inducing rapid and potent recombinant mAbs in mice using antibody gene-based delivery. To simplify the covalent link between anti-RP105 mAb and antigens, we generated genetic constructs of recombinant anti-RP105 mAb (αRP105) bound to the transmembrane domain of the IgG-B cell receptor (TM) (αRP105-TM), which could enable the anti-RP105 mAb to link the antigen via the cell membrane. We confirmed the expression of αRP105-TM and the antigen hemagglutinin, which is a membrane protein of the influenza virus, on the same cell. We also found that αRP105-TM could activate splenic B cells, including both mature and immature cells, depending on the cell surface RP105 in vitro. To evaluate the adjuvanticity of αRP105-TM, we conducted DNA immunization in mice with the plasmids encoding αRP105-TM and hemagglutinin, followed by challenge with an infection of a lethal dose of an influenza virus. We then obtained partially but significantly hemagglutinin-specific antibodies and observed protective effects against a lethal dose of influenza virus infection. The current αRP105-TM might provide adjuvanticity for a vaccine via a simple preparation of the expression plasmids encoding αRP105-TM and of that encoding the target antigen.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Proliferation/drug effects
- Coculture Techniques
- Gene Transfer Techniques
- Genetic Vectors
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/pharmacology
- Humans
- Hybridomas
- Immunization
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza Vaccines/pharmacology
- Lymphocyte Activation/drug effects
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Mice, Knockout
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/virology
- Rats
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Spleen/drug effects
- Spleen/immunology
- Spleen/metabolism
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Mrityunjoy Biswas
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Kouyu Kosugi
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Maria Nagashima
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Masanori Inui
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Susumu Tomono
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Fumiaki Nagaoka
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Joe Chiba
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Aichi, Japan
| |
Collapse
|
21
|
Steines L, Poth H, Herrmann M, Schuster A, Banas B, Bergler T. B Cell Activating Factor (BAFF) Is Required for the Development of Intra-Renal Tertiary Lymphoid Organs in Experimental Kidney Transplantation in Rats. Int J Mol Sci 2020; 21:ijms21218045. [PMID: 33126753 PMCID: PMC7662293 DOI: 10.3390/ijms21218045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022] Open
Abstract
Intra-renal tertiary lymphoid organs (TLOs) are associated with worsened outcome in kidney transplantation (Ktx). We used an anti-BAFF (B cell activating factor) intervention to investigate whether BAFF is required for TLO formation in a full MHC-mismatch Ktx model in rats. Rats received either therapeutic immunosuppression (no rejection, NR) or subtherapeutic immunosuppression (chronic rejection, CR) and were sacrificed on d56. One group additionally received an anti-BAFF antibody (CR + AB). Intra-renal T (CD3+) and B (CD20+) cells, their proliferation (Ki67+), and IgG+ plasma cells were analyzed by immunofluorescence microscopy. Formation of T and B cell zones and TLOs was assessed. Intra-renal expression of TLO-promoting factors, molecules of T:B crosstalk, and B cell differentiation was analyzed by qPCR. Intra-renal B and T cell zones and TLOs were detected in CR and were associated with elevated intra-renal mRNA expression of TLO-promoting factors, including CXCL13, CCL19, lymphotoxin-β, and BAFF. Intra-renal plasma cells were also elevated in CR. Anti-BAFF treatment significantly decreased intra-renal B cell zones and TLO, as well as intra-renal B cell-derived TLO-promoting factors and B cell differentiation markers. We conclude that BAFF-dependent intra-renal B cells promote TLO formation and advance local adaptive alloimmune responses in chronic rejection.
Collapse
Affiliation(s)
- Louisa Steines
- Correspondence: ; Tel.: +49-941-9447301; Fax: +49-941-9447302
| | | | | | | | | | | |
Collapse
|
22
|
Steines L, Poth H, Schuster A, Geissler EK, Amann K, Banas B, Bergler T. Anti-BAFF Treatment Interferes With Humoral Responses in a Model of Renal Transplantation in Rats. Transplantation 2020; 104:e16-e22. [PMID: 31609901 DOI: 10.1097/tp.0000000000002992] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND B-cell-activating factor (BAFF) is associated with donor-specific antibodies (DSA) and poorer outcomes after renal transplantation (RTx). We examined the effects of anti-BAFF treatment on B cells, expression of costimulatory molecules and cytokines, germinal centers (GCs), and DSA formation in an RTx model in rats. METHODS Anti-BAFF antibody was injected on days 3, 17, 31, and 45 after allogeneic RTx. Rats received reduced dose cyclosporine A for 28 or 56 days to allow chronic rejection and DSA formation. Leukocytes, B-cell subsets, and DSA were measured using flow cytometry; expression of cytokines and costimulatory molecules was measured by quantitative polymerase chain reaction, and GCs and T follicular helper were assessed using immunohistochemistry. Rejection was evaluated by a nephropathologist. RESULTS Anti-BAFF treatment reduced the frequency of B cells in allografts and spleen. Naive B cells were strongly reduced by anti-BAFF treatment in all compartments. Messenger RNA expression of interleukin-6 and the costimulatory molecules CD40 and inducible T cell costimulator ligand was significantly reduced in anti-BAFF-treated rats. GC area was smaller and plasmablasts/plasma cell numbers lower in anti-BAFF-treated rats, which was reflected by less DSA in certain IgG subclasses. CONCLUSIONS Anti-BAFF treatment interferes with humoral responses at multiple levels in this model of allogeneic RTx.
Collapse
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Fetter T, Wenzel J. Cutaneous lupus erythematosus: The impact of self-amplifying innate and adaptive immune responses and future prospects of targeted therapies. Exp Dermatol 2020; 29:1123-1132. [PMID: 32633821 DOI: 10.1111/exd.14146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune disease encompassing a broad spectrum of skin conditions including localized plaques or widespread lesions, which may be accompanied by systemic involvement (systemic lupus erythematosus (SLE)). The disease is characterized by necroptotic keratinocytes and a cytotoxic immune cell infiltrate at the dermo-epidermal junction (DEJ), orchestrated by interferon (IFN)-regulated proinflammatory cytokines. Molecular analyses revealed a strong upregulation of innate and adaptive immune pathways in lesional skin including DNA-recognition pathways, chemokine signalling, antigen presentation and B- and T-cell activation, which are believed to interact in a complex self-amplifying network. Concerning adaptive immune signalling, particularly B cells are currently being studied as there is growing evidence for additional abilities besides autoantibody expression in skin autoimmunity. These detailed insights have paved the way for the development of drugs targeting crucial molecules of pathogenic immune cells and pathways. Moreover, they forwarded the understanding of distinct molecular mechanisms within CLE subtypes, which might enable a more mechanism-directed, stratified pharmacotherapy of LE skin lesions in the future.
