1
|
Yao N, Li W, Hu L, Fang N. Do mould inhibitors alter the microbial community structure and antibiotic resistance gene profiles on textiles? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168808. [PMID: 38000736 DOI: 10.1016/j.scitotenv.2023.168808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Mould inhibitors are closely associated with human health and have been extensively applied to textiles to prevent mould and insect infestations. However, the impact of these mould inhibitors on the microbial community structure on textiles and antibiotic resistance gene (ARG) profiles remains largely unexplored. In this study, testing techniques, including high-throughput quantitative PCR and Illumina sequencing, were employed to analyse the effects of three types of mould inhibitors -para-dichlorobenzene (PDCB), naphthalene, and natural camphor balls-on the composition of microbial communities and ARG profiles. The microbial mechanisms underlying these effects were also investigated. The experiments revealed that PDCB reduced the diversity of bacterial communities on textiles, whereas naphthalene and natural camphor balls exerted relatively minor effects. In contrast with bacterial diversity, PDCB enhanced the diversity of fungal communities on textiles, but significantly reduced their abundance. Naphthalene had the least impact on fungal communities; however, it notably increased the relative abundance of Basidiomycota. All three types of mould inhibitors substantially altered ARG profiles. Potential mechanisms responsible for the alterations in ARG profiles include microbial community succession and horizontal gene transfer mediated by mobile genetic elements. PDCB prominently increased the abundance of ARGs, mainly attributable to the relative enrichment of potential hosts (including certain γ-Proteobacteria and Bacillales) for specific ARGs. Thus, this study has important implications for the selection of mould inhibitors, as well as the assessment of microbial safety in textiles.
Collapse
Affiliation(s)
- Ningyuan Yao
- College of Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Wei Li
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Lanfang Hu
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Nan Fang
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
2
|
Oba BT, Zheng X, Aborisade MA, Kumar A, Battamo AY, Liu J, Laghari AA, Sun P, Yang Y, Zhao L. Application of KHSO 5 for remediation of soils polluted by organochlorides: A comprehensive study on the treatment's efficacy, environmental implications, and phytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162023. [PMID: 36739032 DOI: 10.1016/j.scitotenv.2023.162023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Soil pollution caused by complex organochloride mixtures has been increasing in many parts of the world in recent years; as a result, countless numbers of people are exposed to dangerous pollutions; hence, the treatment of organochlorides-polluted soils is gaining considerable attention. In this study, the potential of unactivated peroxymonosulfate (KHSO5) in remediating soil co-contaminated with trichlorophenol, para-dichlorobenzene, and para-chloro-meta-cresol was investigated. In addition, the treatment's collateral effect on critical soil properties was explored. The result revealed that treating 10 g of soil with 20 mL of 5 mM KHSO5 for 60 min could oxidize 70.49% of the total pollutants. The pH of the soil was decreased following the treatment. The significant decrease, (p < 0.05), in the soil organic matter following the remediation has affected cation exchange capacity, and available nitrogen. It was also observed that the treatment reduced the β-glucosidase, urease, invertase, and cellulase activities significantly, (p < 0.05). The treatment, on the other hand, brought negligible effects on available phosphorus, available potassium, and particle size distribution. The phytotoxicity tests, which included seed germination and root elongation and soil respiration tests revealed that the treatment did not leach toxins into the treated soil. The treatment method was found to be relatively ecofriendly and cost effective.
Collapse
Affiliation(s)
- Belay Tafa Oba
- Department of Chemistry, Arba Minch University, Arba Minch 21, Ethiopia
| | - Xuehao Zheng
- Sichuan Provincial Engineering Laboratory of Monitoring and Control for Soil Erosion in Dry Valleys, China West Normal University, Nanchong 637009, China
| | | | - Akash Kumar
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Azhar Ali Laghari
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Zhu J, Wei Y. Exposure to p-dichlorobenzene and serum α-Klotho levels among US participants in their middle and late adulthood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159768. [PMID: 36309252 DOI: 10.1016/j.scitotenv.2022.159768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
P-dichlorobenzene (p-DCB) is a volatile compound commonly used as pest repellent and air deodorant in the home and public buildings, leading to a widespread exposure in indoor environments. There has been an increasing concern about its metabolic and endocrine effects. In this study, we explored the relation between p-DCB exposure and serum levels of soluble α-Klotho, an anti-aging hormone, in US adults. A nationally representative subsample of 1485 adults 40-79 ages in the 2013-2016 National Health and Nutrition Examination Survey was analyzed for the association between p-DCB exposure, measured as urinary concentrations of 2,5-dichlorophenol (2,5-DCP), the major metabolite of p-DCB, and serum α-Klotho levels using multiple general linear models, adjusting for potential confounders. Age- and sex-specific analyses were further conducted. The weighted geometric mean of urinary 2,5-DCP was 2.43 μg/L and the weighted mean of serum α-Klotho was 831.97 pg/mL in the study participants during 2013-2016. After adjusting for potential confounders and urinary creatinine, urinary 2,5-DCP was significantly associated with decreased serum levels of α-Klotho (regression coefficient β = -9.88; p = 0.0133) in the total study population. When age- and sex-specific analyses being conducted, a significantly inverse association was found in older adults aged 60-79 years (β = -20.40; p = 0.0001) and in males (β = -13.81; p = 0.0097), but not in the middle ages (40-59 years) and in females. The strongest association was observed in older (60-79 years) male participants, with a 25.43 pg/mL reduction of α-Klotho levels per 1-unit increase of 2,5-DCP concentrations (p = 0.0008). This is the first study demonstrating a relation between p-DCB exposure, measured as 2,5-DCP, and decreased α-Klotho levels in older males. Additional studies would further explore these interactions and elucidate the pathogenesis of the potential effects of p-DCB exposure on aging.
