1
|
Nanbo A, Sakaguchi M, Furuyama W. Visualizing the Internalization of Marburg Viruslike Particles into Living Cells. Methods Mol Biol 2025; 2877:75-90. [PMID: 39585615 DOI: 10.1007/978-1-0716-4256-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Viral entry into cells is a pivotal stage of the infection process and, therefore, a prime target for the development of antiviral therapeutics. Here, we describe a system to monitor the internalization of lipophilic dye-labeled Marburg viruslike particles (VLPs) into living cells. Using cells stably expressing fluorescent protein-fused markers for specific cell organelles, the VLP entry process can be visualized. This procedure enables the characterization of the entry process by visualizing individual steps using specific bio-probes. Additionally, when combined with image analysis, this method allows for the quantification of the efficiencies of individual entry steps including particle adsorption, uptake by endocytosis, and membrane fusion. Finally, this method can be used for antiviral drug screening.
Collapse
Affiliation(s)
- Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Wakako Furuyama
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Li W, Qu M, Zhang T, Li G, Wang R, Tian Y, Wang J, Yu B, Wu J, Wang C, Yu X. The host restriction factor SERINC5 inhibits HIV-1 transcription by negatively regulating NF-κB signaling. J Biol Chem 2024; 301:108058. [PMID: 39653243 DOI: 10.1016/j.jbc.2024.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Serine incorporator 5 (SER5) can be incorporated into HIV-1 virions to block viral entry by disrupting the envelope glycoprotein-mediated viral fusion to the plasma membrane. Recent studies suggest that SER5 also inhibits HIV-1 mRNA transcription and the subsequent progeny virion biogenesis. However, the underlying mechanisms through which SER5 antagonizes the viral transcription remain poorly understood. Here, we demonstrate that SER5 inhibits HIV-1 transcription by negatively regulating NF-κB signaling, which is mediated by the retinoic acid-inducible gene I-like receptors, MDA5 and RIG-I. By recruiting TRIM40 as the E3 ubiquitination ligase to promote K48-linked polyubiquitination and proteasomal degradation of MDA5 and RIG-I, SER5 impedes nuclear translocation of the p50/p65 dimer, resulting in repression of HIV-1 LTR-driven gene expression. Hence, our findings strongly support a role for SER5 in restricting HIV-1 replication through inhibition of NF-κB-mediated viral gene expression.
Collapse
Affiliation(s)
- Weiting Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianxin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ruihong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yinghui Tian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialin Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Abstract
Human and simian immunodeficiency viruses (HIVs and SIVs, respectively) encode several small proteins (Vif, Vpr, Nef, Vpu, and Vpx) that are called accessory because they are not generally required for viral replication in cell culture. However, they play complex and important roles for viral immune evasion and spread in vivo. Here, we discuss the diverse functions and the relevance of the viral protein U (Vpu) that is expressed from a bicistronic RNA during the late stage of the viral replication cycle and found only in HIV-1 and closely related SIVs. It is well established that Vpu counteracts the restriction factor tetherin, mediates degradation of the primary viral CD4 receptors, and inhibits activation of the transcription factor nuclear factor kappa B. Recent studies identified additional activities and provided new insights into the sophisticated mechanisms by which Vpu enhances and prolongs the release of fully infectious viral particles. In addition, it has been shown that Vpu prevents superinfection not only by degrading CD4 but also by modulating DNA repair mechanisms to promote degradation of nuclear viral complementary DNA in cells that are already productively infected.
Collapse
Affiliation(s)
- Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| | - Lisa Wiesmüller
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany;
| |
Collapse
|
4
|
Ran XH, Zhu JW, Ni RZ, Zheng YT, Chen YY, Zheng WH, Mu D. TRIM5α recruits HDAC1 to p50 and Sp1 and promotes H3K9 deacetylation at the HIV-1 LTR. Nat Commun 2023; 14:3343. [PMID: 37291137 PMCID: PMC10250300 DOI: 10.1038/s41467-023-39056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Tripartite motif-containing protein 5α (TRIM5α) is generally known to block the postentry events of HIV-1. Here, we report an uncharacterized role for TRIM5α in the maintenance of viral latency. Knockdown of TRIM5α potentiates the transcription of HIV-1 in multiple latency models, which is reversed by shRNA-resistant TRIM5α. TRIM5α suppresses TNFα-activated HIV-1 LTR-driven as well as NF-κB- and Sp1-driven gene expression, with the RING and B-box 2 domains being the essential determinants. Mechanistically, TRIM5α binds to and enhances the recruitment of histone deacetylase 1 (HDAC1) to NF-κB p50 and Sp1. ChIP‒qPCR analyses further reveal that the association of TRIM5α with HIV-1 LTR induces HDAC1 recruitment and local H3K9 deacetylation. Conserved suppression effects of TRIM5α orthologs from multiple species on both HIV-1 and endo-retroelement HERV-K LTR activities have also been demonstrated. These findings provide new insights into the molecular mechanisms by which proviral latency is initially established and activatable proviruses are resilenced by histone deacetylase recruitment.
Collapse
Affiliation(s)
- Xiang-Hong Ran
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jia-Wu Zhu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Run-Ze Ni
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Yun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wei-Hua Zheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Dan Mu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Shen S, Rui Y, Wang Y, Su J, Yu X. SARS-CoV-2, HIV, and HPV: Convergent evolution of selective regulation of cGAS-STING signaling. J Med Virol 2023; 95:e28220. [PMID: 36229923 PMCID: PMC9874546 DOI: 10.1002/jmv.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
Recognizing aberrant cytoplasmic double-stranded DNA and stimulating innate immunity is essential for the host's defense against viruses and tumors. Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor that synthesizes the second messenger 2'3'-cGAMP and subsequently activates stimulator of interferon genes (STING)-mediated activation of TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) and the production of type I interferon (IFN-I). Both the cGAS-STING-mediated IFN-I antiviral defense and the countermeasures developed by diverse viruses have been extensively studied. However, recent studies have revealed a convergent evolutionary feature of severe acute respiratory syndrome coronavirus 2 and human immunodeficiency virus (HIV) viral proteins in terms of the selective regulation of cGAS-STING-mediated nuclear factor-κB (NF-κB) signaling without any effect on cGAS-STING-mediated TBK1/IRF3 activation and IFN production. The potential beneficial effect of this cGAS-STING-mediated, NF-κB-dependent antiviral effect, and the possible detrimental effect of IFN-I in the pathogenesis of coronavirus disease 2019 and HIV infection deserve more attention and future investigation.
Collapse
Affiliation(s)
- Si Shen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yajuan Rui
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Yanpu Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Jiaming Su
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| | - Xiao‐Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Cancer CenterZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
6
|
Fan TJ, Cui J. Human Endogenous Retroviruses in Diseases. Subcell Biochem 2023; 106:403-439. [PMID: 38159236 DOI: 10.1007/978-3-031-40086-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Human endogenous retroviruses (HERVs), which are conserved sequences of ancient retroviruses, are widely distributed in the human genome. Although most HERVs have been rendered inactive by evolution, some have continued to exhibit important cytological functions. HERVs in the human genome perform dual functions: on the one hand, they are involved in important physiological processes such as placental development and immune regulation; on the other hand, their aberrant expression is closely associated with the pathological processes of several diseases, such as cancers, autoimmune diseases, and viral infections. HERVs can also regulate a variety of host cellular functions, including the expression of protein-coding genes and regulatory elements that have evolved from HERVs. Here, we present recent research on the roles of HERVs in viral infections and cancers, including the dysregulation of HERVs in various viral infections, HERV-induced epigenetic modifications of histones (such as methylation and acetylation), and the potential mechanisms of HERV-mediated antiviral immunity. We also describe therapies to improve the efficacy of vaccines and medications either by directly or indirectly targeting HERVs, depending on the HERV.
Collapse
Affiliation(s)
- Tian-Jiao Fan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Cui
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Tumor necrosis factor-alpha blockade suppresses BK polyomavirus replication. Infection 2022:10.1007/s15010-022-01962-0. [PMCID: PMC9745287 DOI: 10.1007/s15010-022-01962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Purpose BK Polyomavirus (BKPyV) infection manifests as renal inflammation and can cause kidney damage. Tumor necrosis factor-α (TNF-α) is increased in renal inflammation and injury. The aim of this study was to investigate the effect of TNF-α blockade on BKPyV infection. Methods Urine specimens from 22 patients with BKPyV-associated nephropathy (BKPyVN) and 35 non-BKPyVN kidney transplant recipients were analyzed. Results We demonstrated increased urinary levels of TNF-α and its receptors, TNFR1 and TNFR2, in BKPyVN patients. Treating BKPyV-infected human proximal tubular cells (HRPTECs) with TNF-α stimulated the expression of large T antigen and viral capsid protein-1 mRNA and proteins and BKPyV promoter activity. Knockdown of TNFR1 or TNFR2 expression caused a reduction in TNF-α-stimulated viral replication. NF-κB activation induced by overexpression of constitutively active IKK2 significantly increased viral replication and the activity of the BKPyV promoter containing an NF-κB binding site. The addition of a NF-κB inhibitor on BKPyV-infected cells suppressed viral replication. Blockade of TNF-α functionality by etanercept reduced BKPyV-stimulated expression of TNF-α, interleukin-1β (IL-1β), IL-6 and IL-8 and suppressed TNF-α-stimulated viral replication. In cultured HRPTECs and THP-1 cells, BKPyV infection led to increased expression of TNF-α, interleukin-1 β (IL-1β), IL-6 and TNFR1 and TNFR2 but the stimulated magnitude was far less than that induced by poly(I:C). This may suggest that BKPyV-mediated autocrine effect is not a major source of TNFα. Conclusion TNF-α stimulates BKPyV replication and inhibition of its signal cascade or functionality attenuates its stimulatory effect. Our study provides a therapeutic anti-BKPyV target.
Collapse
|
8
|
Maksoud S, Ortega JT, Hidalgo M, Rangel HR. Leishmania donovani and HIV co-infection in vitro: Identification and characterization of main molecular players. Acta Trop 2022; 228:106248. [PMID: 34822851 DOI: 10.1016/j.actatropica.2021.106248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
The incidence of Leishmania/HIV co-infection is growing and few studies detail the cellular processes and macromolecules participating in co-infection. Thus, the goal of this study was to partially describe the Leishmania/HIV co-infection events by measuring molecular and functional parameters associated with both pathogens in vitro. MT-4 cells (human T-lymphocytes), primary monocytes, and peripheral blood mononuclear cells were exposed to HIV and/or Leishmania donovani. The cytopathic effects generated by the pathogens were observed through microscopy. Viral replication was assessed by monitoring p24 protein levels and parasitic proliferation/infectivity was determined using Giemsa staining. Changes in molecular markers were evaluated by ELISA and fluorescence assays. Our results showed that our system reassembles the main parameters previously described for Leishmania/HIV co-infection in patients in terms of potentiation of parasitic and viral replication/infectivity, amplification of syncytia induction, and alterations of cell viability. In addition, an amplification in NF-κB activation, changes in CXCR4/CCR5 surface expression, and a Th1→Th2 variation in cytokine/chemokine secretion were demonstrated. Altogether, this study could contribute to gain a deep understanding of the molecular events associated with Leishmania/HIV co-infection.
