1
|
Wolfe E, Cerini F, Besson M, O'Brien D, Clements CF. Spatiotemporal thermal variation drives diversity trends in experimental landscapes. J Anim Ecol 2023; 92:430-441. [PMID: 36494717 PMCID: PMC10108128 DOI: 10.1111/1365-2656.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Temperature is a fundamental driver of species' vital rates and thus coexistence, extinctions and community composition. While temperature is neither static in space nor in time, little work has incorporated spatiotemporal dynamics into community-level investigations of thermal variation. We conducted a microcosm experiment using ciliate protozoa to test the effects of temperatures fluctuating synchronously or asynchronously on communities in two-patch landscapes connected by short or long corridors. We monitored the abundance of each species for 4 weeks-equivalent to ~28 generations-measuring the effects of four temperature regimes and two corridor lengths on community diversity and composition. While corridor length significantly altered the trajectory of diversity change in the communities, this did not result in different community structures at the end of the experiment. The type of thermal variation significantly affected both the temporal dynamics of diversity change and final community composition, with synchronous fluctuation causing deterministic extinctions that were consistent across replicates and spatial variation causing the greatest diversity declines. Our results suggest that the presence and type of thermal variation can play an important role in structuring ecological communities, especially when it interacts with dispersal between habitat patches.
Collapse
Affiliation(s)
- Ellie Wolfe
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Francesco Cerini
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Marc Besson
- School of Biological Sciences, University of Bristol, Bristol, UK.,Sorbonne Université CNRS UMR Biologie des organismes marins, BIOM, Banyuls-sur-Mer, France
| | - Duncan O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
2
|
When material science meets microbial ecology: Bacterial community selection on stainless steels in natural seawater. Colloids Surf B Biointerfaces 2023; 221:112955. [DOI: 10.1016/j.colsurfb.2022.112955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 10/01/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
3
|
McClean D, Friman V, Finn A, Salzberg LI, Donohue I. Coping with multiple enemies: pairwise interactions do not predict evolutionary change in complex multitrophic communities. OIKOS 2019. [DOI: 10.1111/oik.06586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Deirdre McClean
- Centre for Immunity, Infection and Evolution, Univ. of Edinburgh Edinburgh UK
- Centre for Synthetic and Systems Biology, School of Biological Sciences Univ. of Edinburgh Edinburgh UK
| | | | - Alain Finn
- Dept of Zoology, School of Natural Sciences, Trinity College Dublin Ireland
| | - Letal I. Salzberg
- Smurfit Inst. of Genetics, School of Genetics and Microbiology, Trinity College Dublin Ireland
| | - Ian Donohue
- Dept of Zoology, School of Natural Sciences, Trinity College Dublin Ireland
| |
Collapse
|
4
|
Saleem M, Fetzer I, Harms H, Chatzinotas A. Trophic complexity in aqueous systems: bacterial species richness and protistan predation regulate dissolved organic carbon and dissolved total nitrogen removal. Proc Biol Sci 2016; 283:20152724. [PMID: 26888033 DOI: 10.1098/rspb.2015.2724] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Loading of water bodies with dissolved organic carbon (DOC) and dissolved total nitrogen (DTN) affects their integrity and functioning. Microbial interactions mitigate the negative effects of high nutrient loads in these ecosystems. Despite numerous studies on how biodiversity mediates ecosystem functions, whether and how diversity and complexity of microbial food webs (horizontal, vertical) and the underlying ecological mechanisms influence nutrient removal has barely been investigated. Using microbial microcosms accommodating systematic combinations of prey (bacteria) and predator (protists) species, we showed that increasing bacterial richness improved the extent and reliability of DOC and DTN removal. Bacterial diversity drove nutrient removal either due to species foraging physiology or functional redundancy, whereas protistan diversity affected nutrient removal through bacterial prey resource partitioning and changing nutrient balance in the system. Our results demonstrate that prey-predator diversity and trophic interactions interactively determine nutrient contents, thus implying the vital role of microbial trophic complexity as a biological buffer against DOC and DTN.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany Department of Soil and Plant Sciences, University of Kentucky, Lexington, KY, USA
| | - Ingo Fetzer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany Stockholm Resilience Centre, Stockholm University, Stockholm 11419, Sweden
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig 04318, Germany German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
5
|
Boersma KS, Nickerson A, Francis CD, Siepielski AM. Climate extremes are associated with invertebrate taxonomic and functional composition in mountain lakes. Ecol Evol 2016; 6:8094-8106. [PMID: 27878081 PMCID: PMC5108261 DOI: 10.1002/ece3.2517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/15/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry-season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry-season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local-scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad-scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.