Collapse
Affiliation(s)
- Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA, USA
| | - Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
4
|
Oba BT, Zheng X, Aborisade MA, Battamo AY, Kumar A, Kavwenje S, Liu J, Sun P, Yang Y, Zhao L. Environmental opportunities and challenges of utilizing unactivated calcium peroxide to treat soils co-contaminated with mixed chlorinated organic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118239. [PMID: 34592328 DOI: 10.1016/j.envpol.2021.118239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/20/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Calcium peroxide (CaO2) has been proven to oxidize various organic pollutants when they exist as a single class of compounds. However, there is a lack of research on the potential of unactivated CaO2 to treat mixed chlorinated organic pollutants in soils. This study examined the potential of CaO2 in treating soils co-contaminated with p-dichlorobenzene (p-DCB) and p-chloromethane cresol (PCMC). The effects of CaO2 dosage and treatment duration on the rate of degradation were investigated. Furthermore, the collateral effects of the treatment on treated soil characteristics were studied. The result showed that unactivated CaO2 could oxidize mixed chlorinated organic compounds in wet soils. More than 69% of the pollutants in the wet soil were mineralized following 21 days of treatment with 3% (w/w) CaO2. The hydroxyl radicals played a significant role in the degradation process among the other decomposition products of hydrogen peroxide. Following the oxidation process, the treated soil pH was increased due to the formation of calcium hydroxide. Soil organic matter, cation exchange capacity, soil organic carbon, total nitrogen, and certain soil enzyme activities of the treated soil were decreased. However, the collateral effects of the system on electrical conductivity, available phosphorus, and particle size distribution of the treated soil were not significant. Likewise, since no significant release of heavy metals was seen in the treated soil matrix, the likelihood of metal ions as co-pollutants after treatment was low. Therefore, CaO2 can be a better alternative for treating industrial sites co-contaminated with chlorinated organic compounds.
Collapse
Affiliation(s)
- Belay Tafa Oba
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; College of Natural Science, Arba Minch University, Arba minch, 21, Ethiopia
| | - Xuehao Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | | | - Akash Kumar
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Sheila Kavwenje
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Yoshida T, Mimura M, Sakon N. Estimating household exposure to moth repellents p-dichlorobenzene and naphthalene and the relative contribution of inhalation pathway in a sample of Japanese children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146988. [PMID: 34088142 DOI: 10.1016/j.scitotenv.2021.146988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
p-Dichlorobenzene (DCB) and naphthalene (NP) used as moth repellents in indoor environments are suspected to be carcinogenic. To evaluate their adverse effects on health with chronic exposure in the general population, especially children, we need to know their amounts absorbed by the body and the relationships between their amounts and air quality in residences. At present, little is known worldwide about them. This study examined the daily intakes of DCB and NP by Japanese children via all exposure pathways and the contribution of indoor air quality to the intakes. First-morning void urine samples from the subjects aged 6 to 15 years and air samples in their bedrooms were collected. Airborne NP and DCB and their urinary metabolites were measured. Significant correlations were detected between their airborne concentrations and the urinary excretion amounts of their corresponding metabolites. The absorption amounts of DCB and NP by inhalation of the children while at home were calculated to be 26 and 2.0 ng/kg b.w./h, respectively, as median values. The daily intake was estimated to be 2.4 and 0.90 μg/kg b.w./d (median), respectively. The fractions (median) of inhalation absorption amounts to overall absorption amounts for DCB and NP were 30% and 5%, respectively. In children living in residences where the indoor air concentrations of these compounds were more than half the level of each guideline value for indoor air quality, the main exposure route for their absorption was considered to be inhalation while at home. The indoor concentrations of DCB exceeded the lifetime excess cancer risk level of 10-4 in 22% of the residences and 10-3 in 9% of them. Our findings indicate the need to further reduce airborne concentrations of DCB in Japanese residences to prevent its adverse effects on the health of Japanese children.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.