Collapse
Affiliation(s)
- S Maksoud
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - J T Ortega
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - M Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - H R Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela.
| |
Collapse
|
9
|
de Jesus MSM, Macabeo APG, Ramos JDA, de Leon VNO, Asamitsu K, Okamoto T. Voacanga globosa Spirobisindole Alkaloids Exert Antiviral Activity in HIV Latently Infected Cell Lines by Targeting the NF-kB Cascade: In Vitro and In Silico Investigations. Molecules 2022; 27:1078. [PMID: 35164343 PMCID: PMC8840767 DOI: 10.3390/molecules27031078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Since the efficiency in the transcription of the HIV genome contributes to the success of viral replication and infectivity, we investigated the downregulating effects of the spirobisindole alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) from the endemic Philippine medicinal plant, Voacanga globosa, during HIV gene transcription. Alkaloids 1-3 were explored for their inhibitory activity on TNF-α-induced viral replication in two latently HIV-infected cell lines, OM10.1 and J-Lat. The induction of HIV replication from OM10.1 and J-Lat cells elicited by TNF-α was blocked by globospiramine (1) within noncytotoxic concentrations. Furthermore, globospiramine (1) was found to target the NF-ĸB activation cascade in a dose-dependent manner when the transcriptional step at which inhibitory activity is exerted was examined in TNF-α-induced 293 human cells using transient reporter (luciferase) gene expression systems (HIV LTR-luc, ĸB-luc, and mutant ĸB-luc). Interrogation through molecular docking against the NF-ĸB p50/p65 heterodimer and target sites of the subunits comprising the IKK complex revealed high binding affinities of globospiramine (1) against the S281 pocket of the p65 subunit (BE = -9.2 kcal/mol) and the IKKα activation loop (BE = -9.1 kcal/mol). These findings suggest globospiramine (1) as a molecular inspiration to discover new alkaloid-based anti-HIV derivatives.
Collapse
Affiliation(s)
- Ma. Sheila M. de Jesus
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Allan Patrick G. Macabeo
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - John Donnie A. Ramos
- The Graduate School, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Molecular Diagnostics and Therapeutics Laboratory, Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines
| | - Von Novi O. de Leon
- Department of Biological Sciences, College of Science, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
- Laboratory for Organic Reactivity, Discovery and Synthesis (LORDS), Research Center for Natural and Applied Sciences, University of Santo Tomas, España Blvd., Manila 1015, Philippines;
| | - Kaori Asamitsu
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 4678601, Japan; (K.A.); (T.O.)
| |
Collapse
|
10
|
Buttler CA, Chuong EB. Emerging roles for endogenous retroviruses in immune epigenetic regulation. Immunol Rev 2022; 305:165-178. [PMID: 34816452 PMCID: PMC8766910 DOI: 10.1111/imr.13042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023]
Abstract
In recent years, there has been significant progress toward understanding the transcriptional networks underlying mammalian immune responses, fueled by advances in regulatory genomic technologies. Epigenomic studies profiling immune cells have generated detailed genome-wide maps of regulatory elements that will be key to deciphering the regulatory networks underlying cellular immune responses and autoimmune disorders. Unbiased analyses of these genomic maps have uncovered endogenous retroviruses as an unexpected ally in the regulation of human immune systems. Despite their parasitic origins, studies are finding an increasing number of examples of retroviral sequences having been co-opted for beneficial immune function and regulation by the host cell. Here, we review how endogenous retroviruses have given rise to numerous regulatory elements that shape the epigenetic landscape of host immune responses. We will discuss the implications of these elements on the function, dysfunction, and evolution of innate immunity.
Collapse
|
11
|
Hiyoshi M, Takahashi N, Eltalkhawy YM, Noyori O, Lotfi S, Panaampon J, Okada S, Tanaka Y, Ueno T, Fujisawa JI, Sato Y, Suzuki T, Hasegawa H, Tokunaga M, Satou Y, Yasunaga JI, Matsuoka M, Utsunomiya A, Suzu S. M-Sec induced by HTLV-1 mediates an efficient viral transmission. PLoS Pathog 2021; 17:e1010126. [PMID: 34843591 PMCID: PMC8659635 DOI: 10.1371/journal.ppat.1010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/09/2021] [Accepted: 11/17/2021] [Indexed: 11/19/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects target cells primarily through cell-to-cell routes. Here, we provide evidence that cellular protein M-Sec plays a critical role in this process. When purified and briefly cultured, CD4+ T cells of HTLV-1 carriers, but not of HTLV-1- individuals, expressed M-Sec. The viral protein Tax was revealed to mediate M-Sec induction. Knockdown or pharmacological inhibition of M-Sec reduced viral infection in multiple co-culture conditions. Furthermore, M-Sec knockdown reduced the number of proviral copies in the tissues of a mouse model of HTLV-1 infection. Phenotypically, M-Sec knockdown or inhibition reduced not only plasma membrane protrusions and migratory activity of cells, but also large clusters of Gag, a viral structural protein required for the formation of viral particles. Taken together, these results suggest that M-Sec induced by Tax mediates an efficient cell-to-cell viral infection, which is likely due to enhanced membrane protrusions, cell migration, and the clustering of Gag. In the present study, we identified the cellular protein M-Sec as a host factor necessary for de novo infection of human T-cell leukemia virus type 1 (HTLV-1), the causative retrovirus of an aggressive blood cancer known as adult T-cell leukemia/lymphoma. The inhibition or knockdown of M-Sec in infected cells resulted in a reduced viral infection in several culture models and a mouse model. We recently demonstrated a similar role of M-Sec in macrophages infected with another human retrovirus HIV-1, but it has been generally thought that M-Sec is not related to HTLV-1 infection because of the lack of its expression in CD4+ T cells, the major target of HTLV-1. In this study, we revealed that CD4+ T cells of HTLV-1 asymptomatic carriers, but not those of HTLV-1- individuals, expressed M-Sec, and that the viral protein Tax mediated the induction of M-Sec. Thus, M-Sec is a new and useful tool for further understanding the process of HTLV-1 transmission.
Collapse
Affiliation(s)
- Masateru Hiyoshi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (MH); (SS)
| | - Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Youssef M. Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Osamu Noyori
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Sameh Lotfi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jutatip Panaampon
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Yuetsu Tanaka
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahito Tokunaga
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Yorifumi Satou
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
- Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- * E-mail: (MH); (SS)
| |
Collapse
|
12
|
Mehta G, Sharma A, Arora SK. Short Communication: Acquisition of Additional Nuclear Factor Kappa B Binding Sites in Long Terminal Repeat of Genetically Evolving HIV-1 Subtype C Viral Species in Host with Comorbidities. AIDS Res Hum Retroviruses 2021; 37:380-384. [PMID: 33307941 DOI: 10.1089/aid.2020.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 causes millions of deaths around the world. Higher disease progression and mortality are seen in HIV positive individuals with comorbidities. Two of the most pertinent conditions are coinfection with Mycobacterium tuberculosis and Intravenous Drug abuse. The mechanisms involved, however, still remain unresolved. To elucidate the mechanisms involved, we evaluated the genetic alterations in terms of additional nuclear factor kappa B (NF-κB) sites in the long terminal repeat (LTR) of HIV-1 subtype-C isolates from infected human individuals from North India, supposedly acquired by the emerging viral quasi-species in the infected host in presence of these two comorbid conditions. Interestingly the results indicate higher number of NF-κB sites in the viral isolates from HIV-tuberculosis coinfected (n = 26, 16 isolates with 3 sites and 10 isolates with 2 sites) and intravenous drug users (n = 20, 13 isolates with 3 sites and 7 isolates with 2 sites) compared to the mono-infected hosts (n = 30, 10 isolates with 3 sites, 18 isolates with 2 sites, 2 isolates with 1 site). The biological relevance of these alterations in the NF-κB sites within the HIV-1 LTR with respect to viral replicative capacity and HIV disease progression needs to be studied further.
Collapse
Affiliation(s)
- Gurleen Mehta
- Department of Immunopathology and Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K. Arora
- Department of Immunopathology and Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
13
|
Moranguinho I, Valente ST. Block-And-Lock: New Horizons for a Cure for HIV-1. Viruses 2020; 12:v12121443. [PMID: 33334019 PMCID: PMC7765451 DOI: 10.3390/v12121443] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1/AIDS remains a global public health problem. The world health organization (WHO) reported at the end of 2019 that 38 million people were living with HIV-1 worldwide, of which only 67% were accessing antiretroviral therapy (ART). Despite great success in the clinical management of HIV-1 infection, ART does not eliminate the virus from the host genome. Instead, HIV-1 remains latent as a viral reservoir in any tissue containing resting memory CD4+ T cells. The elimination of these residual proviruses that can reseed full-blown infection upon treatment interruption remains the major barrier towards curing HIV-1. Novel approaches have recently been developed to excise or disrupt the virus from the host cells (e.g., gene editing with the CRISPR-Cas system) to permanently shut off transcription of the virus (block-and-lock and RNA interference strategies), or to reactivate the virus from cell reservoirs so that it can be eliminated by the immune system or cytopathic effects (shock-and-kill strategy). Here, we will review each of these approaches, with the major focus placed on the block-and-lock strategy.
Collapse
|
14
|
Langer S, Yin X, Diaz A, Portillo AJ, Gordon DE, Rogers UH, Marlett JM, Krogan NJ, Young JAT, Pache L, Chanda SK. The E3 Ubiquitin-Protein Ligase Cullin 3 Regulates HIV-1 Transcription. Cells 2020; 9:E2010. [PMID: 32882949 PMCID: PMC7564853 DOI: 10.3390/cells9092010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022] Open
Abstract
The infectious life cycle of the human immunodeficiency virus type 1 (HIV-1) is characterized by an ongoing battle between a compendium of cellular proteins that either promote or oppose viral replication. On the one hand, HIV-1 utilizes dependency factors to support and sustain infection and complete the viral life cycle. On the other hand, both inducible and constitutively expressed host factors mediate efficient and functionally diverse antiviral processes that counteract an infection. To shed light into the complex interplay between HIV-1 and cellular proteins, we previously performed a targeted siRNA screen to identify and characterize novel regulators of viral replication and identified Cullin 3 (Cul3) as a previously undescribed factor that negatively regulates HIV-1 replication. Cul3 is a component of E3-ubiquitin ligase complexes that target substrates for ubiquitin-dependent proteasomal degradation. In the present study, we show that Cul3 is expressed in HIV-1 target cells, such as CD4+ T cells, monocytes, and macrophages and depletion of Cul3 using siRNA or CRISPR/Cas9 increases HIV-1 infection in immortalized cells and primary CD4+ T cells. Conversely, overexpression of Cul3 reduces HIV-1 infection in single replication cycle assays. Importantly, the antiviral effect of Cul3 was mapped to the transcriptional stage of the viral life cycle, an effect which is independent of its role in regulating the G1/S cell cycle transition. Using isogenic viruses that only differ in their promotor region, we find that the NF-κB/NFAT transcription factor binding sites in the LTR are essential for Cul3-dependent regulation of viral gene expression. Although Cul3 effectively suppresses viral gene expression, HIV-1 does not appear to antagonize the antiviral function of Cul3 by targeting it for degradation. Taken together, these results indicate that Cul3 is a negative regulator of HIV-1 transcription which governs productive viral replication in infected cells.