Collapse
Affiliation(s)
- Tanja Fetter
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
24
|
Alturaiki W. The roles of B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) in allergic asthma. Immunol Lett 2020; 225:25-30. [PMID: 32522667 DOI: 10.1016/j.imlet.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Allergic asthma, which is the most common type of asthma, is mediated by the IgE response, and B cells are key drivers of allergic inflammation in the lungs. B cell activation factor (BAFF) and proliferation inducing ligand (APRIL) are members of the TNF superfamily. BAFF and APRIL interact with three receptors, namely the B cell activation factor receptor (BAFF-r), B cell maturation antigen (BCMA), and transmembrane activator; calcium modulator; and cyclophilin ligand interactor (TACI). The interaction of BAFF and APRIL with their receptors induces B cell activation, differentiation, and antibody production. BAFF and APRIL are produced by airway epithelial cells during the response to allergens or infectious agents, and have shown to induce local IgE production, thus establishing allergic inflammation in the airways. BAFF can maintain in inflamed airways during infection and can inhibit regulatory T cells (Tregs), thereby promoting allergic inflammation in the airways. This review aims to outline current knowledge about BAFF/APRIL systems in humans as well as in murine models of allergic asthma. The precise role of BAFF and APRIL and their receptors in allergic asthma remains unclear. Therefore, further studies are required to identify and elucidate their roles in enhancing IgE production and activating immune cells that drive the Th2 effector response and initiate allergic inflammation in asthma. Targeting BAFF/APRIL or their cognate receptors may offer a novel therapeutic approach in asthma treatment.
Collapse
Affiliation(s)
- Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia.
| |
Collapse
|
25
|
Chen YT, Kung JT. Rapid Death of Follicular B Cells and Burkitt Lymphoma Cells Effectuated by Xbp1s. THE JOURNAL OF IMMUNOLOGY 2020; 204:3236-3247. [PMID: 32376649 DOI: 10.4049/jimmunol.2000172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
BCR-mediated tonic signaling is an indispensable requirement for the survival of follicular B (FOB) cells and Burkitt lymphoma (BL) cells. FOB cells of the I-A12% mutant mouse express unfolded protein response and are extremely short lived. Among the myriad molecules activated by unfolded protein response in I-A12% B cells, Xbp1s singularly "hijacked" p110 from p85:p110 heterodimeric PI3K, thereby abating BCR tonic signaling, resulting in their extremely short lifespan. Long-lived normal FOB cells became short lived upon ectopic Xbp1s expression. The proapoptotic Xbp1s role in FOB cells starkly contrasts with its antithetical prosurvival function in plasma cells. Also, tonic signaling and clonal expansion, two important functions mediated by the same BCR, operate in independent and distinct manners. Furthermore, concerning the development of new therapeutic treatment of drug-refractory BL patients, our finding of Xbp1s-mediated rapid death of BL cells brings forth a conceptual advancement based on blocking PI3K heterodimer formation rather than inhibition of PI3K enzyme activity.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - John T Kung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
26
|
Caraccio C, Krishna S, Phillips DJ, Schürch CM. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front Immunol 2020; 11:501. [PMID: 32391000 PMCID: PMC7193016 DOI: 10.3389/fimmu.2020.00501] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematological neoplasm in adults, comprising 1.8% of all cancers. With an annual incidence of ~30,770 cases in the United States, MM has a high mortality rate, leading to 12,770 deaths per year. MM is a genetically complex, highly heterogeneous malignancy, with significant inter- and intra-patient clonal variability. Recent years have witnessed dramatic improvements in the diagnostics, classification, and treatment of MM. However, patients with high-risk disease have not yet benefited from therapeutic advances. High-risk patients are often primary refractory to treatment or relapse early, ultimately resulting in progression toward aggressive end-stage MM, with associated extramedullary disease or plasma cell leukemia. Therefore, novel treatment modalities are needed to improve the outcomes of these patients. Bispecific antibodies (BsAbs) are immunotherapeutics that simultaneously target and thereby redirect effector immune cells to tumor cells. BsAbs have shown high efficacy in B cell malignancies, including refractory/relapsed acute lymphoblastic leukemia. Various BsAbs targeting MM-specific antigens such as B cell maturation antigen (BCMA), CD38, and CD138 are currently in pre-clinical and clinical development, with promising results. In this review, we outline these advances, focusing on BsAb drugs, their targets, and their potential to improve survival, especially for high-risk MM patients. In combination with current treatment strategies, BsAbs may pave the way toward a cure for MM.