| | - Mayumi Mimura
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Naomi Sakon
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
6
|
Norbäck D, Hashim Z, Ali F, Hashim JH. Asthma symptoms and respiratory infections in Malaysian students-associations with ethnicity and chemical exposure at home and school. ENVIRONMENTAL RESEARCH 2021; 197:111061. [PMID: 33785322 DOI: 10.1016/j.envres.2021.111061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Little is known on respiratory effects of indoor chemicals in the tropics. We investigated associations between asthma and respiratory infections in Malaysian students and chemical exposure at home and at school. Moreover, we investigated differences in home environment between the three main ethnic groups in Malaysia (Malay, Chinese, Indian). Totally, 462 students from 8 junior high schools in Johor Bahru participated (96% participation rate). The students answered a questionnaire on health and home environment. Climate, carbon dioxide (CO2), volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) were measured inside and outside the schools. Multilevel logistic regression was applied to study associations between exposure and health. Totally 4.8% were smokers, 10.3% had wheeze, 9.3% current asthma, and had 18.8% any respiratory infection in the past 3 months. Malay students had more dampness or mould (p < 0.001), more environmental tobacco smoke (ETS) (p < 0.001) and more cats (p < 0.001) at home as compared to Chinese or Indian students. Wheeze was associated with ethnicity (p = 0.02; lower in Indian), atopy (p = 0.002), current smoking (p = 0.02) and recent indoor painting at home (p = 0.03). Current asthma was associated with ethnicity (p = 0.001; lower in Chinese) and para-dichlorobenzene in classroom air (p = 0.008). Respiratory infections were related to atopy (p = 0.002), ethylbenzene (p = 0.02) and para-dichlorobenzene (p = 0.01) in classroom air. Para-dichlorobenzene is used in Asia against insects. In conclusion, chemical emissions from recent indoor painting at home can increase the risk of wheeze. In schools, para-dichlorobenzene can increase the risk of current asthma and respiratory infections while ethylbenzene can increase the risk of respiratory infections.
Collapse
Affiliation(s)
- Dan Norbäck
- Uppsala University, Department of Medical Science, Occupational and Environmental Medicine, University Hospital, 75185, Uppsala, Sweden.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor, Malaysia
| | - Faridah Ali
- Primary Care Unit, Johor State Health Department, 80100, Johor Bahru, Malaysia
| | - Jamal Hisham Hashim
- Faculty of Health Sciences, Universiti Selangor, 40000, Shah Alam, Malaysia; Department of Community Health, National University of Malaysia, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Almomani F, Bhosale R, Shawaqfah M. Solar oxidation of toluene over Co doped nano-catalyst. CHEMOSPHERE 2020; 255:126878. [PMID: 32387727 DOI: 10.1016/j.chemosphere.2020.126878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Cobalt (Co) co-doped TiO2 photo-catalysis were synthesized, characterized and tested toward solar photocatalytic oxidation of toluene (TOL). A multi-technique approach was used to characterize and relate the photo-catalytic property to photo-oxidation performance. Adding Co to TiO2 significantly changed crystal size and surface morphology (surface area, pore-volume, and pore size), reduced the bandgap energy of TiO2 and improved the solar photo-oxidation of TOL. Up to 96.5% of TOL conversion (%TNconv) was achieved by using Co-TiO2 compared with 28.5% with naked TiO2. The maximum %TNconv was achieved at high hydraulic retention time (HRT) ≥ 100 s, Co content in the photo-catalyst of 5 wt% and relative humidity (%RH) of 50%. The mechanism of TOL solar oxidation was related to the concentration of OH• and •O2-. radicals produced from the generated electrons and holes on the surface of Co-TiO2. The products formed during the photo-catalytic oxidation of TOL were mainly CO2 and water, and minor concentration of benzene and benzaldehyde. Overall, the Co-TiO2 could be used as a potential photo-catalyst for the oxidation of toluene in gas-phase streams on an industrial scale.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, Qatar University, P O Box - 2713, Doha, Qatar.
| | - Rahul Bhosale
- Department of Chemical Engineering, Qatar University, P O Box - 2713, Doha, Qatar
| | - Moayyed Shawaqfah
- Department of Civil Engineering, Al Al-Bayt University, Mafraq, Jordan
| |
Collapse
|
8
|
Reanthonglert W, Yazawa R, Imwiset K, Bureekaew S, Ogawa M. Mechanochemical Encapsulation of an Aromatic Hydrocarbon into Mesoporous Silica as a Simple Slow Release Formulation. ChemistrySelect 2017. [DOI: 10.1002/slct.201701274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wichayut Reanthonglert
- School of Energy Science and Engineering; Vidyasirimedhi Institute of Science and Technology; 555 Moo 1 Payupnai, Wangchan Rayong 21210 Thailand
| | - Risa Yazawa
- Department of Earth, Environment and Resources Sciences; Graduate School of Creative Science and Engineering; Waseda University; Nishiwaseda 1-6-1, Shinjuku-ku Tokyo 169-8050 Japan
| | - Kamonnart Imwiset
- School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; 555 Moo 1 Payupnai, Wangchan Rayong 21210 Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering; Vidyasirimedhi Institute of Science and Technology; 555 Moo 1 Payupnai, Wangchan Rayong 21210 Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering; Vidyasirimedhi Institute of Science and Technology; 555 Moo 1 Payupnai, Wangchan Rayong 21210 Thailand
