1
|
Wang X, Chan AWH. Particulate Matter and Volatile Organic Compound Emissions Generated from a Domestic Air Fryer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17384-17392. [PMID: 37927234 DOI: 10.1021/acs.est.3c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Air frying has become a popular cooking method for domestic cooking, but the level of released indoor air pollutants is poorly understood. In this work, we compared particle and gas phase emission factors (EF) and particle size distributions between cooking with a domestic air fryer and a pan for a variety of foods. The PM10 EFs of air frying chicken wings and breast were higher than pan cooking by a factor of 2.1 and 5.4, respectively. On the other hand, a higher PM10 emission factor from air frying can be achieved by increasing the amount of oil to levels similar to or above those from pan-frying for French fries and asparagus. We propose that higher temperature and greater turbulence lead to higher PM10 EFs for cooking with the air fryer compared with the pan for the same mass of oil added. EFs of volatile organic compounds (VOCs) are also generally higher for cooking with the air fryer compared with the pan: 2.5 times higher for French fries and 4.8 times higher for chicken breast. Our study highlights the potential risk of higher indoor PM10 levels associated with domestic air frying under certain cases and proposes possible mitigation measures.
Collapse
Affiliation(s)
- Xing Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
2
|
Ma S, Miao Y, Liu W, Meng C, Dong J, Zhang S. Temperature-dependent particle number emission rates and emission characteristics during heating processes of edible oils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122045. [PMID: 37328126 DOI: 10.1016/j.envpol.2023.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The goal of this research is to investigate the temperature-dependent emission rates of particle numbers and emission characteristics during oil heating. Seven regularly used edible oils were studied in a variety of tests to attain this objective. First, total particle number emission rates ranging from 10 nm to 1 μm were measured, followed by an examination within six size intervals from 0.3 μm to 10 μm. Following that, the impacts of oil volume and oil surface area on the emission rate were investigated, and multiple regression models were developed based on the results. The results showed that corn, sunflower and soybean oils had higher emission rates than other oils above 200 °C, with peak values of 8.22 × 109#/s, 8.19 × 109#/s and 8.17 × 109#/s, respectively. Additionally, peanut and rice oils were observed to emit the most particles larger than 0.3 μm, followed by medium-emission (rapeseed and olive oils) and low-emission oils (corn, sunflower and soybean oils). In most cases, oil temperature (T) has the most significant influence on the emission rate during the smoking stage, but its influence was not as pronounced in the moderate smoking stage. The models obtained are all statistically significant (P < 0.001), with R2 values greater than 0.9, and the classical assumption test concluded that regressions were in accordance with the classical assumptions regarding normality, multicollinearity, and heteroscedasticity. In general, low oil volume and large oil surface area were more recommended for cooking to mitigate UFPs emission.
Collapse
Affiliation(s)
- Shengyuan Ma
- School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin, 150090, China
| | - Yanshu Miao
- School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin, 150090, China
| | - Wei Liu
- Division of Sustainable Buildings, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Brinellvägen 23, Stockholm, 100 44, Sweden
| | - Chong Meng
- Institute of Science and Technology Research and Development, China Academy of Building Research, No.30 Beisanhuandonglu, Beijing, 100013, China
| | - Jiankai Dong
- School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin, 150090, China.
| | - Shi Zhang
- School of Architecture, Harbin Institute of Technology, Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin, 150090, China
| |
Collapse
|
3
|
Chu MT, Gillooly SE, Levy JI, Vallarino J, Reyna LN, Cedeño Laurent JG, Coull BA, Adamkiewicz G. Real-time indoor PM 2.5 monitoring in an urban cohort: Implications for exposure disparities and source control. ENVIRONMENTAL RESEARCH 2021; 193:110561. [PMID: 33275921 PMCID: PMC7856294 DOI: 10.1016/j.envres.2020.110561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 05/30/2023]
Abstract
Fine particulate matter (PM2.5) concentrations are highly variable indoors, with evidence for exposure disparities. Real-time monitoring coupled with novel statistical approaches can better characterize drivers of elevated PM2.5 indoors. We collected real-time PM2.5 data in 71 homes in an urban community of Greater Boston, Massachusetts using Alphasense OPC-N2 monitors. We estimated indoor PM2.5 concentrations of non-ambient origin using mass balance principles, and investigated their associations with indoor source activities at the 0.50 to 0.95 exposure quantiles using mixed effects quantile regressions, overall and by homeownership. On average, the majority of indoor PM2.5 concentrations were of non-ambient origin (≥77%), with a higher proportion at increasing quantiles of the exposure distribution. Major source predictors of non-ambient PM2.5 concentrations at the upper quantile (0.95) were cooking (1.4-23 μg/m3) and smoking (15 μg/m3, only among renters), with concentrations also increasing with range hood use (3.6 μg/m3) and during the heating season (5.6 μg/m3). Across quantiles, renters in multifamily housing experienced a higher proportion of PM2.5 concentrations from non-ambient sources than homeowners in single- and multifamily housing. Renters also more frequently reported cooking, smoking, spray air freshener use, and second-hand smoke exposure, and lived in units with higher air exchange rate and building density. Accounting for these factors explained observed PM2.5 exposure disparities by homeownership, particularly in the upper exposure quantiles. Our results suggest that renters in multifamily housing may experience higher PM2.5 exposures due to a combination of behavioral and building factors that are amenable to intervention.
