1
|
Kim S, Vaidya B, Cho SY, Kwon J, Kim D. Human Norovirus-Induced Gene Expression Biomarkers in Zebrafish. J Food Prot 2022; 85:924-929. [PMID: 35333356 DOI: 10.4315/jfp-21-419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT The challenges associated with development of an animal model system to replicate human norovirus (HuNoV) has hampered the study of the pathogenesis and therapeutic interventions for this virus. In this study, we replicated HuNoV GII.4 and evaluated virus gene expression in infected zebrafish. Three doses of inoculation resulted in successful virus replication. Genes for transmembrane transporters (tfa, cftr, slc26a3, and slc26a6), a heat shock chaperone (hspa8), and immune response cytokines (ifng1 and il1b) were highly expressed in HuNoV-infected zebrafish; however, expression levels of genes were reduced in zebrafish infected with thermally inactivated HuNoV. These results confirm HuNoV replication in juvenile zebrafish and will facilitate the investigation of biomarker gene expression during HuNoV infection. HIGHLIGHTS
Collapse
Affiliation(s)
- Songhak Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bipin Vaidya
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Young Cho
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joseph Kwon
- Department of BioChemical Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Duwoon Kim
- Department of Food Science and Technology and Foodborne Virus Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Yang S, Liu Y, Yang N, Lan Y, Lan W, Feng J, Yue B, He M, Zhang L, Zhang A, Price M, Li J, Fan Z. The gut microbiome and antibiotic resistome of chronic diarrhea rhesus macaques (Macaca mulatta) and its similarity to the human gut microbiome. MICROBIOME 2022; 10:29. [PMID: 35139923 PMCID: PMC8827259 DOI: 10.1186/s40168-021-01218-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Chronic diarrhea is a common disease causing morbidity and mortality of captive rhesus macaques (RMs, Macaca mulatta). Chronic diarrhea in RMs is typically characterized by long-term diarrhea and a weak response to antibiotic treatment. Diarrhea is also a common disease in humans and can cause death. However, the etiology of about half of diarrheal cases of humans is still unclear. Therefore, we performed shotgun metagenomic sequencing to characterize the differences in the gut microbiome and resistome of chronic diarrhea RMs and asymptomatic individuals. RESULTS Our results showed Lactobacillus spp. (mainly L. johnsonii, L. reuteri and L. amylovorus) were significantly depleted in chronic diarrhea RM guts compared to asymptomatic individuals (5.2 vs 42.4%). Functional annotation of genes suggested these Lactobacillus spp. carried genes involved in the adhesion of intestinal epithelial cells and production of bacteriocin. Chronic diarrhea RM guts also had a significantly greater abundance of many other gut bacteria, including mucin-degrading bacteria and opportunistic pathogens. The metabolic pathways of chronic diarrhea RM gut microbiome were enriched in aerobactin biosynthesis, while the metabolic pathways of asymptomatic RM gut microbiome were enriched in the production of short-chain fatty acids (SCFAs). Chronic diarrhea RM guts had a significantly greater abundance of antibiotic resistance genes (ARGs), such as ermF, aph(3')-IIIa, ermB, and floR. The strains isolated from feces and tissue fluid of chronic diarrhea RMs had higher resistance rates to the majority of tested antibiotics, but not cephamycin and carbapenem antibiotics. Gut microbial composition comparisons showed that several captive nonhuman primate (NHP) guts were more similar to the guts of humans with a non-westernized diet than humans with a westernized diet. Chronic diarrhea RM gut microbiome was strikingly similar to rural-living humans with diarrhea and humans with a non-westernized diet than asymptomatic RMs. CONCLUSIONS Our results suggested chronic diarrhea significantly altered the composition and metabolic pathways of the RM gut microbiome. The frequent use of antibiotics caused antibiotic resistance in chronic diarrhea RM gut microbiome with serious consequences for individual treatment and survival. The findings of this study will help us to improve the effective prevention and treatment of diarrhea in RMs. Video Abstract.