| |
Collapse
|
9
|
Miyake Y, Tokumura M, Wang Q, Wang Z, Amagai T. Comparison of the volatile organic compound recovery rates of commercial active samplers for evaluation of indoor air quality in work environments. AIR QUALITY, ATMOSPHERE, & HEALTH 2017; 10:737-746. [PMID: 28936271 PMCID: PMC5581818 DOI: 10.1007/s11869-017-0465-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/07/2017] [Indexed: 06/07/2023]
Abstract
The Industrial Safety and Health Law in Japan established administrative levels for volatile organic compounds (VOCs) in indoor air. In the present study, these 49 VOCs were extracted from the absorbents of commercial active samplers from Sibata Scientific Technology (carbon-bead active sampler), SKC Inc. (Anasorb CSC sorbent tube), and Gastec (bead-shaped activated carbon tube) using carbon disulfide, and the recovery rates were compared. The VOCs were added to the adsorbents at three concentration levels relative to the administrative levels (×0.5, ×1, and ×2). The following mean recovery rates of the 49 VOCs were obtained at the ×0.5, ×1, and ×2 levels: 86, 93, and 92% for the Sibata sampler; 78, 82, and 84% for the SKC sampler; and 94, 93, and 90% for the Gastec sampler. With the Sibata sampler, the recovery rates of 78% (×0.5), 84% (×1), and 90% (×2) of the VOCs measured in this study were adequate (80-120%); the corresponding percentages for the SKC sampler were 67% (×0.5), 69% (×1), and 69% (×2), and those for the Gastec sampler were 92% (×0.5), 86% (×1), and 86% (×2). The effects of the octanol-water partition coefficients and vapor pressures of the VOCs on the recovery rates were investigated. The recovery rates increased with increases in the octanol-water partition coefficient and the vapor pressure and then leveled off. The recovery rates for the o-, m-, and p-cresol isomers were much lower than those obtained for other VOCs at all three concentration levels and with all samplers.
Collapse
Affiliation(s)
- Yuichi Miyake
- Graduate School of Nutritional and Environmental Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Masahiro Tokumura
- Graduate School of Nutritional and Environmental Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Qi Wang
- Graduate School of Nutritional and Environmental Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Zhiwei Wang
- Graduate School of Nutritional and Environmental Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| | - Takashi Amagai
- Graduate School of Nutritional and Environmental Science, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526 Japan
| |
Collapse
|
10
|
Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. SUSTAINABILITY 2016. [DOI: 10.3390/su8121216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Csiszar SA, Meyer DE, Dionisio KL, Egeghy P, Isaacs KK, Price PS, Scanlon KA, Tan YM, Thomas K, Vallero D, Bare JC. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11922-11934. [PMID: 27668689 PMCID: PMC7388028 DOI: 10.1021/acs.est.6b02277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.
Collapse
Affiliation(s)
- Susan A Csiszar
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, hosted at U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| | - David E Meyer
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| | - Kathie L Dionisio
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Peter Egeghy
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kristin K Isaacs
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Paul S Price
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kelly A Scanlon
- AAAS Science & Technology Policy Fellow hosted by the U.S. Environmental Protection Agency, Office of Air and Radiation, Office of Radiation and Indoor Air, Washington, DC 20460, United States
| | - Yu-Mei Tan
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Kent Thomas
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Daniel Vallero
- Office of Research and Development, National Exposure Research Laboratory, U.S. Environmental Protection Agency , Research Triangle Park, North Carolina 27711, United States
| | - Jane C Bare
- Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency , Cincinnati, Ohio 45268, United States
| |
Collapse
|
12
|
Wei Y, Zhu J. Para-Dichlorobenzene Exposure Is Associated with Thyroid Dysfunction in US Adolescents. J Pediatr 2016; 177:238-243. [PMID: 27476635 DOI: 10.1016/j.jpeds.2016.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To examine the association between exposure to para-dichlorobenzene, measured as urinary concentrations of 2,5-dichlorophenol (2,5-DCP), and thyroid function in US adolescents. STUDY DESIGN A nationally representative subsample of 618 adolescents aged 12-19 years in the 2007-2008 and 2011-2012 National Health and Nutrition Examination Survey was analyzed for the association of urinary 2,5-DCP with serum thyroid function measures using multivariate logistic and general linear regression models. RESULTS After adjusting for potential confounders, we found a significantly positive association between urinary concentrations of 2,5-DCP and serum levels of thyroid-stimulating hormone and thyroglobulin in adolescents. Furthermore, urinary 2,5-DCP was associated with an increased prevalence of hypothyroidism in the study population. CONCLUSIONS This study demonstrates a potential relationship between para-dichlorobenzene exposure, measured as urinary 2,5-DCP, and thyroid dysfunction in adolescents; however, further studies are needed to confirm our findings and to elucidate mechanisms of action.
Collapse
Affiliation(s)
- Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA.
