1
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Santangelo PJ, Cicala C, Byrareddy SN, Ortiz K, Little D, Lindsay KE, Gumber S, Hong JJ, Jelicic K, Rogers KA, Zurla C, Villinger F, Ansari AA, Fauci AS, Arthos J. Early treatment of SIV+ macaques with an α 4β 7 mAb alters virus distribution and preserves CD4 + T cells in later stages of infection. Mucosal Immunol 2018; 11:932-946. [PMID: 29346349 PMCID: PMC5976508 DOI: 10.1038/mi.2017.112] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/29/2017] [Indexed: 02/07/2023]
Abstract
Integrin α4β7 mediates the trafficking of leukocytes, including CD4+ T cells, to lymphoid tissues in the gut. Virus mediated damage to the gut is implicated in HIV and SIV mediated chronic immune activation and leads to irreversible damage to the immune system. We employed an immuno-PET/CT imaging technique to evaluate the impact of an anti-integrin α4β7 mAb alone or in combination with ART, on the distribution of both SIV infected cells and CD4+ cells in rhesus macaques infected with SIV. We determined that α4β7 mAb reduced viral antigen in an array of tissues of the lung, spleen, axillary, and inguinal lymph nodes. These sites are not directly linked to α4β7 mediated homing; however, the most pronounced reduction in viral load was observed in the colon. Despite this reduction, α4β7 mAb treatment did not prevent an apparent depletion of CD4+ T cells in gut in the acute phase of infection that is characteristic of HIV/SIV infection. However, α4β7 mAb appeared to facilitate the preservation or restoration of CD4+ T cells in gut tissues at later stages of infection. Since damage to the gut is believed to play a central role in HIV pathogenesis, these results support further evaluation of α4β7 antagonists in the study and treatment of HIV disease.
Collapse
Affiliation(s)
- Philip J. Santangelo
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive Atlanta, GA 30680
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kristina Ortiz
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Dawn Little
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Kevin E. Lindsay
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive Atlanta, GA 30680
| | - Sanjeev Gumber
- Division of Microbiology & Immunology, The Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | - J. J. Hong
- Division of Microbiology & Immunology, The Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
| | - Katija Jelicic
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560
| | - Chiara Zurla
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313, Ferst Drive Atlanta, GA 30680
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560
| | - Aftab A. Ansari
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - James Arthos
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| |
Collapse
|
3
|
Total HIV-1 DNA, a Marker of Viral Reservoir Dynamics with Clinical Implications. Clin Microbiol Rev 2017; 29:859-80. [PMID: 27559075 DOI: 10.1128/cmr.00015-16] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 DNA persists in infected cells despite combined antiretroviral therapy (cART), forming viral reservoirs. Recent trials of strategies targeting latent HIV reservoirs have rekindled hopes of curing HIV infection, and reliable markers are thus needed to evaluate viral reservoirs. Total HIV DNA quantification is simple, standardized, sensitive, and reproducible. Total HIV DNA load influences the course of the infection and is therefore clinically relevant. In particular, it is predictive of progression to AIDS and death, independently of HIV RNA load and the CD4 cell count. Baseline total HIV DNA load is predictive of the response to cART. It declines during cART but remains quantifiable, at a level that reflects both the history of infection (HIV RNA zenith, CD4 cell count nadir) and treatment efficacy (residual viremia, cumulative viremia, immune restoration, immune cell activation). Total HIV DNA load in blood is also predictive of the presence and severity of some HIV-1-associated end-organ disorders. It can be useful to guide individual treatment, notably, therapeutic de-escalation. Although it does not distinguish between replication-competent and -defective latent viruses, the total HIV DNA load in blood, tissues, and cells provides insights into HIV pathogenesis, probably because all viral forms participate in host cell activation and HIV pathogenesis. Total HIV DNA is thus a biomarker of HIV reservoirs, which can be defined as all infected cells and tissues containing all forms of HIV persistence that participate in pathogenesis. This participation may occur through the production of new virions, creating new cycles of infection and disseminating infected cells; maintenance or amplification of reservoirs by homeostatic cell proliferation; and viral transcription and synthesis of viral proteins without new virion production. These proteins can induce immune activation, thus participating in the vicious circle of HIV pathogenesis.