Collapse
Affiliation(s)
| | | | - Clinton D. Francis
- Department of Biological SciencesCalifornia Polytechnic State UniversitySan Luis ObispoCAUSA
| | - Adam M. Siepielski
- Department of Biological SciencesUniversity of ArkansasFayettevilleARUSA
| |
Collapse
|
6
|
Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nat Commun 2015; 6:8235. [PMID: 26354365 PMCID: PMC4579780 DOI: 10.1038/ncomms9235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/30/2015] [Indexed: 02/08/2023] Open
Abstract
Many bacterial species are highly social, adaptively shaping their local environment through the production of secreted molecules. This can, in turn, alter interaction strengths among species and modify community composition. However, the relative importance of such behaviours in determining the structure of complex communities is unknown. Here we show that single-locus changes affecting biofilm formation phenotypes in Bacillus subtilis modify community structure to the same extent as loss of an apex predator and even to a greater extent than loss of B. subtilis itself. These results, from experimentally manipulated multitrophic microcosm assemblages, demonstrate that bacterial social traits are key modulators of the structure of their communities. Moreover, they show that intraspecific genetic variability can be as important as strong trophic interactions in determining community dynamics. Microevolution may therefore be as important as species extinctions in shaping the response of microbial communities to environmental change. Some species of social bacteria can chemically modify their nutrient environments, which may influence community interactions. Here, McClean et al. show that changes at a single gene locus in a biofilm-forming bacteria can perturb community structure to the same extent as the loss of an apex predator.
Collapse
|
7
|
Palamara GM, Childs DZ, Clements CF, Petchey OL, Plebani M, Smith MJ. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm. Ecol Evol 2014; 4:4736-50. [PMID: 25558365 PMCID: PMC4278823 DOI: 10.1002/ece3.1309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 11/22/2022] Open
Abstract
Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important implications in understanding and predicting the effects of temperature on the dynamics of populations.
Collapse
Affiliation(s)
- Gian Marco Palamara
- Department of Evolutionary Biology and Environmental Studies, University of Zurich Wintherthurerstrase 190, CH-8057, Zurich, Switzerland ; Computational Science Laboratory, Microsoft Research Cambridge, CB1 2FB, UK
| | - Dylan Z Childs
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK
| | - Christopher F Clements
- Department of Evolutionary Biology and Environmental Studies, University of Zurich Wintherthurerstrase 190, CH-8057, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich Wintherthurerstrase 190, CH-8057, Zurich, Switzerland
| | - Marco Plebani
- Department of Evolutionary Biology and Environmental Studies, University of Zurich Wintherthurerstrase 190, CH-8057, Zurich, Switzerland
| | - Matthew J Smith
- Computational Science Laboratory, Microsoft Research Cambridge, CB1 2FB, UK
| |
Collapse
|
8
|
Hallett LM, Hsu JS, Cleland EE, Collins SL, Dickson TL, Farrer EC, Gherardi LA, Gross KL, Hobbs RJ, Turnbull L, Suding KN. Biotic mechanisms of community stability shift along a precipitation gradient. Ecology 2014; 95:1693-700. [PMID: 25039233 DOI: 10.1890/13-0895.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context. We analyzed nine long-term data sets of grassland species composition to investigate how two key environmental factors, precipitation amount and variability, may directly influence community stability and how they may indirectly influence stability via biotic mechanisms. We found that the importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation. Instead of questioning whether compensatory dynamics are important in nature, our findings suggest that debate should widen to include several stability mechanisms and how these mechanisms vary in importance across environmental gradients.
Collapse
|
9
|
Howeth JG, Leibold MA. Predation inhibits the positive effect of dispersal on intraspecific and interspecific synchrony in pond metacommunities. Ecology 2013; 94:2220-8. [PMID: 24358708 DOI: 10.1890/12-2066.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent interest in the ecological drivers of compensatory and synchronous population dynamics has provided an improved yet incomplete understanding of local and regional population oscillations in response to variable environments. Here, we evaluate the effect of dispersal rate and spatiotemporal heterogeneity in predation by the selective planktivore, bluegill sunfish (Lepomis macrochirus), on local and regional dynamics of zooplankton in pond metacommunities. A metacommunity consisted of three pond mesocosm communities, one with constant presence of predators, one without predators, and one with alternating presence-absence of predators. The three communities were connected at either no, low (0.7% per day), or high (20% per day) planktonic dispersal. Results demonstrate that heterogeneous predation (1) prevents spatial synchrony among prey populations across local communities, (2) disrupts the synchronous population dynamics within communities produced by dispersal, and (3) induces local compensatory dynamics between species within communities regardless of dispersal rate. Taken together, the results emphasize that spatiotemporal heterogeneity in selective predation can inhibit both intraspecific and interspecific synchrony in metacommunities.
Collapse
Affiliation(s)
- Jennifer G Howeth
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487-0206, USA.
| | - Mathew A Leibold
- Section of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, Texas 78712, USA
| |
Collapse
|
10
|
Saleem M, Fetzer I, Harms H, Chatzinotas A. Diversity of protists and bacteria determines predation performance and stability. THE ISME JOURNAL 2013; 7:1912-21. [PMID: 23765100 PMCID: PMC3965320 DOI: 10.1038/ismej.2013.95] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/09/2022]
Abstract
Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.
Collapse
Affiliation(s)
- Muhammad Saleem
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ingo Fetzer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Stockholm Resilience Center, Stockholm University, Kräftriket 2B, Stockholm, Sweden
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| |
Collapse
|
11
|
Langenheder S, Bulling MT, Prosser JI, Solan M. Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity. BMC Ecol 2012; 12:14. [PMID: 22846071 PMCID: PMC3480835 DOI: 10.1186/1472-6785-12-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/26/2012] [Indexed: 11/30/2022] Open
Abstract
Background Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Results Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Conclusions Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.
Collapse
Affiliation(s)
- Silke Langenheder
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 UU3, UK.
| | | | | | | |
Collapse
|