Collapse
Affiliation(s)
- MyDzung T Chu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA.
| | - Sara E Gillooly
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, 715 Albany Street, Talbot T4W, Boston, MA, 02118, USA
| | - Jose Vallarino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA
| | - Lacy N Reyna
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA
| | - Jose Guillermo Cedeño Laurent
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building II, Boston, MA, 02115, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 401 Park Drive, Landmark Center, Boston, MA, 02215, USA
| |
Collapse
|
4
|
Fortenberry C, Walker M, Dang A, Loka A, Date G, de Carvalho KC, Morrison G, Williams B. Analysis of indoor particles and gases and their evolution with natural ventilation. INDOOR AIR 2019; 29:761-779. [PMID: 31264732 PMCID: PMC8415620 DOI: 10.1111/ina.12584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 05/18/2023]
Abstract
The air composition and reactivity from outdoor and indoor mixing field campaign was conducted to investigate the impacts of natural ventilation (ie, window opening and closing) on indoor air quality. In this study, a thermal desorption aerosol gas chromatograph (TAG) obtained measurements of indoor particle- and gas-phase semi- and intermediately volatile organic compounds both inside and outside a single-family test home. Together with measurements from a suite of instruments, we use TAG data to evaluate changes in indoor particles and gases at three natural ventilation periods. Positive matrix factorization was performed on TAG and adsorbent tube data to explore five distinct chemical and physical processes occurring in the indoor environment. Outdoor-to-indoor transport is observed for sulfate, isoprene epoxydiols, polycyclic aromatic hydrocarbons, and heavy alkanes. Dilution of indoor species is observed for volatile, non-reactive species including methylcyclohexane and decamethylcyclopentasiloxane. Window opening drives enhanced emissions of semi- and intermediately volatile species including TXIB, DEET, diethyl phthalate, and carvone from indoor surfaces. Formation via enhanced oxidation was observed for nonanal and 2-decanone when outdoor oxidants entered the home. Finally, oxidative depletion of gas-phase terpenes (eg, limonene and α-pinene) was anticipated but not observed due to limited measurement resolution and dynamically changing conditions.
Collapse
Affiliation(s)
- Claire Fortenberry
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Michael Walker
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Audrey Dang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Arun Loka
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - Gauri Date
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | | | - Glenn Morrison
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Brent Williams
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
5
|
O'Leary C, de Kluizenaar Y, Jacobs P, Borsboom W, Hall I, Jones B. Investigating measurements of fine particle (PM 2.5 ) emissions from the cooking of meals and mitigating exposure using a cooker hood. INDOOR AIR 2019; 29:423-438. [PMID: 30715750 DOI: 10.1111/ina.12542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
There is growing awareness that indoor exposure to particulate matter with diameter ≤ 2.5 μm (PM2.5 ) is associated with an increased risk of adverse health effects. Cooking is a key indoor source of PM2.5 and an activity conducted daily in most homes. Population scale models can predict occupant exposures to PM2.5 , but these predictions are sensitive to the emission rates used. Reported emission rates are highly variable and are typically for the cooking of single ingredients and not full meals. Accordingly, there is a need to assess PM2.5 emissions from the cooking of complete meals. Mean PM2.5 emission rates and source strengths were measured for four complete meals. Temporal PM2.5 concentrations and particle size distributions were recorded using an optical particle counter (OPC), and gravimetric sampling was used to determine calibration factors. Mean emission rates and source strengths varied between 0.54-3.7 mg/min and 15-68 mg, respectively, with 95% confidence. Using a cooker hood (apparent capture efficiency > 90%) and frying in non-stick pans were found to significantly reduce emissions. OPC calibration factors varied between 1.5 and 5.0 showing that a single value cannot be used for all meals and that gravimetric sampling is necessary when measuring PM2.5 concentrations in kitchens.