Collapse
|
27
|
Giordano D, Kuley R, Draves KE, Roe K, Holder U, Giltiay NV, Clark EA. BAFF Produced by Neutrophils and Dendritic Cells Is Regulated Differently and Has Distinct Roles in Antibody Responses and Protective Immunity against West Nile Virus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1508-1520. [PMID: 32034064 PMCID: PMC7357242 DOI: 10.4049/jimmunol.1901120] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
B cell activating factor (BAFF) is essential for B cells to develop and respond to Ags. Dysregulation of BAFF contributes to the development of some autoimmune diseases and malignancies. Little is known about when, where, and how BAFF is produced in vivo and about which BAFF-producing cells contribute to B cell responses. To better understand BAFF functions, we created BAFF reporter (BAFF-RFP) mice and Baff floxed (Bafffl/fl ) mice. Splenic and bone marrow neutrophils (Nphs) from BAFF-RFP mice expressed the highest constitutive levels of BAFF; other myeloid subsets, including conventional dendritic cells (cDCs) and monocyte (MO) subsets, expressed lower levels. Treatment of BAFF-RFP mice with polyinosinic:polycytidylic acid increased BAFF expression in splenic Ly6Chi inflammatory MOs, CD11bhi activated NK subset, and in bone marrow myeloid precursors. Postinfection with West Nile virus (WNV), BAFF increased in CD8- cDCs and Nphs, and BAFF+ CD11bhi NK cells expanded in draining lymph nodes. The cell- and tissue-specific increases in BAFF expression were dependent on type I IFN signaling. MAVS also was required or contributed to BAFF expression in dendritic cell and MO subsets, respectively. Mice with deletion of Baff in either cDCs or Nphs had reduced Ab responses after NP-Ficoll immunization; thus, BAFF produced by both cDCs and Nphs contributes to T cell-independent Ab responses. Conversely, mice with a cDC Baff deficiency had increased mortality after WNV infection and decreased WNV-specific IgG and neutralizing Ab responses. BAFF produced by Nphs and cDCs is regulated differently and has key roles in Ab responses and protective immunity.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Runa Kuley
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kevin E Draves
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Kelsey Roe
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Ursula Holder
- Department of Immunology, University of Washington, Seattle, WA 98109; and
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA 98109; and
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
28
|
Hong R, Lai N, Xiong E, Ouchida R, Sun J, Zhou Y, Tang Y, Hikida M, Tsubata T, Tagawa M, Wang Y, Wang JY. Distinct roles of BCNP1 in B-cell development and activation. Int Immunol 2020; 32:17-26. [PMID: 31412363 DOI: 10.1093/intimm/dxz055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/11/2019] [Indexed: 11/13/2022] Open
Abstract
B-cell novel protein 1 (BCNP1) has recently been identified as a new B-cell receptor (BCR) signaling molecule but its physiological function remains unknown. Here, we demonstrate that mice deficient in BCNP1 exhibit impaired B-cell maturation and a reduction of B-1a cells. BCNP1-deficient spleen B cells show enhanced survival, proliferation and Ca2+ influx in response to BCR cross-linking as compared with wild-type spleen B cells. Consistently, mutant B cells show elevated phosphorylation of SYK, B-cell linker protein (BLNK) and PLCγ2 upon BCR cross-linking. In vivo, BCNP1-deficient mice exhibit enhanced humoral immune responses to T-independent and T-dependent antigens. Moreover, aged mutant mice contain elevated levels of serum IgM and IgG3 antibodies and exhibit polyclonal and monoclonal B-cell expansion in lymphoid organs. These results reveal distinct roles for BCNP1 in B-cell development, activation and homeostasis.
Collapse
Affiliation(s)
- Rongjian Hong
- Department of Immunology, School of Basic Medical Sciences.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Nannan Lai
- Department of Immunology, School of Basic Medical Sciences
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences
| | - Rika Ouchida
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jiping Sun
- Department of Immunology, School of Basic Medical Sciences
| | - Yang Zhou
- Department of Immunology, School of Basic Medical Sciences.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yue Tang
- Department of Immunology, School of Basic Medical Sciences
| | - Masaki Hikida
- Faculty of Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
29
|
|
30
|
Cao Y, Lu G, Chen X, Chen X, Guo N, Li W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF‑κB signaling pathway in glomerular mesangial cells. Mol Med Rep 2019; 21:795-805. [PMID: 31974601 PMCID: PMC6947818 DOI: 10.3892/mmr.2019.10870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 10/30/2019] [Indexed: 01/28/2023] Open
Abstract
The aim of the present study was to investigate the involvement of B cell-activating factor (BAFF) in the pathogenesis of IgA nephropathy by activating the tumor necrosis factor receptor-associated factor 6 (TRAF6)/NF-κB signaling pathway in glomerular mesangial cells. For the clinical analysis, blood, urine and kidney tissue samples were collected from 58 patients diagnosed with primary IgA nephropathy by renal biopsy. For the in vitro study, glomerular mesangial cells were divided into five groups: Control (con)-short hairpin RNA (shRNA) (control group); con-shRNA + BAFF (20 ng/ml); con-shRNA + BAFF + BAFF-RFc chimera protein (500 µg/ml); TRAF6-shRNA; and TRAF6-shRNA + BAFF (20 ng/ml). For the in vivo experiments, 60 Sprague-Dawley rats were randomly divided into four groups: Con-small interfering RNA (siRNA) (control group); con-siRNA + IgA (IgA nephropathy group), BAFF-RFc chimera protein (2 µg/ml) + IgA, and TRAF6-siRNA (0.2 µM) + IgA. Reverse transcription-quantitative PCR was performed to evaluate the mRNA expression levels of TRAF6, connective tissue growth factor (CTGF), fibronectin (FN) and NF-κBP65. Western blot analysis was used to detect the protein expression levels of TRAF6, FN, CTGF and phosphorylated-NF-κBP65 in glomerular mesangial cells and kidney tissues. The results revealed that plasma BAFF levels were positively correlated with the severity of pathological damage in patients with IgA nephropathy. In vitro, BAFF induced the mRNA and protein expression of TRAF6, CTGF, FN and NF-κBP65 in glomerular mesangial cells. After the BAFF-RFc chimera protein was added to inhibit the binding of BAFF and BAFF-receptor (-R), this effect was reduced. In vivo, inhibition of the effects of BAFF via injection with the BAFF-R Fc chimera protein reduced kidney damage in rats suffering from IgA nephropathy. The effect on the expression of signaling pathway-associated proteins was also alleviated. In conclusion, BAFF enhanced the expression of fibroblast factors in the kidneys by activating the TRAF6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingjie Cao
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaolan Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xu Chen
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Naifeng Guo
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Wenwen Li
- Department of Nephrology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
31
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
32
|
Xie C, Quan R, Wang L, Chen C, Yan W, Fu Y. Diagnostic value of fecal B cell activating factor in patients with abdominal discomfort. Clin Exp Immunol 2019; 198:131-140. [PMID: 31314927 PMCID: PMC6797896 DOI: 10.1111/cei.13350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
Fecal calprotectin has successfully been widely recommended as a sensitive biomarker of inflammatory bowel diseases (IBD). Recently, we have identified an excellent new fecal biomarker, B cell activating factor (BAFF), as being as effective as fecal calprotectin for diagnosing intestinal inflammation. In this study, a total of 230 patients with abdominal discomfort were prospectively enrolled and fecal samples were collected within 24 h before the endoscopic examinations. We show that fecal BAFF levels were significantly higher in patients with ulcerative colitis (median = 1549 pg/g, P < 0·0001), Crohn's disease (median = 735 pg/g, P < 0·0001), gastric cancer (median = 267 pg/g, P < 0·0001) and colorectal cancer (median = 533 pg/g, P < 0·0001) than those in healthy groups (median = 61 pg/g), while the values of which in patients with gastric polyps, colorectal polyps, esophagitis/gastritis/duodenitis and peptic ulcer were in the range of healthy individuals (P > 0·05). An optimal cut-off value at 219·5 pg/g of fecal BAFF produced sensitivity, specificity, positive predictive and negative predictive values of 85, 91, 84 and 92%, respectively, for IBD or carcinoma. Our results therefore indicate a potential role for fecal BAFF as a sensitive screening parameter for IBD and gastrointestinal carcinoma, as well a useful tool to select patients with abdominal discomfort for further endoscopic examinations.