Collapse
Affiliation(s)
- Simon Langer
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
- Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim am Rhein, Germany
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
| | - Arturo Diaz
- Department of Biology, La Sierra University, Riverside, CA 92515, USA;
- The Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Alex J. Portillo
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
- Atara Biotherapeutics, Inc., Thousand Oaks, CA 91320, USA
| | - David E. Gordon
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94143, USA; (D.E.G.); (N.J.K.)
- Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - Umu H. Rogers
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
- UC San Diego School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - John M. Marlett
- The Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - Nevan J. Krogan
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA 94143, USA; (D.E.G.); (N.J.K.)
- Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), San Francisco, CA 94158, USA
| | - John A. T. Young
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland;
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
| | - Sumit K. Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (S.L.); (X.Y.); (A.J.P.); (U.H.R.)
| |
Collapse
|
15
|
NF-κB-Interacting Long Noncoding RNA Regulates HIV-1 Replication and Latency by Repressing NF-κB Signaling. J Virol 2020; 94:JVI.01057-20. [PMID: 32581100 DOI: 10.1128/jvi.01057-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
NF-κB-interacting long noncoding RNA (NKILA) was recently identified as a negative regulator of NF-κB signaling and plays an important role in the development of various cancers. It is well known that NF-κB-mediated activation of human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR)-driven gene expression is required for HIV-1 transcription and reactivation of latency. However, whether NKILA plays essential roles in HIV-1 replication and latency is unclear. Here, by ectopic expression and silencing experiments, we demonstrate that NKILA potently inhibits HIV-1 replication in an NF-κB-dependent manner by suppressing HIV-1 LTR promoter activity. Moreover, NKILA showed broad-spectrum inhibition on the replication of HIV-1 clones with different coreceptor tropisms as well as on LTR activity of various HIV-1 clinical subtypes. Chromatin immunoprecipitation (ChIP) assays revealed that NKILA expression abolishes the recruitment of p65 to the duplicated κB binding sites in the HIV-1 LTR. NKILA mutants disrupting NF-κB inhibition also lost the ability to inhibit HIV-1 replication. Notably, HIV-1 infection or reactivation significantly downregulated NKILA expression in T cells in order to facilitate viral replication. Downregulated NKILA was mainly due to reduced acetylation of histone K27 on the promoter of NKILA by HIV-1 infection, which blocks NKILA expression. Knockdown of NKILA promoted the reactivation of latent HIV-1 upon phorbol myristate acetate (PMA) stimulation, while ectopic NKILA suppressed the reactivation in a well-established clinical model of withdrawal of azidothymidine (AZT) in vitro These findings improve our understanding of the functional suppression of HIV-1 replication and latency by NKILA through NF-κB signaling.IMPORTANCE The NF-κB pathway plays key roles in HIV-1 replication and reactivation of HIV-1 latency. A regulator inhibiting NF-κB activation may be a promising therapeutic strategy against HIV-1. Recently, NF-κB-interacting long noncoding RNA (NKILA) was identified to suppress the development of different human cancers by inhibiting IκB kinase (IKK)-induced IκB phosphorylation and NF-κB pathway activation, whereas the relationship between NKILA and HIV-1 replication is still unknown. Here, our results show that NKILA inhibits HIV-1 replication and reactivation by suppressing HIV-1 long terminal repeat (LTR)-driven transcription initiation. Moreover, NKILA inhibited the replication of HIV-1 clones with different coreceptor tropisms. This project may reveal a target for the development of novel anti-HIV drugs.
Collapse
|
16
|
Manohar Nesakumar S, Hemalatha H, Vidyavijayan KK, Lucia Precilla K, Ramesh K, Murugavel KG, Tripathy SP, Hanna LE. Genetic Characterization of Full-Length HIV-2 Long Terminal Repeat Sequences: Identification of Rare Promoter Variants. AIDS Res Hum Retroviruses 2020; 36:533-538. [PMID: 32106699 DOI: 10.1089/aid.2020.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we sequenced the full-length HIV type 2 (HIV-2) long terminal repeat region from the proviral DNA of 23 HIV-2-infected individuals from the southern parts of India. We identified two different promoter variant strains circulating in this region along with the globally circulating common promoter variant. Seven sequences had an additional nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) binding motif and the sequence from another subject showed one NF-κB and one RBE-III binding site. Phylogenetic and subtyping analyses revealed that the circulating strains comprised HIV-2 subtype A. The occurrence of two NF-κB binding sites in ∼30% of the sequences analyzed in our study prompts us to hypothesize that as in the case of HIV-1 subtype C viruses that possess additional κB sites, the two NF-κB HIV-2 variants might possess superior replication fitness because of the increased magnitude of transcription, thus leading to the expansion of these variants in the country.
Collapse
Affiliation(s)
- Sathiaseelan Manohar Nesakumar
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Haribabu Hemalatha
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - KK Vidyavijayan
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Karunakaran Lucia Precilla
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Karunaianantham Ramesh
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Kailapuri G. Murugavel
- YRG CARE Infectious Diseases Laboratory, YR Gaitonde Centre for AIDS Research and Education, Chennai, India
| | - Srikanth Prasad Tripathy
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| | - Luke Elizabeth Hanna
- Department of HIV/AIDS, National Institute for Research in Tuberculosis (Indian Council of Medical Research), Chennai, India
| |
Collapse
|
17
|
Fochi S, Bergamo E, Serena M, Mutascio S, Journo C, Mahieux R, Ciminale V, Bertazzoni U, Zipeto D, Romanelli MG. TRAF3 Is Required for NF-κB Pathway Activation Mediated by HTLV Tax Proteins. Front Microbiol 2019; 10:1302. [PMID: 31244811 PMCID: PMC6581700 DOI: 10.3389/fmicb.2019.01302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
Human T-cell leukemia viruses type 1 (HTLV-1) and type 2 (HTLV-2) share a common genome organization and expression strategy but have distinct pathological properties. HTLV-1 is the etiological agent of Adult T-cell Leukemia (ATL) and of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), whereas HTLV-2 does not cause hematological disorders and is only sporadically associated with cases of subacute myelopathy. Both HTLV genomes encode two regulatory proteins that play a pivotal role in pathogenesis: the transactivating Tax-1 and Tax-2 proteins and the antisense proteins HBZ and APH-2, respectively. We recently reported that Tax-1 and Tax-2 form complexes with the TNF-receptor associated factor 3, TRAF3, a negative regulator of the non-canonical NF-κB pathway. The NF-κB pathway is constitutively activated by the Tax proteins, whereas it is inhibited by HBZ and APH-2. The antagonistic effects of Tax and antisense proteins on NF-κB activation have not yet been fully clarified. Here, we investigated the effect of TRAF3 interaction with HTLV regulatory proteins and in particular its consequence on the subcellular distribution of the effector p65/RelA protein. We demonstrated that Tax-1 and Tax-2 efficiency on NF-κB activation is impaired in TRAF3 deficient cells obtained by CRISPR/Cas9 editing. We also found that APH-2 is more effective than HBZ in preventing Tax-dependent NF-κB activation. We further observed that TRAF3 co-localizes with Tax-2 and APH-2 in cytoplasmic complexes together with NF-κB essential modulator NEMO and TAB2, differently from HBZ and TRAF3. These results contribute to untangle the mechanism of NF-κB inhibition by HBZ and APH-2, highlighting the different role of the HTLV-1 and HTLV-2 regulatory proteins in the NF-κB activation.
Collapse
Affiliation(s)
- Stefania Fochi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Elisa Bergamo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Chloé Journo
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Renaud Mahieux
- Retroviral Oncogenesis Laboratory, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, Equipe Labellisée "Fondation pour la Recherche Médicale", UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Umberto Bertazzoni
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Obasa AE, Ashokkumar M, Neogi U, Jacobs GB. Mutations in Long Terminal Repeats κB Transcription Factor Binding Sites in Plasma Virus Among South African People Living with HIV-1. AIDS Res Hum Retroviruses 2019; 35:572-576. [PMID: 30793917 DOI: 10.1089/aid.2018.0293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
HIV-1 subtype C (HIV-1C) is responsible for the majority of infections in sub-Saharan Africa. We selected 63 plasma-derived samples and generated long terminal repeats (LTRs) amplicons from people living with HIV in South Africa to identify transcription factor binding sites. NF-κB plays an important role in regulating the viral gene expression from the viral promoter and controlling viral latency. LTR amplicons were sequenced and phylogenetically analyzed. In our data set, we identified F-κB sites (n = 4; 6%) at position II and (n = 1; 1%) at position I among 63 sequences analyzed. The majority of the sequences identified with H-κB at position II (n = 50; 79%) and position I (n = 55; 87%). Forty-nine (n = 49; 78%) sequences were found to exhibit C-κB site. ZA_LTR052 was identified with a single point mutation. We identified all three NF-κB-binding sites in (n = 44; 70%) the viral promoter-enhancer regions in South African patients.
Collapse
Affiliation(s)
- Adetayo Emmanuel Obasa
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Manickam Ashokkumar
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
- HIV/AIDS Division, Department of Clinical Research, National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, University of Stockholm, Stockholm, Sweden
| | - Graeme Brendon Jacobs
- Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
19
|
Abstract
Latent viral reservoirs in long-living cell populations are the main obstacle to a cure of HIV/AIDS. HIV-1 latency is controlled by the activation status of infected cells and their ability to return to a resting phenotype associated with silencing of viral gene expression. These cellular features are not just determined by the host since HIV-1 has evolved sophisticated mechanisms to alter cellular activation and survival to its advantage. Especially the HIV-1 accessory proteins Nef and Vpu exert numerous activities to promote viral replication and immune evasion affecting the size and preservation of the viral reservoir. Here, we review how antagonistic and synergistic functions of Nef and Vpu might affect HIV-1 latency. We also discuss whether these two accessory factors represent suitable targets to improve the ‘shock and kill’ cure strategy.