Collapse
|
4
|
The effect of timing of antiretroviral therapy on CD4+ T-cell reconstitution in the intestine of HIV-infected patients. Mucosal Immunol 2016; 9:265-74. [PMID: 26129649 DOI: 10.1038/mi.2015.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/28/2015] [Indexed: 02/04/2023]
Abstract
Whether and to what extent gut mucosal CD4(+) T cells of HIV-infected patients can be restored by combination antiretroviral therapy (cART) is not yet fully resolved. We studied absolute numbers, differentiation, and activation of mucosal CD4(+) T cells at different stages of HIV infection and assessed the effect of timing of cART initiation on this cell population. Mucosal CD4(+) T-cell numbers were severely reduced at all stages of chronic infection, but normal in patients with acute infection. In patients with initiation of cART during chronic HIV infection, mucosal CD4(+) T cells restored to less than half of the numbers in controls. However, in patients who initiated cART during acute HIV infection, mucosal CD4(+) T-cell numbers were fully preserved and markers of microbial translocation and inflammation reversed to normal. The proportion of mucosal effector memory CD4(+) T cells normalized only if cART was initiated at >350 CD4(+) T cells per μl blood but not with delayed treatment. In conclusion, mucosal CD4(+) T-cell numbers can be preserved if cART is initiated in acute HIV infection. In chronically HIV-infected patients, early cART improves mucosal CD4(+) T-cell differentiation but cannot prevent the persistent lack of total CD4(+) T cells.
Collapse
|
5
|
Cartwright EK, McGary CS, Cervasi B, Micci L, Lawson B, Elliott STC, Collman RG, Bosinger SE, Paiardini M, Vanderford TH, Chahroudi A, Silvestri G. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. THE JOURNAL OF IMMUNOLOGY 2014; 192:4666-73. [PMID: 24729621 DOI: 10.4049/jimmunol.1303193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have identified a subset of memory T cells with stem cell-like properties (T(SCM)) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4(+) T(SCM) during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4(+) T(SCM), SIV infection induced a complex perturbation of these cells defined by depletion of CD4(+)CCR5(+) T(SCM), increased rates of CD4(+) T(SCM) proliferation, and high levels of direct virus infection. The increased rates of CD4(+) T(SCM) proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4(+) T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4(+) T(SCM) and CD4(+) central memory T cells, with normal levels of CD4(+) T(SCM) proliferation, and lack of selective depletion of CD4(+)CCR5(+) T(SCM). Importantly, SIV DNA was below the detectable limit in CD4(+) T(SCM) from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4(+) T(SCM) may contribute to the pathogenesis of SIV infection in RM.