Collapse
Affiliation(s)
- C. Xie
- Division of GastroenterologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - R. Quan
- Division of GastroenterologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - L. Wang
- Division of GastroenterologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - C. Chen
- Division of GastroenterologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - W. Yan
- Department of GastroenterologyTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Y. Fu
- Division of GastroenterologyUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
33
|
Benitez A, Torralba K, Ngo M, Salto LM, Choi KS, De Vera ME, Payne KJ. Belimumab alters transitional B-cell subset proportions in patients with stable systemic lupus erythematosus. Lupus 2019; 28:1337-1343. [PMID: 31423896 DOI: 10.1177/0961203319869468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We evaluated the effects of the B-cell activating factor (BAFF)-targeting antibody Belimumab on human nonmemory B-cell pools. Human B-cell pools were identified using surface markers adapted from mouse studies that specifically assessed reductions in immature B cells due to BAFF depletion. Patients with systemic lupus erythematosus (SLE) have high levels of both BAFF and immature B cells. Mechanistic mouse studies provide a framework for understanding human responses to therapies that target B cells. METHODS Peripheral blood mononuclear cells were isolated from healthy donors and SLE patients on Belimumab or standard-of-care therapy (SCT). Cells were stained for flow cytometry to identify B-cell subsets based on CD21/CD24. Differences in subset proportions were determined by one-way ANOVA and Tukey's post hoc test. RESULTS Patients treated with Belimumab show alterations in the nonmemory B-cell pool characterized by a decrease in the Transitional 2 (T2) subset (p = 0.002), and an increase in the proportion of Transitional 1 (T1) cells (p = 0.005) as compared with healthy donors and SCT patients. The naïve B-cell compartment showed no significant differences between the groups (p = 0.293). CONCLUSION Using a translational approach, we show that Belimumab-mediated BAFF depletion reduces the T2 subset in patients, similar to observations in mouse models with BAFF depletion.
Collapse
Affiliation(s)
- A Benitez
- Transplantation Institute of Loma Linda University, Loma Linda, CA, USA.,Rheumatology Division of Loma Linda University, Loma Linda, CA, USA
| | - K Torralba
- Rheumatology Division of Loma Linda University, Loma Linda, CA, USA
| | - M Ngo
- Rheumatology Division of Loma Linda University, Loma Linda, CA, USA
| | - L M Salto
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - K S Choi
- Rheumatology Division of Loma Linda University, Loma Linda, CA, USA
| | - M E De Vera
- Transplantation Institute of Loma Linda University, Loma Linda, CA, USA
| | - K J Payne
- Rheumatology Division of Loma Linda University, Loma Linda, CA, USA.,Department of Basic Sciences, School of Medicine, Loma Linda, CA, USA.,Department of Pathology and Human Anatomy, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
34
|
Regola F, Piantoni S, Lowin T, Archetti S, Reggia R, Kumar R, Franceschini F, Airò P, Tincani A, Andreoli L, Pongratz G. Association Between Changes in BLyS Levels and the Composition of B and T Cell Compartments in Patients With Refractory Systemic Lupus Erythematosus Treated With Belimumab. Front Pharmacol 2019; 10:433. [PMID: 31105569 PMCID: PMC6494924 DOI: 10.3389/fphar.2019.00433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Introduction: Belimumab is a monoclonal antibody against soluble BLyS used for treatment of refractory Systemic Lupus Erythematosus (SLE). Although B cells are the main target of this therapy, a BLyS-dependent T cell activation pathway has also been demonstrated. The aim of the study is to analyze B and T cells phenotype modifications in a cohort of SLE patients treated with belimumab in correlation with serum BLyS levels. Materials and Methods: Fourteen SLE patients were enrolled in the study. Lymphocyte immunophenotyping by flow cytometry and determination of serum BLyS levels by high sensitivity ELISA were performed before the first infusion of belimumab, after 6 and 12 months of treatment. Sex and age-matched healthy controls were enrolled for the comparisons. Results: Baseline number of total B cells, especially switched memory B cells, were lower in SLE patients compared to control subjects. After 6 months of treatment, the total number of B cells, particularly, naive and transitional B cells, was significantly reduced in correlation with the reduction of BLyS levels. No significant association was found between baseline counts of B cells and reduction of SLEDAI-2K over time. In terms of response prediction, a significant association between SLEDAI-2K improvement at 12 months and the decrease of total number of B cells within the first 6 months of therapy was observed. Concerning the T cell compartment, the baseline percentage number of CD8+ effector memory was associated with SLEDAI-2K at baseline and with its improvement after 12 months of therapy. Furthermore, T cell lymphopenia and low number of circulating recent thymic emigrants were also observed compared to control subjects measured at baseline. Discussion: The effects of belimumab on B cell subpopulations could be explained by the direct blockage of soluble BLyS, while the mild effects on T cells might be explained indirectly by the reduction of disease activity by means of therapy. B cell immunophenotyping during belimumab might be useful for monitoring the response to treatment.