Collapse
Affiliation(s)
- Dorota Kmiec
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| | - Smitha Srinivasachar
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, ULM University Medical Center, Meyerhofstr 1, Ulm 89081, Germany
| |
Collapse
|
20
|
Langer S, Hammer C, Hopfensperger K, Klein L, Hotter D, De Jesus PD, Herbert KM, Pache L, Smith N, van der Merwe JA, Chanda SK, Fellay J, Kirchhoff F, Sauter D. HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses. eLife 2019; 8:41930. [PMID: 30717826 PMCID: PMC6372280 DOI: 10.7554/elife.41930] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that vpu-deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses. Gene set enrichment analyses and cytokine arrays showed that Vpu suppresses the expression of NF-κB targets including interferons and restriction factors. Mutational analyses demonstrated that this immunosuppressive activity of Vpu is independent of its ability to counteract the restriction factor and innate sensor tetherin. However, Vpu-mediated inhibition of immune activation required an arginine residue in the cytoplasmic domain that is critical for blocking NF-κB signaling downstream of tetherin. In summary, our findings demonstrate that HIV-1 Vpu potently suppresses NF-κB-elicited antiviral immune responses at the transcriptional level. The Human Immunodeficiency Virus (or HIV for short) has infected more than 70 million people worldwide. Although effective therapies exist to prevent the replication of the virus and the development to AIDS, there is no cure or vaccine, and the virus still spreads efficiently in human populations, infecting about 1.8 million new people every year. The unfortunate success of HIV can in part be explained by several viral proteins that trick our immune system and enable the virus to persist at high levels in the human body. For example, an HIV protein called viral protein U (Vpu) prevents infected cells from producing alarm signals such as interferons, which usually help healthy, uninfected cells to defend themselves against viruses. However, the extent to which Vpu interferes with interferons and other proteins involved in immune responses has remained unclear. To address this question, Langer, Hammer, Hopfensperger et al. compared how different variants of HIV affect immune responses in human cells. The experiments showed that cells infected with HIV variants lacking Vpu released larger amounts of interferons and other cellular proteins that are involved in immune responses compared to HIV variants with Vpu. Further experiments showed that Vpu works by inhibiting the activation of a protein called NF-κB, which usually switches on genes that encode interferons and many other proteins involved in immune responses. These findings demonstrate that Vpu has a broader impact on the human immune response than previously thought. In order to multiply efficiently, HIV initially requires the NF-κB protein to be active. Therefore, when NF-κB is inactive, HIV may adopt a dormant state that prevents current antiviral drug treatments from eradicating the virus in the human body. In the future, developing new drugs that can activate dormant HIV particles may therefore have the potential to help cure HIV infections.
Collapse
Affiliation(s)
- Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.,Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Christian Hammer
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Lukas Klein
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul D De Jesus
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Kristina M Herbert
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Nikaïa Smith
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Sumit K Chanda
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
21
|
Yamada E, Nakaoka S, Klein L, Reith E, Langer S, Hopfensperger K, Iwami S, Schreiber G, Kirchhoff F, Koyanagi Y, Sauter D, Sato K. Human-Specific Adaptations in Vpu Conferring Anti-tetherin Activity Are Critical for Efficient Early HIV-1 Replication In Vivo. Cell Host Microbe 2018; 23:110-120.e7. [PMID: 29324226 DOI: 10.1016/j.chom.2017.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/11/2017] [Accepted: 12/01/2017] [Indexed: 12/24/2022]
Abstract
The HIV-1-encoded accessory protein Vpu exerts several immunomodulatory functions, including counteraction of the host restriction factor tetherin, downmodulation of CD4, and inhibition of NF-κB activity to facilitate HIV-1 infection. However, the relative contribution of individual Vpu functions to HIV-1 infection in vivo remained unclear. Here, we used a humanized mouse model and HIV-1 strains with selective mutations in vpu to demonstrate that the anti-tetherin activity of Vpu is a prerequisite for efficient viral spread during the early phase of infection. Mathematical modeling and gain-of-function mutations in SIVcpz, the simian precursor of pandemic HIV-1, corroborate this finding. Blockage of interferon signaling combined with transcriptome analyses revealed that basal tetherin levels are sufficient to control viral replication. These results establish tetherin as a key effector of the intrinsic immune defense against HIV-1, and they demonstrate that Vpu-mediated tetherin antagonism is critical for efficient viral spread during the initial phase of HIV-1 replication.
Collapse
Affiliation(s)
- Eri Yamada
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Shinji Nakaoka
- Institute of Industrial Sciences, The University of Tokyo, Tokyo 1538505, Japan; PRESTO, Japan Science and Technology Agency, Saitama 3320012, Japan
| | - Lukas Klein
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Elisabeth Reith
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | | | - Shingo Iwami
- PRESTO, Japan Science and Technology Agency, Saitama 3320012, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan; Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 8128581, Japan
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
22
|
Inhibition of Tunneling Nanotube (TNT) Formation and Human T-cell Leukemia Virus Type 1 (HTLV-1) Transmission by Cytarabine. Sci Rep 2018; 8:11118. [PMID: 30042514 PMCID: PMC6057998 DOI: 10.1038/s41598-018-29391-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is highly dependent on cell-to-cell interaction for transmission and productive infection. Cell-to-cell interactions through the virological synapse, biofilm-like structures and cellular conduits have been reported, but the relative contribution of each mechanism on HTLV-1 transmission still remains vastly unknown. The HTLV-1 protein p8 has been found to increase viral transmission and cellular conduits. Here we show that HTLV-1 expressing cells are interconnected by tunneling nanotubes (TNTs) defined as thin structures containing F-actin and lack of tubulin connecting two cells. TNTs connected HTLV-1 expressing cells and uninfected T-cells and monocytes and the viral proteins Tax and Gag localized to these TNTs. The HTLV-1 expressing protein p8 was found to induce TNT formation. Treatment of MT-2 cells with the nucleoside analog cytarabine (cytosine arabinoside, AraC) reduced number of TNTs and furthermore reduced TNT formation induced by the p8 protein. Intercellular transmission of HTLV-1 through TNTs provides a means of escape from recognition by the immune system. Cytarabine could represent a novel anti-HTLV-1 drug interfering with viral transmission.
Collapse
|
23
|
Benzo(a)pyrene in Cigarette Smoke Enhances HIV-1 Replication through NF-κB Activation via CYP-Mediated Oxidative Stress Pathway. Sci Rep 2018; 8:10394. [PMID: 29991690 PMCID: PMC6039513 DOI: 10.1038/s41598-018-28500-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Smoking aggravates HIV-1 pathogenesis and leads to decreased responses to antiretroviral therapy. In this study, we aim to find a molecular mechanism that would explain smoking-induced HIV-1 replication. Benzo(a)pyrene (BaP), a major carcinogen in cigarette, requires metabolic activation through cytochrome P450s (CYPs) to exert its toxic effects. We hypothesized that CYP-mediated BaP metabolism generates reactive oxygen species (ROS), and the resultant oxidative stress aggravates HIV-1 replication. As expected, we observed ~3 to 4-fold increase in HIV-1 replication in U1 cells and human primary macrophages after chronic BaP exposure. We also observed ~30-fold increase in the expression of CYP1A1 at mRNA level, ~2.5-fold increase in its enzymatic activity as well as elevated ROS and cytotoxicity in U1 cells. The knock-down of the CYP1A1 gene using siRNA and treatment with selective CYP inhibitors and antioxidants significantly reduced HIV-1 replication. Further, we observed a nuclear translocation of NF-κB subunits (p50 and p65) after chronic BaP exposure, which was reduced by treatment with siRNA and antioxidants/CYP inhibitors. Suppression of NF-κB pathway using specific NF-κB inhibitors also significantly reduced HIV-1 replication. Altogether, our results suggest that BaP enhances HIV-1 replication in macrophages by a CYP-mediated oxidative stress pathway followed by the NF-κB pathway.
Collapse
|
24
|
Maraviroc Is Associated with Latent HIV-1 Reactivation through NF-κB Activation in Resting CD4 + T Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy. J Virol 2018; 92:JVI.01931-17. [PMID: 29444937 DOI: 10.1128/jvi.01931-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 12/19/2022] Open
Abstract
Maraviroc is a CCR5 antagonist used in the treatment of HIV-1 infection. We and others have suggested that maraviroc could reactivate latent HIV-1. To test the latency-reversing potential of maraviroc and the mechanisms involved, we performed a phase II, single-center, open-label study in which maraviroc was administered for 10 days to 20 HIV-1-infected individuals on suppressive antiretroviral therapy (EudraCT registration no. 2012-003215-66). All patients completed full maraviroc dosing and follow-up. The primary endpoint was to study whether maraviroc may reactivate HIV-1 latency, eliciting signaling pathways involved in the viral reactivation. An increase in HIV-1 transcription in resting CD4+ T cells, estimated by levels of HIV-1 unspliced RNA, was observed. Moreover, activation of the NF-κB transcription factor was observed in these cells. To elucidate the mechanism of NF-κB activation by maraviroc, we have evaluated in HeLa P4 C5 cells, which stably express CCR5, whether maraviroc could be acting as a partial CCR5 agonist, with no other mechanisms or pathways involved. Our results show that maraviroc can induce NF-κB activity and that NF-κB targets gene expression by CCR5 binding, since the use of TAK779, a CCR5 inhibitor, blocked NF-κB activation and functionality. Taking the results together, we show that maraviroc may have a role in the activation of latent virus transcription through the activation of NF-κB as a result of binding CCR5. Our results strongly support a novel use of maraviroc as a potential latency reversal agent in HIV-1-infected patients.IMPORTANCE HIV-1 persistence in a small pool of long-lived latently infected resting CD4+ T cells is a major barrier to viral eradication in HIV-1-infected patients on antiretroviral therapy. A potential strategy to cure HIV-1-infection is the use of latency-reversing agents to eliminate the reservoirs established in resting CD4+ T cells. As no drug has been shown to be completely effective so far, the search for new drugs and combinations remains a priority for HIV cure. We examined the ability of maraviroc, a CCR5 antagonist used as an antiretroviral drug, to activate latent HIV-1 in infected individuals on antiretroviral therapy. The study showed that maraviroc can activate NF-κB and, subsequently, induce latent HIV-1-transcription in resting CD4+ T cells from HIV-1-infected individuals on suppressive antiretroviral therapy. Additional interventions will be needed to eliminate latent HIV-1 infection. Our results suggest that maraviroc may be a new latency-reversing agent to interfere with HIV-1 persistence during antiretroviral therapy.