Collapse
Affiliation(s)
- Shengzhi Yang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yu Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yue Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Weiqi Lan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jinyi Feng
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Liang Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Sichuan Academy of Giant Panda, Chengdu, Sichuan, China
| | - Anyun Zhang
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Megan Price
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Westreich ST, Ardeshir A, Alkan Z, Kable ME, Korf I, Lemay DG. Fecal metatranscriptomics of macaques with idiopathic chronic diarrhea reveals altered mucin degradation and fucose utilization. MICROBIOME 2019; 7:41. [PMID: 30885266 PMCID: PMC6423747 DOI: 10.1186/s40168-019-0664-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Idiopathic chronic diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. Characterized by chronic inflammation of the colon and repeated bouts of diarrhea, ICD is largely unresponsive to medical interventions, including corticosteroid, antiparasitic, and antibiotic treatments. Although ICD is accompanied by large disruptions in the composition of the commensal gut microbiome, no single pathogen has been concretely identified as responsible for the onset and continuation of the disease. RESULTS Fecal samples were collected from 12 ICD-diagnosed macaques and 12 age- and sex-matched controls. RNA was extracted for metatranscriptomic analysis of organisms and functional annotations associated with the gut microbiome. Bacterial, fungal, archaeal, protozoan, and macaque (host) transcripts were simultaneously assessed. ICD-afflicted animals were characterized by increased expression of host-derived genes involved in inflammation and increased transcripts from bacterial pathogens such as Campylobacter and Helicobacter and the protozoan Trichomonas. Transcripts associated with known mucin-degrading organisms and mucin-degrading enzymes were elevated in the fecal microbiomes of ICD-afflicted animals. Assessment of colon sections using immunohistochemistry and of the host transcriptome suggests differential fucosylation of mucins between control and ICD-afflicted animals. Interrogation of the metatranscriptome for fucose utilization genes reveals possible mechanisms by which opportunists persist in ICD. Bacteroides sp. potentially cross-fed fucose to Haemophilus whereas Campylobacter expressed a mucosa-associated transcriptome with increased expression of adherence genes. CONCLUSIONS The simultaneous profiling of bacterial, fungal, archaeal, protozoan, and macaque transcripts from stool samples reveals that ICD of rhesus macaques is associated with increased gene expression by pathogens, increased mucin degradation, and altered fucose utilization. The data suggest that the ICD-afflicted host produces fucosylated mucins that are leveraged by potentially pathogenic microbes as a carbon source or as adhesion sites.
Collapse
Affiliation(s)
| | - Amir Ardeshir
- California National Primate Research Center, University of California, Davis, California USA
| | - Zeynep Alkan
- USDA ARS Western Human Nutrition Research Center, Davis, California USA
| | - Mary E. Kable
- USDA ARS Western Human Nutrition Research Center, Davis, California USA
- Department of Nutrition, University of California, Davis, California USA
| | - Ian Korf
- Genome Center, University of California, Davis, California USA
| | - Danielle G. Lemay
- Genome Center, University of California, Davis, California USA
- USDA ARS Western Human Nutrition Research Center, Davis, California USA
- Department of Nutrition, University of California, Davis, California USA
| |
Collapse
|
4
|
Molina CV, Heinemann MB, Kierulff C, Pissinatti A, da Silva TF, de Freitas DG, de Souza GO, Miotto BA, Cortez A, Semensato BDP, Moreno LZ, Catão-Dias JL, Bueno MG. Leptospira spp., rotavirus, norovirus, and hepatitis E virus surveillance in a wild invasive golden-headed lion tamarin (Leontopithecus chrysomelas; Kuhl, 1820) population from an urban park in Niterói, Rio de Janeiro, Brazil. Am J Primatol 2019; 81:e22961. [PMID: 30828830 DOI: 10.1002/ajp.22961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 01/13/2023]
Abstract
The world currently faces severe biodiversity losses caused by anthropogenic activities such as deforestation, pollution, the introduction of exotic species, habitat fragmentation, and climate changes. Disease ecology in altered environments is still poorly understood. The golden-headed lion tamarin (GHLT, Leontopithecus chrysomelas) is an endangered species that became invasive in an urban park in Niterói, Rio de Janeiro, Brazil. The initially few invasive GHLT individuals became hundreds, adapted to living in proximity to humans and domestic animals. These GHLTs were captured as part of a conservation project; some animals were translocated to Bahia and some were kept in captivity. This study tested 593 GHLT for Leptospira serology; 100 and 95 GHLT for polymerase chain reaction (PCR) toLeptospira and hepatitis E virus genotype 3 (HEV-3), respectively, and 101 familiar groups for PCR to viruses (rotavirus A, norovirus GI and GII, and HEV-3). One animal had antibodies for Leptospira serovar Shermani and another for serovar Hebdomadis. One saprophyticLeptospira was found by the 16S PCR and sequencing. Viruses were not detected in samples tested. Findings suggest that the epidemiological importance of such pathogens in this GHLT population is either low or nonexistent. These data are important to understand the local disease ecology, as well as monitoring a translocation project, and to contribute data for species conservation.