Collapse
Affiliation(s)
- Emily K Cartwright
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ling B, Rogers L, Johnson AM, Piatak M, Lifson J, Veazey RS. Effect of combination antiretroviral therapy on Chinese rhesus macaques of simian immunodeficiency virus infection. AIDS Res Hum Retroviruses 2013; 29:1465-74. [PMID: 23387294 DOI: 10.1089/aid.2012.0378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Definitive treatment of HIV infection remains a critical but elusive goal, with persistence of residual virus even in the face of prolonged administration of suppressive combination antiretroviral treatment (cART) providing a source for recrudescent infection if treatment is stopped. Characterization of the residual virus and devising strategies to target it for eradication are key goals in HIV treatment research. Indian rhesus macaques (In-RM) infected with SIVmac have been widely used in such research. However, it has proven challenging to achieve and sustain clinically relevant levels of suppression (<30 vRNA copies/ml plasma) with cART in such models. As ease of viral suppression by cART is related to pretreatment levels of viral replication, and levels of replication of SIVmac239/251 are lower in Chinese rhesus macaques (Ch-RM) than in In-RM, we evaluated cART administration to SIVmac-infected Ch-RM as a potential model for studies of residual virus and eradication strategies. Four SIVmac239-infected Ch-RM received cART including reverse transcriptase inhibitors PMPA/FTC and integrase inhibitor L-870812 daily for 8 weeks. Plasma viral loads were promptly reduced to <30 copies/ml upon initiation of cART. Cell-associated SIV DNA levels in lymphocytes from the gut were also significantly reduced. Jejunal and colonic CCR5(+)CD4(+) mucosal memory T cells increased significantly; restoration of these cells was associated with reductions in immune activation. In conclusion, cART effectively suppressed viral replication to <30 vRNA copies/ml in SIVmac239-infected Ch-RM, reducing immune activation and restoring mucosal immune cell populations. SIVmac239-infected Ch-RM may be a useful model for studying responses to cART and persistent tissue reservoirs and evaluating candidate eradication strategies to cure HIV infection.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana
- Department of Pathology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
7
|
Dunham RM, Gordon SN, Vaccari M, Piatak M, Huang Y, Deeks SG, Lifson J, Franchini G, McCune JM. Preclinical evaluation of HIV eradication strategies in the simian immunodeficiency virus-infected rhesus macaque: a pilot study testing inhibition of indoleamine 2,3-dioxygenase. AIDS Res Hum Retroviruses 2013; 29:207-14. [PMID: 22924680 DOI: 10.1089/aid.2012.0162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Even in the setting of maximally suppressive antiretroviral therapy (ART), HIV persists indefinitely. Several mechanisms might contribute to this persistence, including chronic inflammation and immune dysfunction. In this study, we have explored a preclinical model for the evaluation of potential interventions that might serve to eradicate or to minimize the level of persistent virus. Given data that metabolic products of the inducible enzyme indoleamine 2,3-dioxygeanse (IDO) might foster inflammation and viral persistence, chronically simian immunodeficiency virus (SIV)-infected, ART-treated rhesus macaques were treated with the IDO inhibitor 1-methyl tryptophan (1mT). Orally administered 1mT achieved targeted plasma levels, but did not impact tryptophan metabolism or decrease viral RNA or DNA in plasma or in intestinal tissues beyond levels achieved by ART alone. Animals treated with 1mT showed no difference in the levels of T cell activation or differentiation, or in the kinetics or magnitude of viral rebound following cessation of ART. Notwithstanding these negative results, our observations suggest that the chronically SIV-infected rhesus macaque on suppressive ART can serve as a tractable model in which to test and to prioritize the selection of other potential interventions designed to eradicate HIV in vivo. In addition, this model might be used to optimize the route and dose by which such interventions are administered and the methods by which their effects are monitored.