Collapse
Affiliation(s)
- Francesca Regola
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Silvia Piantoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Torsten Lowin
- Department of Rheumatology and Hiller Research Centre for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Silvia Archetti
- Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Rossella Reggia
- Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Rajesh Kumar
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Franco Franceschini
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Paolo Airò
- Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Angela Tincani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Laura Andreoli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Rheumatology and Clinical Immunology Unit, ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Georg Pongratz
- Department of Rheumatology and Hiller Research Centre for Rheumatology, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Hong R, Lai N, Ouchida R, Xiong E, Zhou Y, Min Q, Liu J, Tang Y, Hikida M, Tsubata T, Wang Y, Wang JY. The B cell novel protein 1 (BCNP1) regulates BCR signaling and B cell apoptosis. Eur J Immunol 2019; 49:911-917. [PMID: 30888050 DOI: 10.1002/eji.201847985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/27/2019] [Accepted: 03/14/2019] [Indexed: 01/28/2023]
Abstract
The BCR plays a central role in B cell development, survival, activation, and differentiation. We have identified the B cell novel protein 1 (BCNP1) as a new regulator of BCR signaling. BCNP1 contains a pleckstrin homology domain, three proline-rich motifs, and a potential SH2 binding site, and is predominantly expressed by B cells. We found that BCNP1 overexpression in WEHI231 immature B cells potentiated α-IgM-induced apoptosis. Conversely, BCNP1-deficient WEHI231 cells, generated by CRISPR-Cas9-mediated genome editing, exhibited reduced apoptosis after BCR crosslinking. Biochemical analyses revealed that BCNP1 physically interacted with the B cell linker protein (BLNK), Grb2, and PLCγ2. Moreover, absence of BCNP1 resulted in accelerated dephosphorylation of BLNK, reduced phosphorylation of SYK and PLCγ2, and decreased Ca2+ influx after BCR crosslinking. These results demonstrate that BCNP1 promotes BCR signaling by modulating the phosphorylation of BLNK, SYK, and PLCγ2.
Collapse
Affiliation(s)
- Rongjian Hong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Nannan Lai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rika Ouchida
- Division of Mucosal Immunology, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ermeng Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Zhou
- Division of Life Sciences and Medicine, Department of Traditional Chinese Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Qing Min
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Tang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Masaki Hikida
- Faculty of Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.,Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
36
|
Li J, Luo Y, Wang X, Feng G. Regulatory B cells and advances in transplantation. J Leukoc Biol 2018; 105:657-668. [PMID: 30548970 DOI: 10.1002/jlb.5ru0518-199r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The effects of B cell subsets with regulatory activity on the immune response to an allograft have evoked increasing interest. Here, we summarize the function and signaling of regulatory B cells (Bregs) and their potential effects on transplantation. These cells are able to suppress the immune system directly via ligand-receptor interactions and indirectly by secretion of immunosuppressive cytokines, particularly IL-10. In experimental animal models, the extensively studied IL-10-producing B cells have shown unique therapeutic advantages in the transplant field. In addition, adoptive transfer of B cell subsets with regulatory activity may reveal a new approach to prolonging allograft survival. Recent clinical observations on currently available therapies targeting B cells have revealed that Bregs play an important role in immune tolerance and that these cells are expected to become a new target of immunotherapy for transplant-related diseases.
Collapse
Affiliation(s)
- Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Luo
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Yang Y, Kong S, Zhang Y, Melo-Cardenas J, Gao B, Zhang Y, Zhang DD, Zhang B, Song J, Thorp E, Zhang K, Zhang J, Fang D. The endoplasmic reticulum-resident E3 ubiquitin ligase Hrd1 controls a critical checkpoint in B cell development in mice. J Biol Chem 2018; 293:12934-12944. [PMID: 29907570 DOI: 10.1074/jbc.ra117.001267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/21/2018] [Indexed: 11/06/2022] Open
Abstract
Humoral immunity involves multiple checkpoints that occur in B cell development, maturation, and activation. The pre-B-cell receptor (pre-BCR) is expressed following the productive recombination of the immunoglobulin heavy-chain gene, and sSignalsing through the pre-BCR are required for the differentiation of pre-B cells into immature B cells. However, the molecular mechanisms controlling the pre-BCR expression and signaling strength remain undefined. Herein, we probed the role of the endoplasmic reticulum-associated, stress-activated E3 ubiquitin ligase HMG-CoA reductase degradation 1 (Hrd1) in B cell differentiation. Using mice with a specific Hrd1 deletion in pro-B cells and subsequent B cell developmental stages, we showed that the E3 ubiquitin ligase Hrd1 governs a critical checkpoint during B cell development. We observed that Hrd1 is required for degradation of the pre-BCR complex during the early stage of B cell development. As a consequence, loss of Hrd1 in the B cell lineage resulted in increased pre-BCR expression levels and a developmental defect in the transition from large to small pre-B cells. This defect, in turn, resulted in reduced fewer mature B cells in bone marrow and peripheral lymphoid organs. Our results revealed a novel critical role of Hrd1 in controlling a critical checkpoint in B cell-mediated immunity and suggest that Hrd1 may functioning as an E3 ubiquitin ligase of the pre-BCR complex.
Collapse
Affiliation(s)
- Yi Yang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Sinyi Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; Department of Otolaryngology, Head and Neck Surgery of Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, China
| | - Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona 85721
| | - Bin Zhang
- Department of Medicine, Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Jianxun Song
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 16801
| | - Edward Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Kezhong Zhang
- Department of Immunology and Microbiology, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611.
| |
Collapse
|
38
|
Tafalla C, Granja AG. Novel Insights on the Regulation of B Cell Functionality by Members of the Tumor Necrosis Factor Superfamily in Jawed Fish. Front Immunol 2018; 9:1285. [PMID: 29930556 PMCID: PMC6001812 DOI: 10.3389/fimmu.2018.01285] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Most ligands and receptors from the tumor necrosis factor (TNF) superfamily play very important roles in the immune system. In particular, many of these molecules are essential in the regulation of B cell biology and B cell-mediated immune responses. Hence, in mammals, it is known that many TNF family members play a key role on B cell development, maturation, homeostasis, activation, and differentiation, also influencing the ability of B cells to present antigens or act as regulators of immune responses. Evolutionarily, jawed fish (including cartilaginous and bony fish) constitute the first animal group in which an adaptive immune response based on B cells and immunoglobulins is present. However, until recently, not much was known about the expression of TNF ligands and receptors in these species. The sequences of many members of the TNF superfamily have been recently identified in different species of jawed fish, thus allowing posterior analysis on the role that these ligands and receptors have on B cell functionality. In this review, we summarize the current knowledge on the impact that the TNF family members have in different aspects of B cell functionality in fish, also providing an in depth comparison with functional aspects of TNF members in mammals, that will permit a further understanding of how B cell functionality is regulated in these distant animal groups.