Collapse
Affiliation(s)
- Camila V Molina
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia (VPT), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal (VPS), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Cecilia Kierulff
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil.,Programa de Pós-graduação em Biodiversidade Tropical, Universidade Federal do Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro (CPRJ), Instituto Estadual do Ambiente (INEA), Guapimirim, RJ, Brazil.,Centro Universitário Serra dos Órgãos, Teresópolis, RJ, Brazil
| | - Tiago F da Silva
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil
| | - Danilo G de Freitas
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas, Departamento de Medicina Veterinária Preventiva e Saúde Animal (VPS), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Bruno A Miotto
- Departamento de Clínica Médica (VCM), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Adriana Cortez
- Curso de Medicina Veterinária, Universidade Santo Amaro (UNISA), São Paulo, SP, Brazil
| | | | - Luisa Z Moreno
- Laboratório de Sanidade Suína, Departamento de Medicina Veterinária Preventiva e Saúde Animal (VPS), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - José L Catão-Dias
- Laboratório de Patologia Comparada de Animais Selvagens (LAPCOM), Departamento de Patologia (VPT), Faculdade de Medicina Veterinária e Zootecnia (FMVZ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Marina G Bueno
- Instituto Pri-Matas para a Conservação da Biodiversidade, Belo Horizonte, MG, Brazil.,Presidência, Plataforma Institucional Biodiversidade e Saúde Silvestre, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Farkas T. Rhesus enteric calicivirus surrogate model for human norovirus gastroenteritis. J Gen Virol 2014; 96:1504-14. [PMID: 25502652 DOI: 10.1099/jgv.0.000020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human noroviruses are one of the major causes of acute gastroenteritis worldwide. Due to the lack of an efficient human norovirus cell culture system coupled with an animal model, human norovirus research mainly relies on human volunteer studies and surrogate models. Current models either utilize human norovirus-infected animals including the gnotobiotic pig or calf and the chimpanzee models, or employ other members of the family Caliciviridae including cell culture propagable surrogate caliciviruses such as the feline calicivirus, murine norovirus and most recently the Tulane virus. One of the major features of human noroviruses is their extreme biological diversity, including genetic, antigenic and histo-blood group antigen binding diversity, and possible differences of virulence and environmental stability. This extreme biological diversity and its effect on intervention/prevention strategies cannot be modelled by uniform groups of surrogates, much less by single isolates. Tulane virus, the prototype recovirus strain, was discovered in 2008. Since then, several other novel recoviruses have been described and cell culture adapted. Recent studies indicate that the epidemiology, the biological features and diversity of recoviruses and the course of infection and clinical disease in recovirus-infected macaques more closely reflect those properties of human noroviruses than any of the current surrogates. This review aims to summarize what is currently known about recoviruses, highlight their biological similarities to human noroviruses and discuss applications of the model in addressing questions relevant for human norovirus research.