Collapse
Affiliation(s)
- Catherine O'Leary
- Department of Architecture and Built Environment, University of Nottingham, Nottingham, UK
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Yvonne de Kluizenaar
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Piet Jacobs
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Wouter Borsboom
- Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands
| | - Ian Hall
- Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, UK
| | - Benjamin Jones
- Department of Architecture and Built Environment, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Leanderson P. Isocyanates and hydrogen cyanide in fumes from heated proteins and protein-rich foods. INDOOR AIR 2019; 29:291-298. [PMID: 30548495 DOI: 10.1111/ina.12526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/07/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Toxic compounds in cooking fumes could cause respiratory problems. In the present study, the formation of isocyanic acid (ICA), methyl isocyanate (MIC), and hydrogen cyanide (HCN) was studied during the heating of proteins or frying of protein-rich foods. Heating was performed in an experimental setup using a tube oven set at 200-500°C and in a kitchen when foods with different protein content were fried at a temperature around 300°C. ICA, MIC, and HCN were all generated when protein or meat was heated. Individual amino acids were also heated, and there was a significant positive correlation between their respective nitrogen content and the formation of the measured compounds. Gas from heated protein or meat also caused carbamylation in albumin. ICA, MIC, and HCN were also present in fumes generated when meat, egg, and halloumi were fried in a kitchen pan. The levels of ICA were here twice that of the Swedish occupational exposure limit. If ICA, MIC, and HCN in fumes from heated protein-rich foods could contribute to the risk of airway dysfunction among those exposed is not clear, but it is important to avoid inhaling frying and grilling fumes and to equip kitchens with good exhaust ventilation.
Collapse
Affiliation(s)
- Per Leanderson
- Department of Clinical and Experimental Medicine, Occupational and Environmental Medicine Center, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Gillooly SE, Zhou Y, Vallarino J, Chu MT, Michanowicz DR, Levy JI, Adamkiewicz G. Development of an in-home, real-time air pollutant sensor platform and implications for community use. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:440-450. [PMID: 30359926 PMCID: PMC6250577 DOI: 10.1016/j.envpol.2018.10.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 05/19/2023]
Abstract
Air pollution exposure characterization has been shaped by many constraints. These include technologies that lead to insufficient coverage across space and/or time in order to characterize individual or community-level exposures with sufficient accuracy and precision. However, there is now capacity for continuous monitoring of many air pollutants using comparatively inexpensive, real-time sensors. Crucial questions remain regarding whether or not these sensors perform adequately for various potential end uses and whether performance varies over time or across ambient conditions. Performance scrutiny of sensors via lab- and field-testing and calibration across their lifetime is necessary for interpretation of data, and has important implications for end users including cost effectiveness and ease of use. We developed a comparatively lower-cost, portable, in-home air sampling platform and a guiding development and maintenance workflow that achieved our goal of characterizing some key indoor pollutants with high sensitivity and reasonable accuracy. Here we describe the process of selecting, validating, calibrating, and maintaining our platform - the Environmental Multi-pollutant Monitoring Assembly (EMMA) - over the course of our study to-date. We highlight necessary resources and consider implications for communities or researchers interested in developing such platforms, focusing on PM2.5, NO, and NO2 sensors. Our findings emphasize that lower-cost sensors should be deployed with caution, given financial and resource costs that greatly exceed sensor costs, but that selected community objectives could be supported at lesser cost and community-based participatory research strategies could be used for more wide-ranging goals.
Collapse
Affiliation(s)
- Sara E Gillooly
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Yulun Zhou
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Jose Vallarino
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - MyDzung T Chu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Drew R Michanowicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan I Levy
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Gary Adamkiewicz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
8
|
Cox J, Isiugo K, Ryan P, Grinshpun SA, Yermakov M, Desmond C, Jandarov R, Vesper S, Ross J, Chillrud S, Dannemiller K, Reponen T. Effectiveness of a portable air cleaner in removing aerosol particles in homes close to highways. INDOOR AIR 2018; 28:818-827. [PMID: 30133950 PMCID: PMC6188808 DOI: 10.1111/ina.12502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/19/2018] [Indexed: 05/18/2023]
Abstract
Outdoor traffic-related airborne particles can infiltrate a building and adversely affect the indoor air quality. Limited information is available on the effectiveness of high efficiency particulate air (HEPA) filtration of traffic-related particles. Here, we investigated the effectiveness of portable HEPA air cleaners in reducing indoor concentrations of traffic-related and other aerosols, including black carbon (BC), PM2.5 , ultraviolet absorbing particulate matter (UVPM) (a marker of tobacco smoke), and fungal spores. This intervention study consisted of a placebo-controlled cross-over design, in which a HEPA cleaner and a placebo "dummy" were placed in homes for 4-weeks each, with 48-hour air sampling conducted prior to and during the end of each treatment period. The concentrations measured for BC, PM2.5 , UVPM, and fungal spores were significantly reduced following HEPA filtration, but not following the dummy period. The indoor fraction of BC/PM2.5 was significantly reduced due to the HEPA cleaner, indicating that black carbon was particularly impacted by HEPA filtration. This study demonstrates that HEPA air purification can result in a significant reduction of traffic-related and other aerosols in diverse residential settings.