Collapse
Affiliation(s)
- Richard M. Dunham
- Department of Medicine, University of California, San Francisco, California
| | - Shari N. Gordon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Piatak
- AIDS and Cancer Virus Program, Science Applications International Corporation Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, California
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Science Applications International Corporation Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joseph M. McCune
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
8
|
Harris LD, Klatt NR, Vinton C, Briant JA, Tabb B, Ladell K, Lifson J, Estes JD, Price DA, Hirsch VM, Brenchley JM. Mechanisms underlying γδ T-cell subset perturbations in SIV-infected Asian rhesus macaques. Blood 2010; 116:4148-57. [PMID: 20660793 PMCID: PMC2993620 DOI: 10.1182/blood-2010-05-283549] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/17/2010] [Indexed: 11/20/2022] Open
Abstract
T cells that express the γδ T-cell receptor, which recognize microbial or stress-induced antigens, represent a minority of blood T cells but constitute a major proportion of intraepithelial lymphocytes in the gastrointestinal mucosa. As microbial products have been shown to translocate from the gastrointestinal tract into circulation in chronically HIV/Simian immunodeficiency virus (SIV)-infected individuals, we conducted a study of Vδ1 and Vδ2 T-cell frequency, phenotype, and function in blood, spleen, lymph nodes, gastrointestinal mucosa, and bronchoalveolar lavage of uninfected and chronically SIVsmE543-infected rhesus macaques (RMs). We found: (1) SIV-associated inversion of Vδ1/Vδ2 T cells occurs in blood and in several tissues; (2) γδ T cells are not infected by SIV in vivo; (3) the Vδ1/Vδ2 inversion involves expansion of Vδ1 T cells; (4) expanded Vδ1 T cells are phenotypically and functionally different from Vδ1 T cells from uninfected RMs; and (5) the stimulus underlying expansion of Vδ1 T cells appears to be microbial translocation. These data highlight the importance of microbial translocation-induced immune activation in chronically infected individuals and provide new insights into an immune dysregulation phenomenon that is a hallmark of HIV/SIV infection. These findings may lead to novel therapeutic interventions that improve the immune responses against microbial antigens, and thus, decrease microbial translocation-induced immune activation.
Collapse
Affiliation(s)
- Levelle D Harris
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Gordon SN, Cervasi B, Odorizzi P, Silverman R, Aberra F, Ginsberg G, Estes JD, Paiardini M, Frank I, Silvestri G. Disruption of intestinal CD4+ T cell homeostasis is a key marker of systemic CD4+ T cell activation in HIV-infected individuals. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:5169-79. [PMID: 20889546 PMCID: PMC3155848 DOI: 10.4049/jimmunol.1001801] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HIV infection is associated with depletion of intestinal CD4(+) T cells, resulting in mucosal immune dysfunction, microbial translocation, chronic immune activation, and progressive immunodeficiency. In this study, we examined HIV-infected individuals with active virus replication (n = 15), treated with antiretroviral therapy (n = 13), and healthy controls (n = 11) and conducted a comparative analysis of T cells derived from blood and four gastrointestinal (GI) sites (terminal ileum, right colon, left colon, and sigmoid colon). As expected, we found that HIV infection is associated with depletion of total CD4(+) T cells as well as CD4(+)CCR5(+) T cells in all GI sites, with higher levels of these cells found in ART-treated individuals than in those with active virus replication. While the levels of both CD4(+) and CD8(+) T cell proliferation were higher in the blood of untreated HIV-infected individuals, only CD4(+) T cell proliferation was significantly increased in the gut of the same patients. We also noted that the levels of CD4(+) T cells and the percentages of CD4(+)Ki67(+) proliferating T cells are inversely correlated in both blood and intestinal tissues, thus suggesting that CD4(+) T cell homeostasis is similarly affected by HIV infection in these distinct anatomic compartments. Importantly, the level of intestinal CD4(+) T cells (both total and Th17 cells) was inversely correlated with the percentage of circulating CD4(+)Ki67(+) T cells. Collectively, these data confirm that the GI tract is a key player in the immunopathogenesis of HIV infection, and they reveal a strong association between the destruction of intestinal CD4(+) T cell homeostasis in the gut and the level of systemic CD4(+) T cell activation.