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, GA
| |
Collapse
|
13
|
Wei Y, Zhu J. Urinary concentrations of 2,5-dichlorophenol and diabetes in US adults. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:329-333. [PMID: 25827312 DOI: 10.1038/jes.2015.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/06/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Para-dichlorobenzene (p-DCB) products are widely used in the home and public buildings, leading to exposure to this chemical in indoor environments. In this study, we explored potential relationships between p-DCB exposure and diabetes in US adults by analyzing a nationally representative subsample of 3063 adult participants aged 20-79 years randomly selected for measurement of urinary concentrations of 2,5-dichlorophenol (2,5-DCP), the major metabolite of p-DCB, in the 2007-2010 National Health and Nutrition Examination Survey. Median urinary 2,5-DCP concentration was 7.0 μg/l (interquartile range: 2.1-29.9). Of the participants, 560 (13.6%) were diabetic. A dose-dependent increase in the prevalence of diabetes was observed in the study participants across quartiles of urinary 2,5-DCP (P-trend<0.0001). After adjusting for potential confounders, individuals in the highest quartile of urinary 2,5-DCP had an increased odds of diabetes (OR=1.59 (95% CI: 1.06, 2.40)) compared with individuals with the lowest quartile. The highest quartile of urinary 2,5-DCP was also positively associated with insulin resistance (adjusted β=0.75; 95% CI: 0.27, 1.24). This study demonstrated a potential association between exposure to p-DCB, measured as urinary concentrations of 2,5-DCP, and diabetes in US adults. Additional epidemiologic and mechanistic studies would further explore these interactions.
Collapse
Affiliation(s)
- Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, Macon, Georgia, USA
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, Fort Valley, Georgia, USA
| |
Collapse
|
14
|
Wei Y, Zhu J. Associations between urinary concentrations of 2,5-dichlorophenol and metabolic syndrome among non-diabetic adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:581-588. [PMID: 26330318 DOI: 10.1007/s11356-015-5291-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
We investigated in this study the relationship between exposure to para-dichlorobenzene (p-DCB), measured as urinary concentrations of 2,5-dichlorophenol (2,5-DCP), and metabolic syndrome in non-diabetic adult participants. A nationally representative subsample of 1706 non-diabetic adult participants aged 20-79 years randomly selected for measurement of urinary concentrations of 2,5-DCP in the 2007-2010 US National Health and Nutrition Examination Survey was analyzed. A dose-dependent increase in the prevalence of metabolic syndrome was observed in the study participants across quartiles of urinary 2,5-DCP (p-trend = 0.0025). After adjusting for potential confounders, individuals in the third and fourth quartile of urinary 2,5-DCP had 1.47 (95% CI 1.02, 2.14) and 1.56 (95% CI 1.10, 2.23) increased odds of metabolic syndrome, respectively, compared with individuals with the lowest quartile. Of the five components of metabolic syndrome, waist circumference and HDL-cholesterol showed a significant and monotonic association with urinary 2,5-DCP. Participants with the highest quartile of 2,5-DCP had 3.18 cm (95% CI 1.34, 5.02) higher mean waist circumference and 2.83 mg/dL (95% CI -4.68, -0.98) lower mean HDL-cholesterol than the participants in the lowest quartile. This study suggests a potential relationship between p-DCB exposure and metabolic syndrome in non-diabetic adults. Prospective epidemiological and mechanistic studies are needed to further explore these interactions.
Collapse
Affiliation(s)
- Yudan Wei
- Department of Community Medicine, Mercer University School of Medicine, 1550 College St., Macon, GA, 31207, USA.
| | - Jianmin Zhu
- Department of Mathematics and Computer Science, Fort Valley State University, 1005 State University Dr., Fort Valley, GA, USA
| |
Collapse
|
15
|
Kumar A, Singh BP, Punia M, Singh D, Kumar K, Jain VK. Determination of volatile organic compounds and associated health risk assessment in residential homes and hostels within an academic institute, New Delhi. INDOOR AIR 2014; 24:474-483. [PMID: 24438189 DOI: 10.1111/ina.12096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/11/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to investigate the concentrations of volatile organic compounds (VOCs) in different indoor microenvironments of residential homes and hostels in an academic institute, in New Delhi, during March-May 2011. Eleven VOCs (aromatic and halogenated) were assessed. Sampling and analytical procedure were based on National Institute for Occupational Safety and Health (NIOSH) standard method. The lifetime cancer and non-cancer risk were calculated for targeted VOCs using US Environmental Protection Agency guidelines. The mean concentrations of ∑ VOCs (sum of monitored VOCs) and individual VOC were found to be higher indoors as compared to outdoors at both types of premises. Indoor to outdoor (I/O) ratios of the targeted VOCs exceeded 1.0, suggesting the significant presence of indoor sources. Strong correlations between I/O concentrations of VOCs in the current study suggest the presence of common sources. Factor analysis (FA) was used for source evaluation separately at two premise types. The estimated lifetime cancer risks in the current study for all occupants at both premises exceeded 10(-6) .