Collapse
Affiliation(s)
- Jennie Cox
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Kelechi Isiugo
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Patrick Ryan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sergey A Grinshpun
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Michael Yermakov
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Colleen Desmond
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Roman Jandarov
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Stephen Vesper
- United States Environmental Protection Agency, Cincinnati, Ohio
| | - James Ross
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
| | - Steven Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York
| | - Karen Dannemiller
- Civil, Environmental & Geodetic Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
- Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
9
|
Amouei Torkmahalleh M, Gorjinezhad S, Unluevcek HS, Hopke PK. Review of factors impacting emission/concentration of cooking generated particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:1046-1056. [PMID: 28233614 DOI: 10.1016/j.scitotenv.2017.02.088] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 05/22/2023]
Abstract
Studies have shown that exposure to particulate matter (PM) emitted while cooking is related to adverse human health effects. The level of PM emissions during cooking varies with several factors. This study reviewed controlled studies available in the cooking PM emissions literature, and found that cooking method, type and quality of the energy (heating) source, burner size, cooking pan, cooking oil, food, additives, source surface area, cooking temperature, ventilation and position of the cooking pan on the stove are influential factors affecting cooking PM emission rates and resulting concentrations. Opportunities to reduce indoor PM concentrations during cooking are proposed. Minor changes in cooking habits and manner might result in a substantial reduction in the cook's exposure to the cooking PM. Finally, the need for additional studies is discussed.
Collapse
Affiliation(s)
- Mehdi Amouei Torkmahalleh
- Chemical and Aerosol Research Team, School of Engineering, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Soudabeh Gorjinezhad
- Chemical Engineering Program, Middle East Technical University Northern Cyprus Campus, Guzelyurt, Mersin 10, Turkey
| | - Hediye Sumru Unluevcek
- Chemical Engineering Program, Middle East Technical University Northern Cyprus Campus, Guzelyurt, Mersin 10, Turkey
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699-5708, USA
| |
Collapse
|
10
|
Hodas N, Loh M, Shin HM, Li D, Bennett D, McKone TE, Jolliet O, Weschler CJ, Jantunen M, Lioy P, Fantke P. Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. INDOOR AIR 2016; 26:836-856. [PMID: 26562829 DOI: 10.1111/ina.12268] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/02/2015] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5 ) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total ), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier, a literature review was conducted and data characterizing factors influencing iFin,total were compiled. In addition to providing data for the calculation of iFin,total in various indoor environments and for a range of geographic regions, this paper discusses remaining limitations to the incorporation of PM2.5 -derived health impacts into life cycle assessments and makes recommendations regarding future research.
Collapse
Affiliation(s)
- N Hodas
- Division of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Environmental Science and Management, Portland State University, Portland, OR, USA
| | - M Loh
- Institute of Occupational Medicine, Edinburgh, UK
| | - H-M Shin
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - D Li
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - D Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - T E McKone
- School of Public Health, University of California, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - O Jolliet
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - C J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - M Jantunen
- Department of Environmental Health, National Institute for Health and Welfare, Helsinki, Finland
| | - P Lioy
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - P Fantke
- Department of Management Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Comparative study of oxidative stress biomarkers in urine of cooks exposed to three types of cooking-related particles. Toxicol Lett 2016; 255:36-42. [PMID: 27208482 DOI: 10.1016/j.toxlet.2016.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To evaluate how exposure to deep-frying oils, repeated frying oil (RFO) and restaurant waste oil (RWO) affects emission of polycyclic aromatic hydrocarbons (PAHs) and oxidative stress in male restaurant workers. METHODS The study participants included 236 male restaurant workers in 12 restaurants in Shenzhen. Airborne particulate PAHs were measured over 12h on each of two consecutive work days. Urinary 1-hydroxypyrene (1-OHP) measurements were used to indicate cooking oil fumes (COF) exposure, and urinary malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were adopted as oxidative stress markers. RESULTS The production and emission rates of ultrafine particles (UFPs) and PM2.5 were higher in the exposed groups than in the control group. The concentrations of summed PAHs were in the order of RFO-frying group>RWO-frying group>deep-frying group>unexposed control group. Urinary 1-OHP was found to be a significant predictor of elevated urinary MDA and 8-OHdG concentrations (all, P<0.05). UFPs were a significant predictor of elevated urinary 8-OHdG for restaurant workers (P<0.05). The RFO- and RWO-frying groups had higher mean urinary concentrations of 1-OHP, MDA and 8-OHdG than the control group (P<0.05). RFO exposure was found to be a significant risk factor for elevated urinary 8-OHdG and RWO exposure was found to be a significant risk factor for elevated urinary MDA (both, P<0.001). CONCLUSIONS Concentrations of urinary 1-OHP, MDA and 8-OHdG reflect occupational exposure to PAHs from COFs and oxidative stress in restaurants workers. Exposure to RFO may cause increased oxidative DNA damage, and exposure to RWO might cause increased lipid peroxidation.