Collapse
Affiliation(s)
| | - Aitor G Granja
- Animal Health Research Center (CISA-INIA), Madrid, Spain
| |
Collapse
|
39
|
Chiu YH, Chung CH, Lin KT, Lin CS, Chen JH, Chen HC, Huang RY, Wu CT, Liu FC, Chien WC. Predictable biomarkers of developing lymphoma in patients with Sjögren syndrome: a nationwide population-based cohort study. Oncotarget 2018; 8:50098-50108. [PMID: 28177920 PMCID: PMC5564832 DOI: 10.18632/oncotarget.15100] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Sjögren syndrome (SS) is commonly known to be correlated with lymphoma. This study included 16,396 individuals in the SS cohort and 65,584 individuals in the non-SS cohort, all of whom were enrolled in the Taiwan National Health Insurance database between 2000 and 2010. We evaluated the risk factors of non-Hodgkin's lymphoma (NHL) in the primary SS cohort by applying a Cox multivariable proportional-hazards model. We increased the correlation of patients with SS and NHL, with an adjusted HR of 4.314 (95% CI 2.784 – 6.685). Of the 16,396 SS patients, 66 individuals had salivary gland slices without NHL development, while the other 16,330 individuals that did not have salivary gland slices revealed 30 individuals that developed NHL. Of the 16,396 SS patients, 128 individuals underwent immunomodulator agent therapy (including hydroxychloroquine, azathioprine, cyclosporine, methotrexate, and rituximab) without NHL development. None of the 30 individuals that developed NHL from SS received immunomodulator agents. We found that patients with SS were at an increased risk of developing NHL, with the most common NHL subgroup being diffused large B-cell lymphoma. SS patients who were candidates for salivary gland slices or immunomodulator agents were associated with a lower risk of developing lymphoma over time. We recommend that patients at a higher risk upon diagnosis of SS receive close follow-up and aggressive treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Chiu
- Department of Internal Medicine, Division of Rheumatology/Immunology/Allergies, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Kuen-Tze Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Sheng Lin
- Department of Internal Medicine, Division of Cardiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Hong Chen
- Department of Internal Medicine, Division of Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Cheng Chen
- Department of Internal Medicine, Division of Rheumatology/Immunology/Allergies, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Tsung Wu
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Cheng Liu
- Department of Internal Medicine, Division of Rheumatology/Immunology/Allergies, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
40
|
Peripheral B-Cell Subset Distribution in Primary Antiphospholipid Syndrome. Int J Mol Sci 2018; 19:ijms19020589. [PMID: 29462939 PMCID: PMC5855811 DOI: 10.3390/ijms19020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/29/2022] Open
Abstract
Background: B-cell differentiation and B-cell tolerance checkpoints may be different in antiphospholipid syndrome (APS) from systemic lupus erythematosus (SLE) and can help to understand differences between them. Our aim was to define alterations of B-cell subsets in patients with primary APS (pAPS) and to compare them with SLE patients and healthy controls (HC). Methods: Cross-sectional study including three study groups: 37 patients with pAPS, 11 SLE patients, and 21 age- and gender-matched HC. We determined the frequencies of different B-cell subsets in peripheral blood naïve and memory compartments. In addition, we measured serum B cell-activating factor (BAFF) levels and circulating pro-inflammatory cytokines, such as IL-6, by commercial ELISA and CBA, respectively. Results: Patients with pAPS showed a lower percentage of immature and naïve B cells than patients with SLE (p = 0.013 and p = 0.010, respectively) and a higher percentage of non-switched memory B cells than patients with SLE (p = 0.001). No differences either in the percentage of switched memory cells or plasma cells were found among the different groups. Serum BAFF levels were higher in SLE patients than in healthy controls and pAPS patients (p = 0.001 and p = 0.017, respectively). A significant increase in the serum BAFF levels was also observed in pAPS patients compared to HC (p = 0.047). Circulating IL-6 levels were higher in SLE and pAPS patients than HC (p = 0.036 and p = 0.048, respectively). A positive correlation was found between serum BAFF and IL-6 levels in patients with SLE but not in pAPS (p = 0.011). Conclusions: Our characterization of peripheral blood B-cell phenotypes in pAPS demonstrates different frequencies of circulating B cells at different stages of differentiation. These differences in the naïve B-cell repertoire could explain the higher number and variety of autoantibodies in SLE patients in comparison to pAPS patients, especially in those with obstetric complications.
Collapse
|
41
|
Replacing mouse BAFF with human BAFF does not improve B-cell maturation in hematopoietic humanized mice. Blood Adv 2017; 1:2729-2741. [PMID: 29296925 DOI: 10.1182/bloodadvances.2017010090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic humanized mice (hu-mice) have been developed to study the human immune system in an experimental in vivo model, and experiments to improve its performance are ongoing. Previous studies have suggested that the impaired maturation of human B cells observed in hu-mice might be in part due to inefficient interaction of the human B-cell-activating factor (hBAFF) receptor with mouse B-cell-activating factor (mBAFF), as this cytokine is an important homeostatic and differentiation factor for B lymphocytes both in mice and humans. To investigate this hypothesis, we created a genetically engineered mouse strain in which a complementary DNA (cDNA) encoding full-length hBAFF replaces the mBAFF-encoding gene. Expression of hBAFF in the endogenous mouse locus did not lead to higher numbers of mature and effector human B cells in hu-mice. Instead, B cells from hBAFF knock-in (hBAFFKI) hu-mice were in proportion more immature than those of hu-mice expressing mBAFF. Memory B cells, plasmablasts, and plasma cells were also significantly reduced, a phenotype that associated with diminished levels of immunoglobulin G and T-cell-independent antibody responses. Although the reasons for these findings are still unclear, our data suggest that the inefficient B-cell maturation in hu-mice is not due to suboptimal bioactivity of mBAFF on human B cells.