Collapse
Affiliation(s)
- Shari N. Gordon
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Animal Models and Vaccine Section, SAIC–Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 20892
| | - Barbara Cervasi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Pamela Odorizzi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Randee Silverman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Faten Aberra
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Gregory Ginsberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jacob D. Estes
- AIDS Vaccine Section, SAIC–Frederick, National Cancer Institute, National Institutes of Health, Frederick, MD 20892
| | - Mirko Paiardini
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Ian Frank
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Guido Silvestri
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| |
Collapse
|
10
|
Sellier P, Mannioui A, Bourry O, Dereuddre-Bosquet N, Delache B, Brochard P, Calvo J, Prévot S, Roques P. Antiretroviral treatment start-time during primary SIV(mac) infection in macaques exerts a different impact on early viral replication and dissemination. PLoS One 2010; 5:e10570. [PMID: 20485497 PMCID: PMC2868019 DOI: 10.1371/journal.pone.0010570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 04/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background The time of infection is rarely known in human cases; thus, the effects of delaying the initiation of antiretroviral therapy (ART) on the peripheral viral load and the establishment of viral reservoirs are poorly understood. Methodology/Principal Findings Six groups of macaques, infected intravenously with SIVmac251, were given placebo or antiretroviral therapy to explore reservoir establishment; macaques were treated for 2 weeks, with treatment starting 4 hours, 7 or 14 days after infection. Viral replication and dissemination were measured in the gut (rectum), in the lung and in blood and lymphoid tissues (peripheral lymph nodes), by quantifying viral RNA, DNA and 2LTR circles. We used immunohistochemistry (CD4 and CD68) to assess the impact of these treatments on the relative amount of virus target cells in tissue. Treatment that was started 4 hours post-infection (pi) decreased viral replication and dissemination in blood and tissue samples, which were assessed on day 14 (RNA/DNA/2LTR circles). The virus remained detectable and lymphoid tissues were activated in LN and the gut in both placebo- and ART-treated animals. Viral RNA in plasma continued to be lower in macaques treated seven days after infection; however, this was not the case for viral DNA in peripheral blood mononuclear cells. There was a small but significant difference in RNA and DNA levels in tissues between placebo- and ART-treated animals on day 21. When started 14 days after infection, treatment resulted in a limited decrease in the plasma viral load. Conclusions Treatment that was started 4 hours after infection significantly reduced viral replication and dissemination. When started 7 days after infection, it was of slight virological benefit in peripheral blood and in tissues, and treatment was even less effective if started 14 days pi. These data favor starting ART no longer than one week after intravenous SIVmac251 exposure.
Collapse
Affiliation(s)
- Pierre Sellier
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
- Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Abdelkrim Mannioui
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
| | - Olivier Bourry
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
| | - Nathalie Dereuddre-Bosquet
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
| | - Benoit Delache
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
| | - Patricia Brochard
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
| | - Julien Calvo
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
| | - Sophie Prévot
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Antoine Béclère, Assistance Publique-Hôpitaux de Paris, Clamart, France
| | - Pierre Roques
- Division of ImmunoVirology (SIV), Institute of Emerging Diseases and Innovative Therapies (IMETI), CEA, Fontenay-aux-Roses, France
- UMR E1, University Paris Sud XI, Orsay, France
- * E-mail:
| |
Collapse
|
11
|
Heightened cytotoxic responses and impaired biogenesis contribute to early pathogenesis in the oral mucosa of simian immunodeficiency virus-infected rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:277-81. [PMID: 19091994 DOI: 10.1128/cvi.00265-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simian immunodeficiency virus (SIV) infection disseminated into the oropharyngeal tissues of rhesus macaques 6 weeks following intravenous inoculation. Severe local CD4(+) T-cell depletion coincided with increases in NK cell and proinflammatory biomarkers and the disruption of growth-associated gene transcription, demonstrating the rapid establishment of pathogenesis in the oral mucosa.
Collapse
|
12
|
Verhoeven D, Teijaro JR, Farber DL. Heterogeneous memory T cells in antiviral immunity and immunopathology. Viral Immunol 2008; 21:99-113. [PMID: 18476772 DOI: 10.1089/vim.2008.0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Memory T cells are generated following an initial viral infection, and have the potential for mediating robust protective immunity to viral re-challenge due to their rapid and enhanced functional responses. In recent years, it has become clear that the memory T cell response to most viruses is remarkably diverse in phenotype, function, and tissue distribution, and can undergo dynamic changes during its long-term maintenance in vivo. However, the role of this variegation and compartmentalizationof memory T cells in protective immunity to viruses remains unclear. In this review,we discuss the diverse features of memory T cells that can delineate different subsets, the characteristics of memory T cells thus far identified to promote protective immune responses, and how the heterogeneous nature of memory T cells may also promote immunopathology during antiviral responses. We propose that given the profound heterogeneity of memory T cells, regulation of memory T cells during secondary responses could focus the response to participation of specific subsets,and/or inhibit memory T-cell subsets and functions that can lead to immunopathology.