Collapse
Affiliation(s)
- A Kumar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
16
|
Shinohara N, Tokumura M, Kazama M, Yonemoto Y, Yoshioka M, Kagi N, Hasegawa K, Yoshino H, Yanagi U. Indoor air quality and thermal comfort in temporary houses occupied after the Great East Japan Earthquake. INDOOR AIR 2014; 24:425-437. [PMID: 24354902 DOI: 10.1111/ina.12082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
UNLABELLED Thermal conditions and indoor concentrations of aldehydes, volatile organic compounds (VOCs), and NO2 were investigated in 19 occupied temporary houses in 15 temporary housing estates constructed in Minamisoma City, Fukushima, Japan. The data were collected in winter, spring, and summer in January to July 2012. Thermal conditions in temporary log houses in the summer were more comfortable than those in pre-fabricated houses. In the winter, the indoor temperature was uncomfortably low in all of the houses, particularly the temporary log houses. Indoor air concentrations for most aldehydes and VOCs were much lower than the indoor guidelines, except for those of p-dichlorobenzene, acetaldehyde, and total VOCs. The indoor p-dichlorobenzene concentrations exceeded the guideline (240 μg/m(3)) in 18% of the temporary houses, and the 10(-3) cancer risk level (91 μg/m(3)) was exceeded in winter in 21% due to use of moth repellents by the occupants. Indoor acetaldehyde concentrations exceeded the guideline (48 μg/m(3) ) in about half of the temporary houses, likely originating from the wooden building materials. Indoor NO2 concentrations in the temporary houses were significantly higher in houses where combustion heating appliances were used (0.17 ± 0.11 ppm) than in those where they were not used (0.0094 ± 0.0065 ppm). PRACTICAL IMPLICATIONS In the winter, log-house-type temporary houses are comfortable in terms of humidity, dew condensation, and fungi based on the results of questionnaires and measurements, whereas pre-fabricated temporary houses are more comfortable in terms of temperature. In the summer, log-house-type temporary houses are comfortable in terms of temperature and humidity. More comfortable temporary housing in terms of temperature and humidity year-round is needed. Indoor air concentrations of p-dichlorobenzene and NO2 were quite high in some temporary houses due to occupants’ activities, such as use of moth repellents and combustion heating appliances. The government should provide recommendations for safe use of temporary houses by occupants.
Collapse
Affiliation(s)
- N Shinohara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chin JY, Godwin C, Parker E, Robins T, Lewis T, Harbin P, Batterman S. Levels and sources of volatile organic compounds in homes of children with asthma. INDOOR AIR 2014; 24:403-15. [PMID: 24329990 PMCID: PMC4057989 DOI: 10.1111/ina.12086] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 12/09/2013] [Indexed: 05/07/2023]
Abstract
UNLABELLED Many volatile organic compounds (VOCs) are classified as known or possible carcinogens, irritants, and toxicants, and VOC exposure has been associated with the onset and exacerbation of asthma. This study characterizes VOC levels in 126 homes of children with asthma in Detroit, Michigan, USA. The total target VOC concentration ranged from 14 to 2274 μg/m(3) (mean = 150 μg/m(3); median = 91 μg/m(3)); 56 VOCs were quantified; and d-limonene, toluene, p, m-xylene, and ethyl acetate had the highest concentrations. Based on the potential for adverse health effects, priority VOCs included naphthalene, benzene, 1,4-dichlorobenzene, isopropylbenzene, ethylbenzene, styrene, chloroform, 1,2-dichloroethane, tetrachloroethene, and trichloroethylene. Concentrations varied mostly due to between-residence and seasonal variation. Identified emission sources included cigarette smoking, solvent-related emissions, renovations, household products, and pesticides. The effect of nearby traffic on indoor VOC levels was not distinguished. While concentrations in the Detroit homes were lower than levels found in other North American studies, many homes had elevated VOC levels, including compounds that are known health hazards. Thus, the identification and control of VOC sources are important and prudent, especially for vulnerable individuals. Actions and policies to reduce VOC exposures, for example, sales restrictions, improved product labeling, and consumer education, are recommended. PRACTICAL IMPLICATIONS Total target VOC concentrations in the Detroit homes ranged from 14 to 2274 lg/m3, generally lower than found in earlier studies. However, a subset of houses had elevated concentrations, and levels of 1,4-dichlorobenzene, naphthalene, and benzene reached levels commensurate with excess individual cancer risks of 10(-2), 10(-3), and 10(-4), respectively. VOC concentrations varied mostly due to between-residence and season effects. The most important sources included cigarette smoking, vehicle-related emissions, building renovation, solvents, household products, and pesticides.