Collapse
|
42
|
Kühne L, Jung B, Poth H, Schuster A, Wurm S, Ruemmele P, Banas B, Bergler T. Renal allograft rejection, lymphocyte infiltration, and de novo donor-specific antibodies in a novel model of non-adherence to immunosuppressive therapy. BMC Immunol 2017; 18:52. [PMID: 29258420 PMCID: PMC5735914 DOI: 10.1186/s12865-017-0236-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-adherence has been associated with reduced graft survival. The aim of this study was to investigate the immunological mechanisms underlying chronic renal allograft rejection using a model of non-adherence to immunosuppressive therapy. We used a MHC (major histocompatibility complex) -mismatched rat model of renal transplantation (Brown Norway to Lewis), in which rats received daily oral cyclosporine A. In analogy to non-adherence to therapy, one group received cyclosporine A on alternating days only. Rejection was histologically graded according to the Banff classification. We quantified fibrosis by trichrome staining and intra-graft infiltration of T cells, B cells, and monocytes/macrophages by immunohistochemistry. The distribution of B lymphocytes was assessed using immunofluorescence microscopy. Intra-graft chemokine, chemokine receptor, BAFF (B cell activating factor belonging to the TNF family), and immunoglobulin G transcription levels were analysed by RT-PCR. Finally, we evaluated donor-specific antibodies (DSA) and complement-dependent cytotoxicity using flow cytometry. Results After 28 days, cellular rejection occurred during non-adherence in 5/6 animals, mixed with humoral rejection in 3/6 animals. After non-adherence, the number of T lymphocytes were elevated compared to daily immunosuppression. Monocyte numbers declined over time. Accordingly, lymphocyte chemokine transcription was significantly increased in the graft, as was the transcription of BAFF, BAFF receptor, and Immunoglobulin G. Donor specific antibodies were elevated in non-adherence, but did not induce complement-dependent cytotoxicity. Conclusion Cellular and humoral rejection, lymphocyte infiltration, and de novo DSA are induced in this model of non-adherence. Electronic supplementary material The online version of this article (doi: 10.1186/s12865-017-0236-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louisa Kühne
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany.
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Helen Poth
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Simone Wurm
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Petra Ruemmele
- Department of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, D-93053, Regensburg, Germany
| |
Collapse
|
43
|
Wu JL, Chiang MF, Hsu PH, Tsai DY, Hung KH, Wang YH, Angata T, Lin KI. O-GlcNAcylation is required for B cell homeostasis and antibody responses. Nat Commun 2017; 8:1854. [PMID: 29187734 PMCID: PMC5707376 DOI: 10.1038/s41467-017-01677-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023] Open
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (Ogt) catalyzes O-GlcNAc modification. O-GlcNAcylation is increased after cross-linking of the B-cell receptor (BCR), but the physiological function of this reaction is unknown. Here we show that lack of Ogt in B-cell development not only causes severe defects in the activation of BCR signaling, but also perturbs B-cell homeostasis by enhancing apoptosis of mature B cells, partly as a result of impaired response to B-cell activating factor. O-GlcNAcylation of Lyn at serine 19 is crucial for efficient Lyn activation and Syk interaction in BCR-mediated B-cell activation and expansion. Ogt deficiency in germinal center (GC) B cells also results in enhanced apoptosis of GC B cells and memory B cells in an immune response, consequently causing a reduction of antibody levels. Together, these results demonstrate that B cells rely on O-GlcNAcylation to maintain homeostasis, transduce BCR-mediated activation signals and activate humoral immunity. Post-translational modification has a variety of regulatory functions for important immune molecules. Here the authors use B-cell specific knockout mice to show how O-GlcNAcylation is required for functional B cell responses and humoral immunity.
Collapse
Affiliation(s)
- Jung-Lin Wu
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan
| | - Ming-Feng Chiang
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan
| | - Pan-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Jhongjheng District, Keelung, 202, Taiwan
| | - Dong-Yen Tsai
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Linong Street, Beitou District, Taipei, 112, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan
| | - Ying-Hsiu Wang
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Minquan East Road, Neihu District, Taipei, 114, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, No. 128, Section 2, Academia Road, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
44
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
45
|
Liu CC, Wang SC, Kao CW, Hsieh RK, Chang MC, Chang YF, Lim KH, Chen CG. B cells facilitate platelet production mediated by cytokines in patients with essential thrombocythaemia. Thromb Haemost 2017; 112:537-50. [DOI: 10.1160/th13-11-0949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/22/2014] [Indexed: 12/11/2022]
Abstract
SummaryWe investigated the role of activated B cells in thrombopoiesis through the production of interleukin (IL)-1beta and IL-6 in patients with essential thrombocythaemia. The number of B cells did not differ between essential thrombocythaemia patients, irrespective of the presence of Janus activated kinase-2 V617F mutation or wild type, and age-matched healthy adults. However, the number of IL-1beta/IL- 6-producing B cells was significantly higher in essential thrombocythaemia patients than that in healthy controls. The relatively high level of IL-1beta/IL-6 production by B cells was associated with serum B cell-activating factor and expression of Toll-like receptor 4 on B cells. A high level of B cell-activating factor was present in essential thrombocythaemia patients with both Janus activated kinase-2 genotypes. Incubation with B cell-activating factor enhanced the expression of Toll-like receptor 4 on B cells. IL-1beta and IL-6 production was not stimulated by B cell-activating factor alone; Toll-like receptor 4 was activated by lipopolysaccharide or patients’ sera to produce IL-1beta and IL-6 in B cells. Moreover, essential thrombocythaemia patient B cells facilitated megakaryocyte differentiation when co-cultured with CD34+ haematopoietic stem cells. Antibody neutralisation of IL-1beta and IL-6 attenuated megakaryocyte differentiation. These data suggest that B cells play a crucial role in thrombopoiesis in essential thrombocythaemia patients.