Collapse
|
12
|
Sagona JA, Shalat SL, Wang Z, Ramagopal M, Black K, Hernandez M, Mainelis G. Evaluation of particle resuspension in young children's breathing zone using stationary and robotic (PIPER) aerosol samplers. JOURNAL OF AEROSOL SCIENCE 2015; 85:30-41. [PMID: 25977589 PMCID: PMC4426999 DOI: 10.1016/j.jaerosci.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Development of asthma in young children may be associated with high exposure to particulate matter (PM). However, typical stationary samplers may not represent the personal exposure of children ages 3 and younger since they may not detect particles resuspended from the floor as children play, thus reducing our ability to correlate exposure and disease etiology. To address this, an autonomous robot, the Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler, was developed to simulate the movements of children as they play on the floor. PIPER and a stationary sampler took simultaneous measurements of particle number concentration in six size channels using an optical particle counter and inhalable PM on filters in 65 homes in New Jersey, USA. To study particle resuspension, for each sampler we calculated the ratio of particle concentration measured while PIPER was moving to the average concentration of particles measured during a reference period when PIPER remained still. For all investigated particle sizes, higher particle resuspension was observed by PIPER compared to the stationary sampler. In 71% of carpeted homes a more significant (at the α = 0.05 level) resuspension of particles larger than 2.5 μm was observed by PIPER compared to the stationary sampler. Typically, particles larger than 2.5 μm were resuspended more efficiently than smaller particles, over both carpeted and bare floors. Additionally, in carpeted homes estimations of PM10 mass from the particle number concentrations measured on PIPER while it was moving were on average a factor of 1.54 higher compared to reference period when PIPER was not moving. For comparison, the stationary sampler measured an increase of PM2.5 mass by a factor of only 1.08 when PIPER was moving compared to a reference period. This demonstrates that PIPER is able to resuspend particles through movement, and provide a better characterization of the resuspended particles than stationary samplers. Accurate measurement of resuspended PM will improve estimates of children's total PM exposure.
Collapse
Affiliation(s)
- Jessica A. Sagona
- Department of Environmental Sciences, Rutgers University, 14 College Fa rm Rd., New Brunswick, NJ 08901
| | - Stuart L Shalat
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd., Piscataway, NJ 08854
| | - Zuocheng Wang
- Department of Environmental Sciences, Rutgers University, 14 College Fa rm Rd., New Brunswick, NJ 08901
| | - Maya Ramagopal
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Kathleen Black
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Marta Hernandez
- Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers University, 14 College Fa rm Rd., New Brunswick, NJ 08901
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd., Piscataway, NJ 08854
- Corresponding author: Department of Environmental Sciences, 14 College Farm Rd., New Brunswick, NJ 08901 USA. Tel: +1-848-932-5712; fax: +1-732-932-8644;
| |
Collapse
|
13
|
Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population. J Immigr Minor Health 2014; 15:646-52. [PMID: 22678304 DOI: 10.1007/s10903-012-9651-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is growing evidence that exposure to cooking oil fumes (COF) is linked to lung cancer. Existing literature on this risk was reviewed, specifically as it may relate to potentially at-risk populations such as Chinese immigrants and restaurant workers in the United States. Studies were identified by searching the NCBI database with key terms. All studies that examined the significance, prevalence, and/or mechanism(s) of the association between COF exposure and cancer (all types) were included. A majority of epidemiologic studies found associations between lung cancer and COF exposure. All studies that examined the mechanisms underlying the risk found evidence for mutagenic and/or carcinogenic compounds in COF extract and/or molecular mechanisms for COF-induced DNA damage or carcinogenesis. The evidence reviewed underscores the need to thoroughly investigate the association among at-risk groups in the United States, as well as to develop and assess concrete interventions to reduce these risks.