Collapse
Affiliation(s)
- Tibor Farkas
- 1Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA 2University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Farkas T, Lun CWP, Fey B. Relationship between genotypes and serotypes of genogroup 1 recoviruses: a model for human norovirus antigenic diversity. J Gen Virol 2014; 95:1469-1478. [PMID: 24700099 PMCID: PMC4059267 DOI: 10.1099/vir.0.064675-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human norovirus (NoV) research greatly relies on cell culture-propagable surrogate caliciviruses, including murine NoVs and the prototype 'recovirus' (ReCV), Tulane virus. However, the extreme biological diversity of human NoVs cannot be modelled by a uniform group of viruses or single isolate. Based on a diverse group of recently described ReCVs, a more advanced model reflecting human NoV biological diversity is currently under development. Here, we have reported the genotypic and serotypic relationships among 10 G1 ReCV isolates, including Tulane virus and nine other recent cell culture-adapted strains. Based on the amino acid sequences of virus capsid protein, VP1, and classification constraints established for NoVs, G1 ReCVs were separated into three genotypes, with variable organization of the three open reading frames. Interestingly, cross-neutralization plaque assays revealed the existence of four distinct serotypes, two of which were detected among the G1.2 strains. The amino acid (aa) difference between the two G1.2 ReCV serotypes (12%) was less than the minimum 13% difference established between NoV genotypes. Interestingly, one of the G1.3 ReCVs was equally neutralized by antisera raised against the G1.3 (6% aa difference) and G1.1 (25% aa difference) representative strains. These results imply the existence of a large number of human NoV serotypes, but also shared cross-neutralization epitopes between some strains of different genotypes. In conclusion, the newly developed ReCV surrogate model can be applied to address biologically relevant questions pertaining to enteric CV diversity.
Collapse
Affiliation(s)
- Tibor Farkas
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children's Hospital Medical Center, OH, USA
| | | | - Brittney Fey
- Cincinnati Children's Hospital Medical Center, OH, USA
| |
Collapse
|
7
|
Abstract
To investigate recovirus infections and their association with zoonosis, the prevalence of the virus-neutralizing antibody against three recovirus serotypes was tested in the general population and in zookeepers. Neutralizing antibodies were detected in a significantly higher number of zookeepers than in the general population but with significantly lower titers than in macaques.
Collapse
|
8
|
Kanthaswamy S, Elfenbein HA, Ardeshir A, Ng J, Hyde D, Smith DG, Lerche N. Familial aggregation of chronic diarrhea disease (CDD) in rhesus macaques (Macaca mulatta). Am J Primatol 2013; 76:262-70. [PMID: 24532180 DOI: 10.1002/ajp.22230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/20/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022]
Abstract
Chronic diarrheal disease (CDD) is a critical problem for breeders of captive rhesus macaque (Macaca mulatta), as it results in significant levels of morbidity and death annually. As with other inflammatory disorders, CDD is thought to be caused by environmental and/or genetic factors. Although correspondence between the characters defined as Mendelian by pedigree or segregation analysis and functional genes is difficult to establish, such analyses provide essential entry points into understanding CDD in captive bred rhesus macaques. To investigate the familial aggregation of CDD in captive rhesus macaque, we performed pedigree, segregation and heritability analyses on genealogical data from 55 severely affected individuals (probands) through whom relatives with a history of CDD were ascertained from routine computerized colony records comprising vital and demographic statistics of 10,814 rhesus macaques. We identified 175 rhesus macaques with CDD and estimated its incidence as approximately 2% in the colony. The disease strongly clustered in eight multi-generation pedigrees. Inspection of the pedigrees, segregation analysis and heritability estimate of CDD suggest that susceptibility to the disease is under strong genetic control. Identification of the locations of susceptibility genes in the rhesus macaque genome could facilitate the reduction of their frequency in captive breeding facilities.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- Department of Anthropology, Molecular Anthropology Laboratory, University of California, Davis, California; California National Primate Research Center, University of California, Davis, California; Department of Environmental Toxicology, University of California, Davis, California