Collapse
|
25
|
Pseudotyping of HIV-1 with Human T-Lymphotropic Virus 1 (HTLV-1) Envelope Glycoprotein during HIV-1-HTLV-1 Coinfection Facilitates Direct HIV-1 Infection of Female Genital Epithelial Cells: Implications for Sexual Transmission of HIV-1. mSphere 2018; 3:3/2/e00038-18. [PMID: 29624497 PMCID: PMC5885023 DOI: 10.1128/msphere.00038-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
Female genital epithelial cells cover the genital tract and provide the first line of protection against infection with sexually transmitted pathogenic viruses. These cells normally are impervious to HIV-1. We report that coinfection of cells by HIV-1 and another sexually transmitted virus, human T-lymphotropic virus 1 (HTLV-1), led to production of HIV-1 that had expanded cell tropism and was able to directly infect primary vaginal and cervical epithelial cells. HIV-1 infection of epithelial cells was blocked by neutralizing antibodies against the HTLV-1 envelope (Env) protein, indicating that the infection was mediated through HTLV-1 Env pseudotyping of HIV-1. Active replication of HIV-1 in epithelial cells was demonstrated by inhibition with anti-HIV-1 drugs. We demonstrated that HIV-1 derived from peripheral blood of HIV-1-HTLV-1-coinfected subjects could infect primary epithelial cells in an HTLV-1 Env-dependent manner. HIV-1 from subjects infected with HIV-1 alone was not able to infect epithelial cells. These results indicate that pseudotyping of HIV-1 with HTLV-1 Env can occur in vivo Our data further reveal that active replication of both HTLV-1 and HIV-1 is required for production of pseudotyped HIV-1. Our findings indicate that pseudotyping of HIV-1 with HTLV-1 Env in coinfected cells enabled HIV-1 to directly infect nonpermissive female genital epithelial cells. This phenomenon may represent a risk factor for enhanced sexual transmission of HIV-1 in regions where virus coinfection is common.IMPORTANCE Young women in certain regions of the world are at very high risk of acquiring HIV-1, and there is an urgent need to identify the factors that promote HIV-1 transmission. HIV-1 infection is frequently accompanied by infection with other pathogenic viruses. We demonstrate that coinfection of cells by HIV-1 and HTLV-1 can lead to production of HIV-1 pseudotyped with HTLV-1 Env that is able to directly infect female genital epithelial cells both in vitro and ex vivo Given the function of these epithelial cells as genital mucosal barriers to pathogenic virus transmission, the ability of HIV-1 pseudotyped with HTLV-1 Env to directly infect female genital epithelial cells represents a possible factor for increased risk of sexual transmission of HIV-1. This mechanism could be especially impactful in settings such as Sub-Saharan Africa and South America, where HIV-1 and HTLV-1 are both highly prevalent.
Collapse
|
26
|
Sauter D, Kirchhoff F. Multilayered and versatile inhibition of cellular antiviral factors by HIV and SIV accessory proteins. Cytokine Growth Factor Rev 2018. [PMID: 29526437 DOI: 10.1016/j.cytogfr.2018.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
HIV-1, the main causative agent of AIDS, and related primate lentiviruses show a striking ability to efficiently replicate throughout the lifetime of an infected host. In addition to their high variability, the acquisition of several accessory genes has enabled these viruses to efficiently evade or counteract seemingly strong antiviral immune responses. The respective viral proteins, i.e. Vif, Vpr, Vpu, Vpx and Nef, show a stunning functional diversity, acting by various mechanisms and targeting a large variety of cellular factors involved in innate and adaptive immunity. A focus of the present review is the accumulating evidence that Vpr, Vpu and Nef not only directly target cellular antiviral factors at the protein level, but also suppress their expression by modulating the activity of immune-regulatory transcription factors such as NF-κB. Furthermore, we will discuss the ability of accessory proteins to act as versatile adaptors, removing antiviral proteins from their sites of action and/or targeting them for proteasomal or endolysosomal degradation. Here, the main emphasis will be on emerging examples for functional interactions, synergisms and switches between accessory primate lentiviral proteins. A better understanding of this complex interplay between cellular immune defense mechanisms and viral countermeasures might facilitate the development of effective vaccines, help to prevent harmful chronic inflammation, and provide insights into the establishment and maintenance of latent viral reservoirs.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany.
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstr. 1, 89081 Ulm, Germany.
| |
Collapse
|
27
|
Tietjen I, Williams DE, Read S, Kuang XT, Mwimanzi P, Wilhelm E, Markle T, Kinloch NN, Naphen CN, Tenney K, Mesplède T, Wainberg MA, Crews P, Bell B, Andersen RJ, Brumme ZL, Brockman MA. Inhibition of NF-κB-dependent HIV-1 replication by the marine natural product bengamide A. Antiviral Res 2018; 152:94-103. [PMID: 29476895 DOI: 10.1016/j.antiviral.2018.02.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/01/2022]
Abstract
HIV-1 inhibitors that act by mechanisms distinct from existing antiretrovirals can provide novel insights into viral replication and potentially inform development of new therapeutics. Using a multi-cycle HIV-1 replication assay, we screened 252 pure compounds derived from marine invertebrates and microorganisms and identified 6 (actinomycin Z2, bastadin 6, bengamide A, haliclonacyclamine A + B, keramamine C, neopetrosiamide B) that inhibited HIV-1 with 50% effective concentrations (EC50s) of 3.8 μM or less. The most potent inhibitor, bengamide A, blocked HIV-1 in a T cell line with an EC50 of 0.015 μM and in peripheral blood mononuclear cells with an EC50 of 0.032 μM. Bengamide A was previously described to inhibit NF-κB signaling. Consistent with this mechanism, bengamide A suppressed reporter expression from an NF-κB-driven minimal promoter and an HIV-1 long terminal repeat (LTR) with conserved NF-κB response elements, but lacked activity against an LTR construct with mutation of these elements. In single-cycle HIV-1 infection assays, bengamide A also suppressed viral protein expression when viruses encoded an intact LTR but exhibited minimal activity against those with mutated NF-κB elements. Finally, bengamide A did not inhibit viral DNA accumulation, indicating that it likely acts downstream of this step in HIV-1 replication. Our study identifies multiple new antiviral compounds including an unusually potent inhibitor of HIV-1 gene expression.
Collapse
Affiliation(s)
- Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Silven Read
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaomei T Kuang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Emmanuelle Wilhelm
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tristan Markle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Cassandra N Naphen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA, USA
| | - Brendan Bell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| | - Mark A Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Fochi S, Mutascio S, Bertazzoni U, Zipeto D, Romanelli MG. HTLV Deregulation of the NF-κB Pathway: An Update on Tax and Antisense Proteins Role. Front Microbiol 2018; 9:285. [PMID: 29515558 PMCID: PMC5826390 DOI: 10.3389/fmicb.2018.00285] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL), an aggressive CD4+/CD25+ T-cell malignancy and of a severe neurodegenerative disease, HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The chronic activation or deregulation of the canonical and non-canonical nuclear factor kappa B (NF-κB) pathways play a crucial role in tumorigenesis. The HTLV-1 Tax-1 oncoprotein is a potent activator of the NF-κB transcription factors and the NF-κB response is required for promoting the development of HTLV-1 transformed cell lines. The homologous retrovirus HTLV-2, which also expresses a Tax-2 transforming protein, is not associated with ATL. In this review, we provide an updated synopsis of the role of Tax-1 in the deregulation of the NF-κB pathway, highlighting the differences with the homologous Tax-2. Special emphasis is directed toward the understanding of the molecular mechanisms involved in NF-κB activation resulting from Tax interaction with host factors affecting several cellular processes, such as cell cycle, apoptosis, senescence, cell proliferation, autophagy, and post-translational modifications. We also discuss the current knowledge on the role of the antisense viral protein HBZ in down-regulating the NF-κB activation induced by Tax, and its implication in cellular senescence. In addition, we review the recent studies on the mechanism of HBZ-mediated inhibition of NF-κB activity as compared to that exerted by the HTLV-2 antisense protein, APH-2. Finally, we discuss recent advances aimed at understanding the role exerted in the development of ATL by the perturbation of NF-κB pathway by viral regulatory proteins.
Collapse
Affiliation(s)
| | | | | | | | - Maria G. Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
29
|
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol 2018; 8:2686. [PMID: 29379481 PMCID: PMC5775265 DOI: 10.3389/fmicb.2017.02686] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T-cell leukemia (ATL). One way to address the pathology of the disease lies on conducting research with a molecular approach. In addition to the analysis of ATL-relevant signaling pathways, understanding the regulation of important and relevant transcription factors allows researchers to reach this fundamental objective. HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor, which play significant roles in the cellular transformation and the activation of the host's immune responses. Activating protein-1 (AP-1) transcription factor has been linked to cancer and neoplastic transformation ever since the first representative members of the Jun and Fos gene family were cloned and shown to be cellular homologs of viral oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating transcription factor protein families. Activation of AP-1 transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. AP-1 is also involved in various cellular events including differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1 pathway and its contribution to HTLV-induced cellular transformation.
Collapse
Affiliation(s)
- Hélène Gazon
- Belgium Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
30
|
Shan L, Deng K, Gao H, Xing S, Capoferri AA, Durand CM, Rabi SA, Laird GM, Kim M, Hosmane NN, Yang HC, Zhang H, Margolick JB, Li L, Cai W, Ke R, Flavell RA, Siliciano JD, Siliciano RF. Transcriptional Reprogramming during Effector-to-Memory Transition Renders CD4 + T Cells Permissive for Latent HIV-1 Infection. Immunity 2017; 47:766-775.e3. [PMID: 29045905 DOI: 10.1016/j.immuni.2017.09.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/26/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022]
Abstract
The latent reservoir for HIV-1 in resting memory CD4+ T cells is the major barrier to curing HIV-1 infection. Studies of HIV-1 latency have focused on regulation of viral gene expression in cells in which latent infection is established. However, it remains unclear how infection initially becomes latent. Here we described a unique set of properties of CD4+ T cells undergoing effector-to-memory transition including temporary upregulation of CCR5 expression and rapid downregulation of cellular gene transcription. These cells allowed completion of steps in the HIV-1 life cycle through integration but suppressed HIV-1 gene transcription, thus allowing the establishment of latency. CD4+ T cells in this stage were substantially more permissive for HIV-1 latent infection than other CD4+ T cells. Establishment of latent HIV-1 infection in CD4+ T could be inhibited by viral-specific CD8+ T cells, a result with implications for elimination of latent HIV-1 infection by T cell-based vaccines.