Collapse
Affiliation(s)
- David Verhoeven
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
13
|
Antiviral therapy during primary simian immunodeficiency virus infection fails to prevent acute loss of CD4+ T cells in gut mucosa but enhances their rapid restoration through central memory T cells. J Virol 2008; 82:4016-27. [PMID: 18272585 DOI: 10.1128/jvi.02164-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gut-associated lymphoid tissue (GALT) is an early target of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) and a site for severe CD4+ T-cell depletion. Although antiretroviral therapy (ART) is effective in suppressing HIV replication and restoring CD4+ T cells in peripheral blood, restoration in GALT is delayed. The role of restored CD4+ T-cell help in GALT during ART and its impact on antiviral CD8+ T-cell responses have not been investigated. Using the SIV model, we investigated gut CD4+ T-cell restoration in infected macaques, initiating ART during either the primary stage (1 week postinfection), prior to acute CD4+ cell loss (PSI), or during the chronic stage at 10 weeks postinfection (CSI). ART led to viral suppression in GALT and peripheral blood mononuclear cells of PSI and CSI animals at comparable levels. CSI animals had incomplete CD4+ T-cell restoration in GALT. In PSI animals, ART did not prevent acute CD4+ T-cell loss by 2 weeks postinfection in GALT but supported rapid and complete CD4+ T-cell restoration thereafter. This correlated with an accumulation of central memory CD4+ T cells and better suppression of inflammation. Restoration of CD4+ T cells in GALT correlated with qualitative changes in SIV gag-specific CD8+ T-cell responses, with a dominance of interleukin-2-producing responses in PSI animals, while both CSI macaques and untreated SIV-infected controls were dominated by gamma interferon responses. Thus, central memory CD4+ T-cell levels and qualitative antiviral CD8+ T-cell responses, independent of viral suppression, were the immune correlates of gut mucosal immune restoration during ART.
Collapse
|
14
|
Abstract
The mechanisms underlying the lack of disease progression in natural simian immunodeficiency virus (SIV) hosts are still poorly understood. To test the hypothesis that SIV-infected African green monkeys (AGMs) avoid AIDS due to virus replication occurring in long-lived infected cells, we infected six animals with SIVagm and treated them with potent antiretroviral therapy [ART; 9-R-(2-phosphonomethoxypropyl) adenine (tenofovir) and beta-2,3-dideoxy-3-thia-5-fluorocytidine (emtricitabine)]. All AGMs showed a rapid decay of plasma viremia that became undetectable 36 h after ART initiation. A significant decrease of viral load was observed in peripheral blood mononuclear cells and intestine. Mathematical modeling of viremia decay post-ART indicates a half-life of productively infected cells ranging from 4 to 9.5 h, i.e., faster than previously reported for human immunodeficiency virus and SIV. ART induced a slight but significant increase in peripheral CD4(+) T-cell counts but no significant changes in CD4(+) T-cell levels in lymph nodes and intestine. Similarly, ART did not significantly change the levels of cell proliferation, activation, and apoptosis, already low in AGMs chronically infected with SIVagm. Collectively, these results indicate that, in SIVagm-infected AGMs, the bulk of virus replication is sustained by short-lived cells; therefore, differences in disease outcome between SIVmac infection of macaques and SIVagm infection of AGMs are unlikely due to intrinsic differences in the in vivo cytopathicities between the two viruses.
Collapse
|