| | | | | | | | | | | | | |
Collapse
|
9
|
Prongay K, Park B, Murphy SJ. Risk factor analysis may provide clues to diarrhea prevention in outdoor-housed rhesus macaques (Macaca mulatta). Am J Primatol 2013; 75:872-82. [PMID: 23568382 PMCID: PMC3956043 DOI: 10.1002/ajp.22150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Seventy-five percent of rhesus macaques at national primate research centers are housed outside. Annually, 15-39% of these animals experience diarrhea and require veterinary treatment for dehydration, electrolyte imbalance, or weight loss. An estimated 21-33% of these patients will die or be euthanized. Many studies have explored the various infectious etiologies of non-human primate diarrhea. However, there is little published information on diarrhea incidence rates and risk factors in outdoor-housed rhesus macaques. Without this information, it is challenging to determine endemic and epidemic diarrhea levels, or to develop and evaluate mitigation strategies. Using electronic medical records, we conducted a retrospective cohort study to calculate diarrhea incidence rates for rhesus macaques (N = 3,181) housed in three different outdoor housing types (corrals, shelters, and temporary housing) at the Oregon National Primate Research Center between November 1, 2009 and October 31, 2010. With multiple logistic regression analysis, we determined the relative risk of housing type, sex, and age on development of diarrhea. Diarrhea incidence and mortality in our population was lower than many published ranges. Type of outdoor housing, age, and previous diarrhea episode were positively correlated with diarrhea risk. Younger animals in smaller shelters and temporary housing had a greater risk of acquiring diarrhea, with juvenile animals (0.7-3.9 years) having the highest mortality rate. Sex was not a risk factor, but adult females with diarrhea were more likely to develop life-threatening complications than adult males. We also constructed a predictive model for diarrhea-associated mortality using Classification and Regression Tree. Findings from this study will be used to develop and evaluate mitigation strategies in our outdoor-housed population and to provide a foundation for genetic susceptibility and immune function testing.
Collapse
Affiliation(s)
- Kamm Prongay
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University West Campus, Portland, OR, USA.
| | | | | |
Collapse
|
10
|
Ardeshir A, Oslund KL, Ventimiglia F, Yee J, Lerche NW, Hyde DM. Idiopathic microscopic colitis of rhesus macaques: quantitative assessment of colonic mucosa. Anat Rec (Hoboken) 2013; 296:1169-79. [PMID: 23775860 PMCID: PMC4388867 DOI: 10.1002/ar.22727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 05/08/2013] [Indexed: 12/29/2022]
Abstract
Idiopathic chronic diarrhea (ICD) is a common cause of morbidity and mortality among juvenile rhesus macaques. While lesions may be absent at colonoscopy, the histopathologic evaluation of the biopsy specimens is consistent with human macroscopic colitis (MC). In this study, we developed an isotropic uniform random sampling method to evaluate macroscopic and microscopic changes and applied it on proximal ascending colon in monkeys. Colonic tissue and peripheral blood specimens were collected from six MC and six control juvenile macaques at necropsy. Uniform random samples were collected from the colon using punch biopsy tools. The volume of epithelium and lamina propria were estimated in thick (25 µm) sections using point probes and normalized to the area of muscularis mucosae. Our data suggests a significant increase of the Vs of the lamina propria (1.9-fold, P = 0.02) and epithelium (1.4-fold, P = 0.05) in subjects with MC. The average colonic surface mucosa area in the MC monkeys increased 1.4-fold over the controls (P = 0.02). The volume of the proximal colon in animals with MC showed a 2.4-fold increase over the non-diarrhea control monkeys (P = 0.0001). Cytokine, chemokine, and growth factor levels in peripheral blood were found to be correlated with the volume estimate of the lamina propria and epithelium. We found that ICD in macaques has features which simulates human MC and can be used as a spontaneous animal model for human MC. Furthermore, this developed sampling method can be used for unbiased preclinical evaluation of therapeutics in this animal model.
Collapse
Affiliation(s)
- Amir Ardeshir
- California National Primate Research Center, University of California Davis, Davis, California, USA.
| | | | | | | | | | | |
Collapse
|