Collapse
Affiliation(s)
- Liang Shan
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Deng
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Hongbo Gao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Sifei Xing
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adam A Capoferri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - S Alireza Rabi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gregory M Laird
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nina N Hosmane
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510060, China
| | - Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Dufrasne FE, Lucchetti M, Martin A, André E, Dessilly G, Kabamba B, Goubau P, Ruelle J. Modulation of the NF-κB signaling pathway by the HIV-2 envelope glycoprotein and its incomplete BST-2 antagonism. Virology 2017; 513:11-16. [PMID: 29028477 DOI: 10.1016/j.virol.2017.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
Abstract
The HIVs have evolved by selecting means to hijack numerous host cellular factors. HIVs exploit the transcription factor NF-κB to ensure efficient LTR-driven gene transcription. However, NF-κB is primarily known to act as a key regulator of the proinflammatory and antiviral responses. Interestingly, retroviruses activate NF-κB during early stages of infection to initiate proviral genome expression while suppressing it at later stages to restrain expression of antiviral genes. During HIV-1 infection, diverse viral proteins such as Env, Nef and Vpr have been proposed to activate NF-κB activity, whereas Vpu has been shown to inhibit NF-κB activation. It is still unclear how HIV-2 regulates NF-κB signaling pathway during its replication cycle. Here we confirm that human BST-2 and HIV-1 Env proteins can trigger potent activation of NF-κB. Importantly, we demonstrate for the first time that the HIV-2 Env induces NF-κB activation in HEΚ293T cells. Furthermore, the anti-BST-2 activity of the HIV-2 Env is not sufficient to completely inhibit NF-κB activity.
Collapse
Affiliation(s)
- François E Dufrasne
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Mara Lucchetti
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium
| | - Anandi Martin
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Emmanuel André
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Géraldine Dessilly
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Benoit Kabamba
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium; Cliniques Universitaires Saint-Luc, Clinical Biology Department, Microbiology Unit, B-1200 Brussels, Belgium.
| | - Patrick Goubau
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| | - Jean Ruelle
- Université catholique de Louvain, Experimental and Clinical Research Institute (IREC), Medical Microbiology Unit (MBLG), AIDS Reference Laboratory, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
32
|
Primate lentiviruses use at least three alternative strategies to suppress NF-κB-mediated immune activation. PLoS Pathog 2017; 13:e1006598. [PMID: 28859166 PMCID: PMC5597281 DOI: 10.1371/journal.ppat.1006598] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 08/22/2017] [Indexed: 01/02/2023] Open
Abstract
Primate lentiviruses have evolved sophisticated strategies to suppress the immune response of their host species. For example, HIV-2 and most simian immunodeficiency viruses (SIVs) use their accessory protein Nef to prevent T cell activation and antiviral gene expression by downmodulating the T cell receptor CD3. This Nef function was lost in HIV-1 and other vpu-encoding viruses suggesting that the acquisition of Vpu-mediated NF-κB inhibition reduced the selection pressure for inhibition of T cell activation by Nef. To obtain further insights into the modulation of NF-κB activity by primate lentiviral accessory factors, we analyzed 32 Vpr proteins from a large panel of divergent primate lentiviruses. We found that those of SIVcol and SIVolc infecting Colobinae monkeys showed the highest efficacy in suppressing NF-κB activation. Vpr-mediated inhibition of NF-κB resulted in decreased IFNβ promoter activity and suppressed type I IFN induction in virally infected primary cells. Interestingly, SIVcol and SIVolc differ from all other primate lentiviruses investigated by the lack of both, a vpu gene and efficient Nef-mediated downmodulation of CD3. Thus, primate lentiviruses have evolved at least three alternative strategies to inhibit NF-κB-dependent immune activation. Functional analyses showed that the inhibitory activity of SIVolc and SIVcol Vprs is independent of DCAF1 and the induction of cell cycle arrest. While both Vprs target the IKK complex or a factor further downstream in the NF-κB signaling cascade, only SIVolc Vpr stabilizes IκBα and inhibits p65 phosphorylation. Notably, only de-novo synthesized but not virion-associated Vpr suppressed the activation of NF-κB, thus enabling NF-κB-dependent initiation of viral gene transcription during early stages of the replication cycle, while minimizing antiviral gene expression at later stages. Our findings highlight the key role of NF-κB in antiviral immunity and demonstrate that primate lentiviruses follow distinct evolutionary paths to modulate NF-κB-dependent expression of viral and antiviral genes. The cellular transcription factor NF-κB plays a complex role in the lentiviral replication cycle. On the one hand, activation of NF-κB is required for efficient transcription of viral genes and reactivation of latent proviruses. On the other hand, NF-κB is also a key driver of antiviral gene expression, immune activation and progression to AIDS. As a result, primate lentiviruses tightly regulate the activation of NF-κB throughout their replication cycle to enable transcription of viral genes while minimizing antiviral gene expression. Here, we show that human and simian immunodeficiency viruses have evolved at least three alternative strategies to suppress NF-κB-dependent immune activation: HIV-2 and most SIVs prevent T cell activation via Nef-mediated downmodulation of CD3. In comparison, HIV-1 and its vpu-containing SIV precursors inhibit NF-κB activation via their accessory protein Vpu and lost the CD3 downmodulation function of Nef. Finally, SIVcol and SIVolc, infecting mantled guerezas and olive colobus monkeys, respectively, utilize Vpr. Our findings emphasize the key role of NF-κB as inducer of antiretroviral immune responses and add to the accumulating evidence that lentiviral accessory proteins target innate signaling cascades by sophisticated mechanisms to evade restriction.
Collapse
|
33
|
Abstract
Despite major advances in antiretroviral therapy against HIV-1, an effective HIV vaccine is urgently required to reduce the number of new cases of HIV infections in the world. Vaccines are the ultimate tool in the medical arsenal to control and prevent the spread of infectious diseases such as HIV/AIDS. Several failed phase-IIb to –III clinical vaccine trials against HIV-1 in the past generated a plethora of information that could be used for better designing of an effective HIV vaccine in the future. Most of the tested vaccine candidates produced strong humoral responses against the HIV proteins; however, failed to protect due to: 1) the low levels and the narrow breadth of the HIV-1 neutralizing antibodies and the HIV-specific antibody-dependent Fc-mediated effector activities, 2) the low levels and the poor quality of the anti-HIV T-cell responses, and 3) the excessive responses to immunodominant non-protective HIV epitopes, which in some cases blocked the protective immunity and/or enhanced HIV infection. The B-cell epitopes on HIV for producing broadly neutralizing antibodies (bNAbs) against HIV have been extensively characterized, and the next step is to develop bNAb epitope immunogen for HIV vaccine. The bNAb epitopes are often conformational epitopes and therefore more difficult to construct as vaccine immunogen and likely to include immunodominant non-protective HIV epitopes. In comparison, T-cell epitopes are short linear peptides which are easier to construct into vaccine immunogen free of immunodominant non-protective epitopes. However, its difficulty lies in identifying the T-cell epitopes conserved among HIV subtypes and induce long-lasting, potent polyfunctional T-cell and cytotoxic T lymphocyte (CTL) activities against HIV. In addition, these protective T-cell epitopes must be recognized by the HLA prevalent in the country(s) targeted for the vaccine trial. In conclusion, extending from the findings from previous vaccine trials, future vaccines should combine both T- and B-cell epitopes as vaccine immunogen to induce multitude of broad and potent immune effector activities required for sterilizing protection against global HIV subtypes.
Collapse
Affiliation(s)
- Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| | - Janet K Yamamoto
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 110880, Gainesville, FL 32611-0880, USA
| |
Collapse
|
34
|
Heusinger E, Kirchhoff F. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol 2017; 8:198. [PMID: 28261165 PMCID: PMC5306280 DOI: 10.3389/fmicb.2017.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle.
Collapse
Affiliation(s)
- Elena Heusinger
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
35
|
Chan CP, Kok KH, Jin DY. Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:147-166. [PMID: 29052136 DOI: 10.1007/978-981-10-5765-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus discovered to cause adult T-cell leukemia (ATL), a highly aggressive blood cancer. HTLV-1 research in the past 35 years has been most revealing in the mechanisms of viral oncogenesis. HTLV-1 establishes a lifelong persistent infection in CD4+ T lymphocytes. The infection outcome is governed by host immunity. ATL develops in 2-5% of infected individuals 30-50 years after initial exposure. HTLV-1 encodes two oncoproteins Tax and HBZ, which are required for initiation of cellular transformation and maintenance of cell proliferation, respectively. HTLV-1 oncogenesis is driven by a clonal selection and expansion process during which both host and viral factors cooperate to impair genome stability, immune surveillance, and other mechanisms of tumor suppression. A better understanding of HTLV-1 biology and leukemogenesis will reveal new strategies and modalities for ATL prevention and treatment.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, 145 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
36
|
Soper A, Juarez-Fernandez G, Aso H, Moriwaki M, Yamada E, Nakano Y, Koyanagi Y, Sato K. Various plus unique: Viral protein U as a plurifunctional protein for HIV-1 replication. Exp Biol Med (Maywood) 2017; 242:850-858. [PMID: 28346011 DOI: 10.1177/1535370217697384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome, encodes four accessory genes, one of which is viral protein U (Vpu). Recently, the study of Vpu has been of great interest. For instance, various cellular proteins are degraded (e.g. CD4) and down-modulated (e.g. tetherin) by Vpu. Vpu also antagonizes the function of tetherin and inhibits NF-κB. Moreover, Vpu is a viroporin forming ion channels and may represent a promising target for anti-HIV-1 drugs. In this review, we summarize the domains/residues that are responsible for Vpu's functions, describe the current understanding of the role of Vpu in HIV-1-infected cells, and review the effect of Vpu on HIV-1 in replication and pathogenesis. Future investigations that simultaneously assess a combination of Vpu functions are required to clearly delineate the most important functions for viral replication. Impact statement Viral protein U (Vpu) is a unique protein encoded by human immunodeficiency virus type 1 (HIV-1) and related lentiviruses, playing multiple roles in viral replication and pathogenesis. In this review, we briefly summarize the most up-to-date knowledge of HIV-1 Vpu.
Collapse
Affiliation(s)
- Andrew Soper
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Guillermo Juarez-Fernandez
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Hirofumi Aso
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,2 Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan
| | - Miyu Moriwaki
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,3 Graduate School of Biostudies, Kyoto University, Kyoto 6068315, Japan
| | - Eri Yamada
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yusuke Nakano
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Yoshio Koyanagi
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan
| | - Kei Sato
- 1 Laboratory of Systems Virology, Department of Biosystems Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan.,4 CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize recent progress in our understanding of innate sensing of HIV. Furthermore, we present the mechanisms that HIV has evolved to attenuate innate immune responses and discuss open questions. RECENT FINDINGS Toll-like receptors (TLRs) and various cytosolic sensors induce an antiviral interferon response upon detection of genomic HIV RNA or intermediates of reverse transcription. HIV limits activation of these sensing pathways by interfering with TLR signaling and by cloaking viral nucleic acids in the cytoplasm, before proviral dsDNA translocates into the nucleus. Furthermore, the viral accessory protein Vpu mitigates antiviral gene expression by inhibiting canonical nuclear factor kappa B (NF-κB) signaling. These evasion mechanisms, however, are imperfect and HIV infection almost inevitably triggers the activation of IRF3, NF-κB and other key transcription factors of antiviral immunity. Notably, the interplay of these processes plays a critical role in the induction of chronic inflammation that drives progression to AIDS. SUMMARY HIV has evolved sophisticated but imperfect mechanisms to evade and counteract innate sensing. Whether virus-induced immune activation represents merely a suboptimal adaptation of HIV to its human host or even facilitates HIV replication, for example by increasing the number of viral target cells, remains to be clarified.