Collapse
Affiliation(s)
- Jo-Yu Chin
- University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | | | | | - Thomas Robins
- University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Toby Lewis
- University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Paul Harbin
- Institute for Population Health, Detroit, MI, USA
| | - Stuart Batterman
- University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Corresponding author: 1420 Washington Heights, Room 6507 SPH2, University of Michigan Ann Arbor, MI 48109-2029, USA Tel.: +1-734-763-2417; Fax: +1-734-936-7283
| |
Collapse
|
18
|
Batterman S, Su FC, Li S, Mukherjee B, Jia C. Personal exposure to mixtures of volatile organic compounds: modeling and further analysis of the RIOPA data. Res Rep Health Eff Inst 2014:3-63. [PMID: 25145040 PMCID: PMC4577247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Emission sources of volatile organic compounds (VOCs*) are numerous and widespread in both indoor and outdoor environments. Concentrations of VOCs indoors typically exceed outdoor levels, and most people spend nearly 90% of their time indoors. Thus, indoor sources generally contribute the majority of VOC exposures for most people. VOC exposure has been associated with a wide range of acute and chronic health effects; for example, asthma, respiratory diseases, liver and kidney dysfunction, neurologic impairment, and cancer. Although exposures to most VOCs for most persons fall below health-based guidelines, and long-term trends show decreases in ambient emissions and concentrations, a subset of individuals experience much higher exposures that exceed guidelines. Thus, exposure to VOCs remains an important environmental health concern. The present understanding of VOC exposures is incomplete. With the exception of a few compounds, concentration and especially exposure data are limited; and like other environmental data, VOC exposure data can show multiple modes, low and high extreme values, and sometimes a large portion of data below method detection limits (MDLs). Field data also show considerable spatial or interpersonal variability, and although evidence is limited, temporal variability seems high. These characteristics can complicate modeling and other analyses aimed at risk assessment, policy actions, and exposure management. In addition to these analytic and statistical issues, exposure typically occurs as a mixture, and mixture components may interact or jointly contribute to adverse effects. However most pollutant regulations, guidelines, and studies remain focused on single compounds, and thus may underestimate cumulative exposures and risks arising from coexposures. In addition, the composition of VOC mixtures has not been thoroughly investigated, and mixture components show varying and complex dependencies. Finally, although many factors are known to affect VOC exposures, many personal, environmental, and socioeconomic determinants remain to be identified, and the significance and applicability of the determinants reported in the literature are uncertain. To help answer these unresolved questions and overcome limitations of previous analyses, this project used several novel and powerful statistical modeling and analysis techniques and two large data sets. The overall objectives of this project were (1) to identify and characterize exposure distributions (including extreme values), (2) evaluate mixtures (including dependencies), and (3) identify determinants of VOC exposure. METHODS VOC data were drawn from two large data sets: the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study (1999-2001) and the National Health and Nutrition Examination Survey (NHANES; 1999-2000). The RIOPA study used a convenience sample to collect outdoor, indoor, and personal exposure measurements in three cities (Elizabeth, NJ; Houston, TX; Los Angeles, CA). In each city, approximately 100 households with adults and children who did not smoke were sampled twice for 18 VOCs. In addition, information about 500 variables associated with exposure was collected. The NHANES used a nationally representative sample and included personal VOC measurements for 851 participants. NHANES sampled 10 VOCs in common with RIOPA. Both studies used similar sampling methods and study periods. Specific Aim 1. To estimate and model extreme value exposures, extreme value distribution models were fitted to the top 10% and 5% of VOC exposures. Health risks were estimated for individual VOCs and for three VOC mixtures. Simulated extreme value data sets, generated for each VOC and for fitted extreme value and lognormal distributions, were compared with measured concentrations (RIOPA observations) to evaluate each model's goodness of fit. Mixture distributions were fitted with the conventional finite mixture of normal distributions and the semi-parametric Dirichlet process mixture (DPM) of normal distributions for three individual VOCs (chloroform, 1,4-DCB, and styrene). Goodness of fit for these full distribution models was also evaluated using simulated data. Specific Aim 2. Mixtures in the RIOPA VOC data set were identified using positive matrix factorization (PMF) and by toxicologic mode of action. Dependency structures of a mixture's components were examined using mixture fractions and were modeled using copulas, which address correlations of multiple components across their entire distributions. Five candidate copulas (Gaussian, t, Gumbel, Clayton, and Frank) were evaluated, and the performance of fitted models was evaluated using simulation and mixture fractions. Cumulative cancer risks were calculated for mixtures, and results from copulas and multivariate lognormal models were compared with risks based on RIOPA observations. Specific Aim 3. Exposure determinants were identified using stepwise regressions and linear mixed-effects models (LMMs). RESULTS Specific Aim 1. Extreme value exposures in RIOPA typically were best fitted by three-parameter generalized extreme value (GEV) distributions, and sometimes by the two-parameter Gumbel distribution. In contrast, lognormal distributions significantly underestimated both the level and likelihood of extreme values. Among the VOCs measured in RIOPA, 1,4-dichlorobenzene (1,4-DCB) was associated with the greatest cancer risks; for example, for the highest 10% of measurements of 1,4-DCB, all individuals had risk levels above 10(-4), and 13% of all participants had risk levels above 10(-2). Of the full-distribution models, the finite mixture of normal distributions with two to four clusters and the DPM of normal distributions had superior performance in comparison with the lognormal models. DPM distributions provided slightly better fit than the finite mixture distributions; the advantages of the DPM model