Collapse
|
14
|
Morawska L, Afshari A, Bae GN, Buonanno G, Chao CYH, Hänninen O, Hofmann W, Isaxon C, Jayaratne ER, Pasanen P, Salthammer T, Waring M, Wierzbicka A. Indoor aerosols: from personal exposure to risk assessment. INDOOR AIR 2013; 23:462-87. [PMID: 23574389 DOI: 10.1111/ina.12044] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/26/2013] [Indexed: 05/06/2023]
Abstract
Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden of disease from particulate matter exposure was due to indoor-generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.
Collapse
Affiliation(s)
- L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Polednik B. Particle exposure in a baroque church during Sunday Masses. ENVIRONMENTAL RESEARCH 2013; 126:215-220. [PMID: 23972742 DOI: 10.1016/j.envres.2013.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Particle concentrations were measured in a Baroque church during five Sunday Masses. The highest particle number and mass concentrations were observed when both candles and the incense were burned. They were respectively 16.8 and 14.3 times higher than outdoors for submicron particles. The exposure to particles experienced by the churchgoers, especially priests and church workers who participated in several Masses on that day, was considerably higher than the exposure experienced at the same time outdoors.
Collapse
Affiliation(s)
- Bernard Polednik
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland.
| |
Collapse
|
16
|
Collins D, Parsons M, Zinyemba C. Air quality at outdoor community events: findings from fine particulate (PM2.5) sampling at festivals in Edmonton, Alberta. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2013; 24:215-225. [PMID: 23815801 DOI: 10.1080/09603123.2013.807328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Exposure to fine particulate matter (PM2.5) is associated with a broad range of health risks. This study assessed the impacts of cooking smoke and environmental tobacco smoke on air quality at outdoor community events in Edmonton, Alberta (Canada). Data were collected at three festivals in July-August 2011 using a portable real-time airborne particle monitor. The pooled mean PM2.5 level was 12.41 μg/m(3). Peak readings varied from 52 to 1877 μg/m(3). Mean PM2.5 near food stalls was 35.42 μg/m(3), which exceeds the WHO limit for 24 h exposure. Mean PM2.5 levels with smokers present were 16.39 μg/m(3) (all points) and 9.64 μg/m(3) (excluding points near food stalls). Although some smokers withdrew from common spaces, on average 20 smokers/hour were observed within 3 m. Extending smoking bans would improve air quality and address related concerns. However, food preparation is a more pressing area for policy action to reduce PM2.5 exposure at these community events.
Collapse
Affiliation(s)
- Damian Collins
- a Earth & Atmospheric Sciences , University of Alberta , Edmonton , Canada
| | | | | |
Collapse
|
17
|
Torkmahalleh MA, Goldasteh I, Zhao Y, Udochu NM, Rossner A, Hopke PK, Ferro AR. PM2.5 and ultrafine particles emitted during heating of commercial cooking oils. INDOOR AIR 2012; 22:483-491. [PMID: 22486983 DOI: 10.1111/j.1600-0668.2012.00783.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
UNLABELLED Seven commercial cooking oils were investigated to determine the PM(2.5) mass and ultrafine particle (UFP) emission rates and emission fluxes (rates per area). The results of this study showed that at 197°C soybean, safflower, canola, and peanut oils produced lower PM(2.5) emission fluxes (6.1 × 10(5), 3.0 × 10(5), 5.4 × 10(5), and 3.9 × 10(5) μg/min/m(2), respectively) than corn, coconut, and olive oils (2.7 × 10(6), 2.9 × 10(6), and 5.7 × 10(6) μg/min/m(2), respectively). Similarly, the total particle number flux at 197°C was lower for soybean, safflower, and canola oils (3.5 × 10(13), 8.6 × 10(13), and 1.0 × 10(14) #/min/m(2), respectively) than the corn, coconut, olive, and peanut oils (2.4 × 10(14), 1.4 × 10(14), 1.7 × 10(14), and 3.8 × 10(14) #/min/m(2), respectively). In general, oils with a higher smoke temperature resulted in lower particle concentrations over the measured temperature range (131-197°C). The percentage of UFP (particle diameter D(p) 10-100 nm) to total particles (D(p) 10-500 nm) ranged from 76 to 99% for this temperature range. Particles below 10 nm in diameter were not measured. The particle number size distribution showed a polydisperse behavior with major mode sizes ranging from 25 nm (for peanut oil) to 82 nm (for soybean oil) at an oil temperature of 197°C. PRACTICAL IMPLICATIONS The study presents particle number and mass concentrations, size distributions, emission rates, and emission fluxes from heating common cooking oils. The emission rates and emission fluxes can be used as inputs to models for indirect exposure analysis studies. The study may also be used to provide guidance on choosing oils that result in lower emission rates when heated.