Collapse
|
38
|
Zhang HS, Du GY, Liu Y, Zhang ZG, Zhou Z, Li H, Dai KQ, Yu XY, Gou XM. UTX-1 regulates Tat-induced HIV-1 transactivation via changing the methylated status of histone H3. Int J Biochem Cell Biol 2016; 80:51-56. [PMID: 27671333 DOI: 10.1016/j.biocel.2016.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/16/2022]
Abstract
Epigenetic modifications are thought to be important for gene expression changes during HIV-1 transcription and replication. The removal of histone H3 lysine27 (H3K27) trimethylation mark by UTX-1 is important for the robust induction of many specific genes during Tat-mediated HIV-1 transactvation. We found that UTX-1 enzymatic activity is needed for Tat to remove a repressive mark H3K27me3 in the HIV-1 long terminal repeat (LTR). UTX-1 converted the chromatin structure to a more transcriptionally active state by up-regulation of H3K4 methylation and down-regulation of H3K27 methylation on the specific regions of HIV-1 LTR. The increase in H3K27me3 and the decrease in H3K4me3 induced by UTX-1 knockdown was detected on the HIV-1 LTR, but not by control siRNA. Additionally, UTX-1 promotes HIV-1 gene expression by enhancing both the NF-κB p65's nuclear translocation and its p65 binding to HIV-1 LTR. And we further demonstrated that H3K27 demethylase activity was required for increased HIV-1 transactivation induced by UTX-1. Together, our data reveal key roles for UTX-1 in a timely transition from poised to active chromatin in HIV-1 LTR during HIV-1 transcription and a fundamental mechanism by which a H3K27 demethylase triggers tissue-specific chromatin changes. Our findings provide a mechanistic link between UTX-1 and enhanced HIV-1 replication, and suggest that targeting at epigenetic mechanism may have a therapeutic benefit for HIV-1 patients.
Collapse
Affiliation(s)
- Hong-Sheng Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China.
| | - Guang-Yuan Du
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Yang Liu
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Zhong-Guo Zhang
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Zhen Zhou
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Hu Li
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Ke-Qing Dai
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Xiao-Ying Yu
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| | - Xiao-Meng Gou
- College of Life Science & Bioengineering, Beijing University of Technology, Pingleyuan 100#, District of Chaoyang, Beijing 100124,China
| |
Collapse
|
39
|
Hu Z, Song B, Xu L, Zhong Y, Peng F, Ji X, Zhu F, Yang C, Zhou J, Su Y, Chen S, He Y, He S. Aqueous synthesized quantum dots interfere with the NF-κB pathway and confer anti-tumor, anti-viral and anti-inflammatory effects. Biomaterials 2016; 108:187-96. [PMID: 27639114 DOI: 10.1016/j.biomaterials.2016.08.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/14/2016] [Accepted: 08/30/2016] [Indexed: 01/26/2023]
Abstract
The NF-κB pathway plays crucial roles in inflammatory responses and cell survival. Aberrant constitutive NF-κB activation is associated with various human diseases including cancer and inflammatory and auto-immune diseases. Consequently, it is highly desirable to develop new kinds of inhibitors, which are highly efficacious for blocking the NF-κB pathway. In this study, by using a typical kind of aqueous synthesized quantum dots (QDs), i.e., CdTe QDs, as a model, we for the first time demonstrated that the QDs could selectively affect the cellular nuclear factor-κB (NF-κB) signaling pathway, but do not affect the AKT or ERK pathways. Typically, the QDs efficiently inhibited the activation of IKKα and IKKβ, resulting in the suppression of both the canonical and the non-canonical NF-κB signaling pathways. Inhibition of NF-κB by QDs downregulates anti-apoptotic genes and promotes apoptosis in cancer cells. The QDs induced NF-κB inhibition and cytotoxicity could be blocked by N-acetylcysteine due to the reduced cellular uptake of QDs. Importantly, inhibition of NF-κB by QDs displayed promising effects against the viral replication and in vivo bacterial endotoxin-induced inflammatory responses. These data suggest the QDs as potent inhibitors of the NF-κB signaling pathway, both in vitro and in vivo. Our findings highlight the potential of using QDs in the development of anti-cancer, anti-viral, and anti-inflammatory approaches, and also facilitate better understanding of QDs-related cellular behavior under the molecular level.
Collapse
Affiliation(s)
- Zhilin Hu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lei Xu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yiling Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaoyuan Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fang Zhu
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Chengkui Yang
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Jinying Zhou
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yuanyuan Su
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Suning Chen
- Jiangsu Institute of Hematology (JIH), Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yao He
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| | - Sudan He
- Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
HMBA Enhances Prostratin-Induced Activation of Latent HIV-1 via Suppressing the Expression of Negative Feedback Regulator A20/TNFAIP3 in NF-κB Signaling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5173205. [PMID: 27529070 PMCID: PMC4978819 DOI: 10.1155/2016/5173205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/21/2016] [Indexed: 01/05/2023]
Abstract
In the past decade, much emphasis has been put on the transcriptional activation of HIV-1, which is proposed as a promised strategy for eradicating latent HIV-1 provirus. Two drugs, prostratin and hexamethylene bisacetamide (HMBA), have shown potent effects as inducers for releasing HIV-1 latency when used alone or in combination, although their cellular target(s) are currently not well understood, especially under drug combination. Here, we have shown that HMBA and prostratin synergistically release HIV-1 latency via different mechanisms. While prostratin strongly stimulates HMBA-induced HIV-1 transcription via improved P-TEFb activation, HMBA is capable of boosting NF-κB-dependent transcription initiation by suppressing prostratin-induced expression of the deubiquitinase A20, a negative feedback regulator in the NF-κB signaling pathway. In addition, HMBA was able to increase prostratin-induced phosphorylation and degradation of NF-κB inhibitor IκBα, thereby enhancing and prolonging prostratin-induced nuclear translocation of NF-κB, a prerequisite for stimulation of transcription initiation. Thus, by blocking the negative feedback circuit, HMBA functions as a signaling enhancer of the NF-κB signaling pathway.
Collapse
|
41
|
Hotter D, Sauter D, Kirchhoff F. Guanylate binding protein 5: Impairing virion infectivity by targeting retroviral envelope glycoproteins. Small GTPases 2016; 8:31-37. [PMID: 27275775 PMCID: PMC5331900 DOI: 10.1080/21541248.2016.1189990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Guanylate binding proteins (GBPs) are interferon-inducible cellular factors that belong to the superfamily of guanosine triphosphatases (GTPases) and play important roles in the cell-intrinsic defense against bacteria, protozoa and viruses. In a recent report in Cell Host & Microbe, we identify GBP5 as novel restriction factor of HIV-1 that reduces the infectivity of progeny virions by interfering with processing and incorporation of the viral envelope (Env) glycoprotein. The inhibitory activity of GBP5 requires C-terminal isoprenylation, mediating Golgi-association, but not its GTPase function. Notably, GBP5 expression levels vary considerably in human macrophages and inversely correlate with infectious virus yield. We demonstrate that GBP5 can be evaded by an unusual tradeoff mechanism: Naturally occurring mutations in the start codon of the viral accessory gene vpu attenuate GBP5 inhibition by increasing Env expression at the cost of Vpu function. Whether direct counteraction mechanisms or more subtle changes balancing Vpu and Env expression also affect HIV-1 inhibition by GBP5 remains to be clarified. Other open questions are whether GBP5 restricts HIV-1 in CD4+ T cells and if other GBP family members also decrease infectivity of HIV and/or additional enveloped viruses.
Collapse
Affiliation(s)
- Dominik Hotter
- a Institute of Molecular Virology, Ulm University Medical Center , Ulm , Germany
| | - Daniel Sauter
- a Institute of Molecular Virology, Ulm University Medical Center , Ulm , Germany
| | - Frank Kirchhoff
- a Institute of Molecular Virology, Ulm University Medical Center , Ulm , Germany
| |
Collapse
|
42
|
Toll-interacting protein inhibits HIV-1 infection and regulates viral latency. Biochem Biophys Res Commun 2016; 475:161-8. [PMID: 27181351 DOI: 10.1016/j.bbrc.2016.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 12/31/2022]
Abstract
HIV-1 latency is mainly characterized by a reversible silencing of long-terminal repeat (LTR)-driven transcription of provirus. The existing of repressive factors has been described to contribute to transcription silencing of HIV-1. Toll-interacting protein (Tollip) has been identified as a repressor of Toll like receptors (TLR)-mediated signaling. Our previous study has found that Tollip inhibited NF-κB-dependent HIV-1 promoter LTR-driven transcription, indicating the potential role of Tollip in governing viral latency. In this study, by using HIV-1 latently infected Jurkat T-cell and central memory CD4(+) T-cells, we demonstrate the role of Tollip in regulating HIV-1 latency, as the knock-down of Tollip promoted HIV-1 reactivation from both HIV-1 latently infected Jurkat CD4(+) T cells and primary central memory T cells (TCM). Moreover, we found that the activities of LTRs derived from multiple HIV-1 subtypes could be repressed by Tollip; Knock-down of Tollip promoted HIV-1 transcription and infection in CD4(+) T cells. Our data indicate a key role of Tollip in suppressing HIV-1 infection and regulating viral latency, which provides a potential host target for combating HIV-1 infection and latency.
Collapse
|
43
|
Wang C, Long W, Peng C, Hu L, Zhang Q, Wu A, Zhang X, Duan X, Wong CCL, Tanaka Y, Xia Z. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains. PLoS Pathog 2016; 12:e1005584. [PMID: 27082114 PMCID: PMC4833305 DOI: 10.1371/journal.ppat.1005584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM), a distinct neurological disorder with inflammatory symptoms and incomplete paralysis of the limbs, and adult T-cell leukemia/lymphoma (ATL), a highly aggressive malignant proliferation of CD4+ T lymphocytes. Both TSP/HAM and ATL are mainly driven by the activation of IκB kinase (IKK)-NF-κB stimulated by HTLV-1 oncoprotein Tax. The molecular mechanism by which Tax activates IKK remains unclear. Here, we found that Tax is an E3 ubiquitin ligase, which, together with its cognate ubiquitin-conjugating enzymes (E2s) UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of unanchored free mixed-linkage polyubiquitin chains. The polyubiquitin chains can activate IKK complex directly by binding to the NEMO subunit. Our studies uncovered the essential cellular factors hijacked by HTLV-1 for infection and pathogenesis, as well as the biochemical function and the underlying mechanism of Tax in the process of IKK activation. Our work might shed light on potential development of therapeutics for TSP/HAM and ATL.