were avoiding certain convergence issues associated with the finite mixture distributions, adaptively selecting the number of needed clusters, and providing uncertainty estimates. Although the results apply to the RIOPA data set, GEV distributions and mixture models appear more broadly applicable. These models can be used to simulate VOC distributions, which are neither normally nor lognormally distributed, and they accurately represent the highest exposures, which may have the greatest health significance. Specific Aim 2. Four VOC mixtures were identified and apportioned by PMF; they represented gasoline vapor, vehicle exhaust, chlorinated solvents and disinfection byproducts, and cleaning products and odorants. The last mixture (cleaning products and odorants) accounted for the largest fraction of an individual's total exposure (average of 42% across RIOPA participants). Often, a single compound dominated a mixture but the mixture fractions were heterogeneous; that is, the fractions of the compounds changed with the concentration of the mixture. Three VOC mixtures were identified by toxicologic mode of action and represented VOCs associated with hematopoietic, liver, and renal tumors. Estimated lifetime cumulative cancer risks exceeded 10(-3) for about 10% of RIOPA participants. The dependency structures of the VOC mixtures in the RIOPA data set fitted Gumbel (two mixtures) and t copulas (four mixtures). These copula types emphasize dependencies found in the upper and lower tails of a distribution. The copulas reproduced both risk predictions and exposure fractions with a high degree of accuracy and performed better than multivariate lognormal distributions. Specific Aim 3. In an analysis focused on the home environment and the outdoor (close to home) environment, home VOC concentrations dominated personal exposures (66% to 78% of the total exposure, depending on VOC); this was largely the result of the amount of time participants spent at home and the fact that indoor concentrations were much higher than outdoor concentrations for most VOCs. In a different analysis focused on the sources inside the home and outside (but close to the home), it was assumed that 100% of VOCs from outside sources would penetrate the home. Outdoor VOC sources accounted for 5% (d-limonene) to 81% (carbon tetrachloride [CTC]) of the total exposure. Personal exposure and indoor measurements had similar determinants depending on the VOC. Gasoline-related VOCs (e.g., benzene and methyl tert-butyl ether [MTBE]) were associated with city, residences with attached garages, pumping gas, wind speed, and home air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-DCB and chloroform) also were associated with city, and a residence's AER, size, and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene [or perchloroethylene, PERC] and trichloroethylene [TCE]) were associated with city, type of water supply to the home, and visits to the dry cleaner. These and other relationships were significant, they explained from 10% to 40% of the variance in the measurements, and are consistent with known emission sources and those reported in the literature. Outdoor concentrations of VOCs had only two determinants in common: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of indoor VOC concentrations were due to outdoor sources. City of residence, personal activities, household characteristics, and meteorology were significant determinants. Concentrations in RIOPA were considerably lower than levels in the nationally representative NHANES for all VOCs except MTBE and 1,4-DCB. Differences between RIOPA and NHANES results can be explained by contrasts between the sampling designs and staging in the two studies, and by differences in the demographics, smoking, employment, occupations, and home locations. (ABSTRACT TRUNCATED)
Collapse
|
19
|
Su FC, Mukherjee B, Batterman S. Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data. ENVIRONMENTAL RESEARCH 2013; 126:192-203. [PMID: 24034784 PMCID: PMC4243524 DOI: 10.1016/j.envres.2013.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 05/23/2023]
Abstract
Community and environmental exposure to volatile organic compounds (VOCs) has been associated with a number of emission sources and activities, e.g., environmental tobacco smoke and pumping gasoline. Such factors have been identified from mostly small studies with relatively limited information regarding influences on VOC levels. This study uses data from the Relationship of Indoor Outdoor and Personal Air (RIOPA) study to investigate environmental, individual and social determinants of VOC concentrations. RIOPA included outdoor, indoor and personal measurements of 18 VOCs from 310 non-smoking households and adults in three cities and two seasons, and collected a wide range of information pertaining to participants, family members, households, and neighborhoods. Exposure determinants were identified using stepwise regressions and linear mixed-effect models. Most VOC exposure (66 to 78% of the total exposure, depending on VOC) occurred indoors, and outdoor VOC sources accounted for 5 (d-limonene) to 81% (carbon tetrachloride) of the total exposure. Personal exposure and indoor measurements had similar determinants, which depended on the VOC. Gasoline-related VOCs (e.g., benzene, methyl tertiary butyl ether) were associated with city, residences with attached garages, self-pumping of gas, wind speed, and house air exchange rate (AER). Odorant and cleaning-related VOCs (e.g., 1,4-dichlorobenzene and chloroform) also were associated with city and AER, and with house size and family members showering. Dry-cleaning and industry-related VOCs (e.g., tetrachloroethylene and trichloroethylene) were associated with city, residence water supply type, and dry-cleaner visits. These and other relationships were significant, explained from 10 to 40% of the variation, and are consistent with known emission sources and the literature. Outdoor concentrations had only two common determinants: city and wind speed. Overall, personal exposure was dominated by the home setting, although a large fraction of VOC concentrations were due to outdoor sources. City, personal activities, household characteristics and meteorology were significant determinants.
Collapse
Affiliation(s)
- Feng-Chiao Su
- Environmental Health Sciences, School of Public Health, University of Michigan, M6075 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Bhramar Mukherjee
- Biostatistics, School of Public Health, University of Michigan, M6075 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| | - Stuart Batterman
- Environmental Health Sciences, School of Public Health, University of Michigan, M6075 SPH II, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|