Collapse
Affiliation(s)
- M A Torkmahalleh
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Poon CKM, Lai ACK. An experimental study quantifying pulmonary ventilation on inhalation of aerosol under steady and episodic emission. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:1299-306. [PMID: 21752541 PMCID: PMC7116912 DOI: 10.1016/j.jhazmat.2011.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/14/2011] [Accepted: 06/14/2011] [Indexed: 05/07/2023]
Abstract
Estimating inhalation dose accurately under realistic conditions can enhance the accuracy of risk assessment. Conventional methods to quantify aerosol concentration that susceptible victims in contaminated environments are exposed to use real time particle counters to measure concentrations in environments without occupancy. Breathing-induced airflow interacts and influences concentration around nostrils or mouth and alter the ultimate exposure. This subject has not yet been systematically studied, particularly under transient emission. In this work, an experimental facility comprising two manikins was designed and fabricated. One of them mimicked realistic breathing, acting as a susceptible victim. Both steady and episodic emissions were generated in an air-conditioned environmental chamber in which two different ventilation schemes were tested. The scaled-dose of the victim under different expiratory velocities and pulmonary ventilation was measured. Inferring from results obtained from comprehensive tests, it can be concluded that breathing has very significant influence on the ultimate dose compared with that without breathing. Majority of results show that breathing reduces inhalation quantity and the reduction magnitude increases with breathing rate. This is attributed to the fact that the exhalation process plays a more significant role in reducing the dose level than the enhanced effect during inhalation period. The higher the breathing rate, the sharper the decline of the resultant concentration would be leading to lower dose. Nevertheless, under low pulmonary ventilation, results show that breathing increases dose marginally. Results also reveals that ventilation scheme also affects the exposure.
Collapse
Affiliation(s)
- Carmen K M Poon
- Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | | |
Collapse
|
19
|
Adamkiewicz G, Zota AR, Fabian MP, Chahine T, Julien R, Spengler JD, Levy JI. Moving environmental justice indoors: understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health 2011; 101 Suppl 1:S238-45. [PMID: 21836112 DOI: 10.2105/ajph.2011.300119] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The indoor environment has not been fully incorporated into the environmental justice dialogue. To inform strategies to reduce disparities, we developed a framework to identify the individual and place-based drivers of indoor environment quality. METHODS We reviewed empirical evidence of socioeconomic disparities in indoor exposures and key determinants of these exposures for air pollutants, lead, allergens, and semivolatile organic compounds. We also used an indoor air quality model applied to multifamily housing to illustrate how nitrogen dioxide (NO(2)) and fine particulate matter (PM(2.5)) vary as a function of factors known to be influenced by socioeconomic status. RESULTS Indoor concentrations of multiple pollutants are elevated in low-socioeconomic status households. Differences in these exposures are driven by the combined influences of indoor sources, outdoor sources, physical structures, and residential activity patterns. Simulation models confirmed indoor sources' importance in determining indoor NO(2) and PM(2.5) exposures and showed the influence of household-specific determinants. CONCLUSIONS Both theoretical models and empirical evidence emphasized that disparities in indoor environmental exposure can be significant. Understanding key determinants of multiple indoor exposures can aid in developing policies to reduce these disparities.
Collapse
Affiliation(s)
- Gary Adamkiewicz
- Department of Environmental Health Harvard School of Public Health, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Broich AV, Gerharz LE, Klemm O. Personal monitoring of exposure to particulate matter with a high temporal resolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2959-2972. [PMID: 22351355 DOI: 10.1007/s11356-012-0806-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Continuous monitoring of air quality is implemented by government institutions at fixed ambient sites. However, the correlation between fixed site measurements and exposure of individual persons to air contaminants is likely to be weak. MATERIALS AND METHODS We measured particulate matter both outdoors and indoors by following the spatial movement of individuals. Sixteen test persons took part and carried a measurement backpack for a 24-h period. The backpack was comprised of a Grimm Aerosol Spectrometer model 1.109, a GPS device, and a video camera for tracking of human behavior. The spectrometer provided information about particle numbers and mass in 32-size classes with a high temporal resolution of 6 s. RESULTS The personal exposure of individuals during 24 h could significantly exceed the outdoor particulate matter (PM)(10) concentrations measured at the fixed sites. The average 24-h exposure of all test persons for PM(10) varied from 27 to 322 μg m(-3). Environmental tobacco smoke and cooking emissions were among the main indoor sources for PM. The amount of particulate matter a test person was exposed to was highly dependent on the spatial behavior and the surrounding microenvironment conditions. DISCUSSION Large-scale experiments including personal measurements might help to improve modeling approaches to approximate the actual exposure on a statistically sound basis.