Collapse
Affiliation(s)
- Chong Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Long
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Lin Hu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Catherine C. L. Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
44
|
Suppression of Type I Interferon Production by Human T-Cell Leukemia Virus Type 1 Oncoprotein Tax through Inhibition of IRF3 Phosphorylation. J Virol 2016; 90:3902-3912. [PMID: 26819312 DOI: 10.1128/jvi.00129-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-β was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.
Collapse
|
45
|
Nakahara T, Kiyono T. Interplay between NF-κB/interferon signaling and the genome replication of HPV. Future Virol 2016. [DOI: 10.2217/fvl.16.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HPV infection can persist within the infected epithelium for years. The viral persistence is primarily attributed to the ability of the virus to maintain its genome as nuclear episomes in the basal cells. Recent studies have revealed that HPV induces DNA damage response to facilitate productive amplification of the viral genome. DNA damage response comprises a part of the cellular defense mechanism against viral infection and its activation can result in induction of innate immune responses. The activation of NF-κB and interferon (IFN) signals has been shown to suppress the genome replication of HPV while the viral proteins inhibit NF-κB/IFN signaling. This review intends to focus on illustrating the interplay between NFκB/IFN signaling and HPV genome replication in the HPV life cycle.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
46
|
Constitutive activation of Pim1 kinase is a therapeutic target for adult T-cell leukemia. Blood 2016; 127:2439-50. [PMID: 26813676 DOI: 10.1182/blood-2015-11-685032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/16/2016] [Indexed: 12/24/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1)-associated adult T-cell leukemia and T-cell lymphoma (ATL) are aggressive diseases with poor prognoses, limited therapeutic options, and no curative treatment. In this study, we used a mouse model of ATL and restored expression of the microRNA, miR-124a, to identify in vivo downstream effectors responsible for its tumor-suppressive functions in ATL cells. Our results revealed that STAT3, a direct target of miR-124a, is constitutively activated in HTLV-I-transformed cells and ATL cells, and activating STAT3 mutations were detected in 25.5% of primary ATL patients. Interestingly, we found that the STAT3 downstream kinase effector, Pim1, is constitutively activated in ATL cells. The dependence of ATL cells to Pim1 activity was demonstrated using 2 Pim1 small inhibitors, SMI-4a and AZD1208. These studies indicated that HTLV-I-transformed and ATL cells, but not normal peripheral blood mononuclear cells, are highly sensitive to AZD1208, and the inhibition of Pim1 signaling triggers an apoptotic signal in leukemic cells. Finally, preclinical testing of AZD1208 in a mouse model of ATL resulted in significant prevention of tumor growth in vivo. In conclusion, our studies suggest that constitutive activation of the STAT3-Pim1 pathway represents a novel therapeutic target for the treatment of ATL.
Collapse
|
47
|
Castro V, Bertrand L, Luethen M, Dabrowski S, Lombardi J, Morgan L, Sharova N, Stevenson M, Blasig IE, Toborek M. Occludin controls HIV transcription in brain pericytes via regulation of SIRT-1 activation. FASEB J 2015; 30:1234-46. [PMID: 26601824 DOI: 10.1096/fj.15-277673] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
Abstract
HIV invades the brain early after infection; however, its interactions with the cells of the blood-brain barrier (BBB) remain poorly understood. Our goal was to evaluate the role of occludin, one of the tight junction proteins that regulate BBB functions in HIV infection of BBB pericytes. We provide evidence that occludin levels largely control the metabolic responses of human pericytes to HIV. Occludin in BBB pericytes decreased by 10% during the first 48 h after HIV infection, correlating with increased nuclear translocation of the gene repressor C-terminal-binding protein (CtBP)-1 and NFκB-p65 activation. These changes were associated with decreased expression and activation of the class III histone deacetylase sirtuin (SIRT)-1. Occludin levels recovered 96 h after infection, restoring SIRT-1 and reducing HIV transcription to 20% of its highest values. We characterized occludin biochemically as a novel NADH oxidase that controls the expression and activation of SIRT-1. The inverse correlation between occludin and HIV transcription was then replicated in human primary macrophages and differentiated monocytic U937 cells, in which occludin silencing resulted in 75 and 250% increased viral transcription, respectively. Our work shows that occludin has previously unsuspected metabolic properties and is a target of HIV infection, opening the possibility of designing novel pharmacological approaches to control HIV transcription.
Collapse
Affiliation(s)
- Victor Castro
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Luc Bertrand
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Mareen Luethen
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Sebastian Dabrowski
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Jorge Lombardi
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Laura Morgan
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Natalia Sharova
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Mario Stevenson
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Ingolf E Blasig
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| | - Michal Toborek
- *Department of Biochemistry and Molecular Biology and Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biology, Freie Universität Berlin, Berlin, Germany; and Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
48
|
Chaudhary P, Khan SZ, Rawat P, Augustine T, Raynes DA, Guerriero V, Mitra D. HSP70 binding protein 1 (HspBP1) suppresses HIV-1 replication by inhibiting NF-κB mediated activation of viral gene expression. Nucleic Acids Res 2015; 44:1613-29. [PMID: 26538602 PMCID: PMC4770212 DOI: 10.1093/nar/gkv1151] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 efficiently hijacks host cellular machinery and exploits a plethora of host–viral interactions for its successful survival. Identifying host factors that affect susceptibility or resistance to HIV-1 may offer a promising therapeutic strategy against HIV-1. Previously, we have reported that heat shock proteins, HSP40 and HSP70 reciprocally regulate HIV-1 gene-expression and replication. In the present study, we have identified HSP70 binding protein 1 (HspBP1) as a host-intrinsic inhibitor of HIV-1. HspBP1 level was found to be significantly down modulated during HIV-1 infection and virus production inversely co-related with HspBP1 expression. Our results further demonstrate that HspBP1 inhibits HIV-1 long terminal repeat (LTR) promoter activity. Gel shift and chromatin immunoprecipitation assays revealed that HspBP1 was recruited on HIV-1 LTR at NF-κB enhancer region (κB sites). The binding of HspBP1 to κB sites obliterates the binding of NF-κB hetero-dimer (p50/p65) to the same region, leading to repression in NF-κB mediated activation of LTR-driven gene-expression. HspBP1 also plays an inhibitory role in the reactivation of latently infected cells, corroborating its repressive effect on NF-κB pathway. Thus, our results clearly show that HspBP1 acts as an endogenous negative regulator of HIV-1 gene-expression and replication by suppressing NF-κB-mediated activation of viral transcription.
Collapse
Affiliation(s)
| | | | - Pratima Rawat
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Tracy Augustine
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| | - Deborah A Raynes
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Vince Guerriero
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Debashis Mitra
- National Centre for Cell Science, Pune, Maharashtra 411007, India
| |
Collapse
|
49
|
Vpr Enhances Tumor Necrosis Factor Production by HIV-1-Infected T Cells. J Virol 2015; 89:12118-30. [PMID: 26401039 DOI: 10.1128/jvi.02098-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The HIV-1 accessory protein Vpr displays different activities potentially impacting viral replication, including the arrest of the cell cycle in the G2 phase and the stimulation of apoptosis and DNA damage response pathways. Vpr also modulates cytokine production by infected cells, but this property remains partly characterized. Here, we investigated the effect of Vpr on the production of the proinflammatory cytokine tumor necrosis factor (TNF). We report that Vpr significantly increases TNF secretion by infected lymphocytes. De novo production of Vpr is required for this effect. Vpr mutants known to be defective for G2 cell cycle arrest induce lower levels of TNF secretion, suggesting a link between these two functions. Silencing experiments and the use of chemical inhibitors further implicated the cellular proteins DDB1 and TAK1 in this activity of Vpr. TNF secreted by HIV-1-infected cells triggers NF-κB activity in bystander cells and allows viral reactivation in a model of latently infected cells. Thus, the stimulation of the proinflammatory pathway by Vpr may impact HIV-1 replication in vivo. IMPORTANCE The role of the HIV-1 accessory protein Vpr remains only partially characterized. This protein is important for viral pathogenesis in infected individuals but is dispensable for viral replication in most cell culture systems. Some of the functions described for Vpr remain controversial. In particular, it remains unclear whether Vpr promotes or instead prevents proinflammatory and antiviral immune responses. In this report, we show that Vpr promotes the release of TNF, a proinflammatory cytokine associated with rapid disease progression. Using Vpr mutants or inhibiting selected cellular genes, we show that the cellular proteins DDB1 and TAK1 are involved in the release of TNF by HIV-infected cells. This report provides novel insights into how Vpr manipulates TNF production and helps clarify the role of Vpr in innate immune responses and inflammation.
Collapse
|
50
|
Inghirami G, Chan WC, Pileri S. Peripheral T-cell and NK cell lymphoproliferative disorders: cell of origin, clinical and pathological implications. Immunol Rev 2015; 263:124-59. [PMID: 25510275 DOI: 10.1111/imr.12248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell lymphoproliferative disorders are a heterogeneous group of neoplasms with distinct clinical-biological properties. The normal cellular counterpart of these processes has been postulated based on functional and immunophenotypic analyses. However, T lymphocytes have been proven to be remarkably capable of modulating their properties, adapting their function in relationship with multiple stimuli and to the microenvironment. This impressive plasticity is determined by the equilibrium among a pool of transcription factors and by DNA chromatin regulators. It is now proven that the acquisition of specific genomic defects leads to the enforcement/activation of distinct pathways, which ultimately alter the preferential activation of defined regulators, forcing the neoplastic cells to acquire features and phenotypes distant from their original fate. Thus, dissecting the landscape of the genetic defects and their functional consequences in T-cell neoplasms is critical not only to pinpoint the origin of these tumors but also to define innovative mechanisms to re-adjust an unbalanced state to which the tumor cells have become addicted and make them vulnerable to therapies and targetable by the immune system. In our review, we briefly describe the pathological and clinical aspects of the T-cell lymphoma subtypes as well as NK-cell lymphomas and then focus on the current understanding of their pathogenesis and the implications on diagnosis and treatment.
Collapse
Affiliation(s)
- Giorgio Inghirami
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, Torino, Italy; Department of Pathology, and NYU Cancer Center, New York University School of Medicine, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | | |
Collapse
|