Collapse
|
46
|
Environmental sensing by mature B cells is controlled by the transcription factors PU.1 and SpiB. Nat Commun 2017; 8:1426. [PMID: 29127283 PMCID: PMC5681560 DOI: 10.1038/s41467-017-01605-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands, and microbial products. Ets family transcription factors regulate many aspects of haematopoiesis, although their functions in humoral immunity are difficult to decipher as a result of redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells do not generate germinal centers and high-affinity antibody after protein immunization. PU.1 and SpiB double-deficient B cells have a survival defect after engagement of CD40 or Toll-like receptors (TLR), despite paradoxically enhanced plasma cell differentiation. PU.1 and SpiB regulate the expression of many components of the B cell receptor signaling pathway and the receptors for CD40L, BAFF and TLR ligands. Thus, PU.1 and SpiB enable B cells to appropriately respond to environmental cues.
Collapse
|
47
|
BAFF is involved in macrophage-induced bortezomib resistance in myeloma. Cell Death Dis 2017; 8:e3161. [PMID: 29095438 PMCID: PMC5775406 DOI: 10.1038/cddis.2017.533] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/08/2023]
Abstract
We aimed to characterize the role of B-cell activating factor (BAFF) in macrophage-mediated resistance of multiple myeloma (MM) cells to bortezomib (bort), and to further understand the molecular mechanisms involved in the process. First, we detected BAFF and its three receptors on myeloma cells and macrophages using the quantitative reverse transcriptase-polymerase chain reaction and flow cytometry. The secretion of BAFF was tested in patients with MM, MM cell lines, and macrophages. The ability of macrophages to protect MM cells from bort-induced apoptosis was significantly attenuated using BAFF-neutralizing antibody in the co-culture system or knocking down the expression of BAFF in macrophages with small interfering RNA. We also showed that the MM–macrophage interaction through BAFF and its receptors was primarily mediated by the activation of Src, Erk1/2, Akt, and nuclear factor kappa B signaling and the suppression of caspase activation induced by bort. Our data demonstrated that BAFF played a functional role in the macrophage-mediated resistance of MM cells to bort, suggesting that targeting BAFF may provide a basis for the molecular- and immune-targeted therapeutic approach.
Collapse
|
48
|
Yasuda S, Zhou Y, Wang Y, Yamamura M, Wang JY. A model integrating tonic and antigen-triggered BCR signals to predict the survival of primary B cells. Sci Rep 2017; 7:14888. [PMID: 29097663 PMCID: PMC5668375 DOI: 10.1038/s41598-017-13993-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/04/2017] [Indexed: 12/20/2022] Open
Abstract
The BCR constitutively transmits a “tonic” survival signal in the absence of exogenous antigen-binding. However, the strength of tonic BCR signal and its relationship with antigen-triggered survival signal are poorly understood. We found that primary B cells expressing high levels of BCR had elevated BCR tonic signal and increased survival compared with those expressing low levels of BCR. In addition, we found that crosslinking BCR with low doses of F(ab′)2 α-IgM antibodies did not enhance, but rather decreased, B cell survival and that only when most of the BCR were occupied by F(ab′)2 α-IgM antibodies was B cell survival enhanced. Based on these experimental results, we present a mathematical model integrating tonic and antigen-triggered BCR signals. Our model indicates that the signal generated from crosslinked BCR is 4.3 times as strong as the tonic signal generated from free BCR and that the threshold of B cell activation corresponds to the signal generated by crosslinking 61% of the surface BCR. This model also allows the prediction of the survival probability of a B cell based on its initial BCR level and the strength and duration of antigen stimulation, and fits with the mechanism of B cell tolerance.
Collapse
Affiliation(s)
- Shoya Yasuda
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Yang Zhou
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Masayuki Yamamura
- School of Computing, Tokyo Institute of Technology, Yokohama 226-8502, Japan.
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
49
|
Radomir L, Cohen S, Kramer MP, Bakos E, Lewinsky H, Barak A, Porat Z, Bucala R, Stepensky P, Becker-Herman S, Shachar I. T Cells Regulate Peripheral Naive Mature B Cell Survival by Cell-Cell Contact Mediated through SLAMF6 and SAP. THE JOURNAL OF IMMUNOLOGY 2017; 199:2745-2757. [PMID: 28904129 DOI: 10.4049/jimmunol.1700557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/10/2017] [Indexed: 11/19/2022]
Abstract
The control of lymphoid homeostasis is the result of a very fine balance between lymphocyte production, proliferation, and apoptosis. In this study, we focused on the role of T cells in the maintenance/survival of the mature naive peripheral B cell population. We show that naive B and T cells interact via the signaling lymphocyte activation molecule (SLAM) family receptor, SLAMF6. This interaction induces cell type-specific signals in both cell types, mediated by the SLAM-associated protein (SAP) family of adaptors. This signaling results in an upregulation of the expression of the cytokine migration inhibitory factor in the T cells and augmented expression of its receptor CD74 on the B cell counterparts, consequently enhancing B cell survival. Furthermore, in X-linked lymphoproliferative disease patients, SAP deficiency reduces CD74 expression, resulting in the perturbation of B cell maintenance from the naive stage. Thus, naive T cells regulate B cell survival in a SLAMF6- and SAP-dependent manner.
Collapse
Affiliation(s)
- Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sivan Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Matthias P Kramer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eszter Bakos
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avital Barak
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Porat
- Department of Biological Services, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; and
| | - Polina Stepensky
- Pediatric Hematology-Oncology and Bone Marrow Transplantation Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | | | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
50
|
Hayakawa K, Formica AM, Zhou Y, Ichikawa D, Asano M, Li YS, Shinton SA, Brill-Dashoff J, Núñez G, Hardy RR. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome. J Exp Med 2017; 214:3067-3083. [PMID: 28878001 PMCID: PMC5626402 DOI: 10.1084/jem.20170497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/11/2017] [Accepted: 07/24/2017] [Indexed: 11/04/2022] Open
Abstract
The microenvironment, including microbial products, plays a role in mature B cell survival. Hayakawa et al. show that B cell antigen receptor ligand–mediated Nod1 up-regulation in vivo in B cell development leads to preferential mature B cell survival as a competitive survival, increasing the Nod1+ B cell pool with age. Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Fox Chase Cancer Center, Philadelphia, PA
| | | | | | | | | | | | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|