Collapse
Affiliation(s)
- Anna V Broich
- Climatology Working Group, University of Münster, Robert-Koch-Str. 26, 48149, Münster, Germany.
| | | | | |
Collapse
|
21
|
Clark NA, Allen RW, Hystad P, Wallace L, Dell SD, Foty R, Dabek-Zlotorzynska E, Evans G, Wheeler AJ. Exploring variation and predictors of residential fine particulate matter infiltration. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3211-24. [PMID: 20948956 PMCID: PMC2954577 DOI: 10.3390/ijerph7083211] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 12/20/2022]
Abstract
Although individuals spend the majority of their time indoors, most epidemiological studies estimate personal air pollution exposures based on outdoor levels. This almost certainly results in exposure misclassification as pollutant infiltration varies between homes. However, it is often not possible to collect detailed measures of infiltration for individual homes in large-scale epidemiological studies and thus there is currently a need to develop models that can be used to predict these values. To address this need, we examined infiltration of fine particulate matter (PM(2.5)) and identified determinants of infiltration for 46 residential homes in Toronto, Canada. Infiltration was estimated using the indoor/outdoor sulphur ratio and information on hypothesized predictors of infiltration were collected using questionnaires and publicly available databases. Multiple linear regression was used to develop the models. Mean infiltration was 0.52 ± 0.21 with no significant difference across heating and non-heating seasons. Predictors of infiltration were air exchange, presence of central air conditioning, and forced air heating. These variables accounted for 38% of the variability in infiltration. Without air exchange, the model accounted for 26% of the variability. Effective modelling of infiltration in individual homes remains difficult, although key variables such as use of central air conditioning show potential as an easily attainable indicator of infiltration.
Collapse
Affiliation(s)
- Nina A. Clark
- Health Canada, 269 Laurier Ave West, Ottawa, Ontario K1A 0K9, Canada; E-Mail: (N.A.C.)
| | - Ryan W. Allen
- Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada; E-Mail: (R.W.A.)
| | - Perry Hystad
- University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada; E-Mail: (P.H.)
| | - Lance Wallace
- 11568 Woodhollow Ct, Reston, VA 20191, USA; E-Mail: (L.W.)
| | - Sharon D. Dell
- The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; E-Mail: (S.D.D.); (R.F.)
| | - Richard Foty
- The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada; E-Mail: (S.D.D.); (R.F.)
| | | | - Greg Evans
- University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada; E-Mail: (G.E)
| | - Amanda J. Wheeler
- Health Canada, 269 Laurier Ave West, Ottawa, Ontario K1A 0K9, Canada; E-Mail: (N.A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-613-948-3686; Fax: +1-613-948-8482
| |
Collapse
|
22
|
Héroux ME, Clark N, Van Ryswyk K, Mallick R, Gilbert NL, Harrison I, Rispler K, Wang D, Anastassopoulos A, Guay M, MacNeill M, Wheeler AJ. Predictors of indoor air concentrations in smoking and non-smoking residences. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:3080-99. [PMID: 20948949 PMCID: PMC2954570 DOI: 10.3390/ijerph7083080] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 12/17/2022]
Abstract
Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants' activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants' activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants.
Collapse
Affiliation(s)
- Marie-Eve Héroux
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Nina Clark
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Keith Van Ryswyk
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Ranjeeta Mallick
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Nicolas L. Gilbert
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Ian Harrison
- Regina Qu’Appelle Health Region, 2110 Hamilton Street, Regina, Saskatchewan S4P 2E3, Canada; E-Mails: (I.H.); (K.R.)
| | - Kathleen Rispler
- Regina Qu’Appelle Health Region, 2110 Hamilton Street, Regina, Saskatchewan S4P 2E3, Canada; E-Mails: (I.H.); (K.R.)
| | - Daniel Wang
- Environment Canada, 335 River Road, Ottawa, Ontario K1A 0H3, Canada; E-Mail:
| | | | - Mireille Guay
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Morgan MacNeill
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| | - Amanda J. Wheeler
- Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K9, Canada; E-Mails: (N.C.); (K.V.R.); (R.M.); (N.L.G.); (M.G.); (M.M.); (A.W.)
| |
Collapse
|