1
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
2
|
Böhm J, Scherzer S. Signaling and transport processes related to the carnivorous lifestyle of plants living on nutrient-poor soil. PLANT PHYSIOLOGY 2021; 187:2017-2031. [PMID: 35235668 PMCID: PMC8890503 DOI: 10.1093/plphys/kiab297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/04/2021] [Indexed: 05/29/2023]
Abstract
In Eukaryotes, long-distance and rapid signal transmission is required in order to be able to react fast and flexibly to external stimuli. This long-distance signal transmission cannot take place by diffusion of signal molecules from the site of perception to the target tissue, as their speed is insufficient. Therefore, for adequate stimulus transmission, plants as well as animals make use of electrical signal transmission, as this can quickly cover long distances. This update summarises the most important advances in plant electrical signal transduction with a focus on the carnivorous Venus flytrap. It highlights the different types of electrical signals, examines their underlying ion fluxes and summarises the carnivorous processes downstream of the electrical signals.
Collapse
Affiliation(s)
- Jennifer Böhm
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| | - Sönke Scherzer
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082 Würzburg, Germany
| |
Collapse
|
3
|
Ortuño-Mendieta M, Hernández-Alvear NA, Alcalá RE. Response of a carnivorous plant to simulated herbivory. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:1044-1050. [PMID: 34532929 DOI: 10.1111/plb.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Studies addressing the impact of herbivory in carnivorous plants are scarce, despite loss of tissue being expected to be costly, as leaves are involved in both energy and nutrient acquisition. We evaluated the effect of simulated herbivory in a population of the carnivorous plant Pinguicula moranensis. We predicted an overall negative impact of herbivory by reducing growth, flowering probability and survivorship. Specifically, we expected that the increase in the negative effect should be related to the amount of leaf area removed. We performed simulated herbivory in plants growing in situ (2015) and ex situ (greenhouse, 2016) using a paper punch (herbivory ranging from 0 to 50%). In the ex-situ experiment, we also tested the effect of availability of resources by implementing a prey addition trial where half of the plants were supplemented with prey (one fruit fly per week). In both experiments, our hypothesis was not supported, as growth, flowering probability and survivorship were not influenced by herbivory treatments. Plants subjected to prey addition did not show higher performance than plants deprived of prey, contradicting our prediction that availability of resources could ameliorate the effect of herbivory. Overall, the lack of differences in performance between undamaged (control) and damaged plants indicate an unexpected short-term ability of P. moranensis to tolerate herbivory, even at high levels of damage.
Collapse
Affiliation(s)
- M Ortuño-Mendieta
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - N A Hernández-Alvear
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - R E Alcalá
- Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
4
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
5
|
Lin Q, Ané C, Givnish TJ, Graham SW. A new carnivorous plant lineage ( Triantha) with a unique sticky-inflorescence trap. Proc Natl Acad Sci U S A 2021; 118:e2022724118. [PMID: 34373325 PMCID: PMC8379919 DOI: 10.1073/pnas.2022724118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carnivorous plants consume animals for mineral nutrients that enhance growth and reproduction in nutrient-poor environments. Here, we report that Triantha occidentalis (Tofieldiaceae) represents a previously overlooked carnivorous lineage that captures insects on sticky inflorescences. Field experiments, isotopic data, and mixing models demonstrate significant N transfer from prey to Triantha, with an estimated 64% of leaf N obtained from prey capture in previous years, comparable to levels inferred for the cooccurring round-leaved sundew, a recognized carnivore. N obtained via carnivory is exported from the inflorescence and developing fruits and may ultimately be transferred to next year's leaves. Glandular hairs on flowering stems secrete phosphatase, as seen in all carnivorous plants that directly digest prey. Triantha is unique among carnivorous plants in capturing prey solely with sticky traps adjacent to its flowers, contrary to theory. However, its glandular hairs capture only small insects, unlike the large bees and butterflies that act as pollinators, which may minimize the conflict between carnivory and pollination.
Collapse
Affiliation(s)
- Qianshi Lin
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- UBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison WI 53706
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Sean W Graham
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- UBC Botanical Garden, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Abbott MJ, Brewer JS. Prey exclusion combined with simulated fire increases subsequent prey-capture potential in the pale pitcher plant, Sarracenia alata. AMERICAN JOURNAL OF BOTANY 2020; 107:1606-1613. [PMID: 33145765 DOI: 10.1002/ajb2.1553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The association of carnivory (an adaptation to nutrient-poor soils) with fire has been described as a paradox, given increases in nutrient availability that often accompany fire. The nutrients that increase in availability following fire, however, may not be the same as those provided by prey and may not reduce nutrient limitation if accompanied by even greater increases in light. METHODS Using a factorial experiment in the field, we examined how simulated fire (clipping plus nitrogen-free fertilizer addition) and prey-derived nutrient availability (prey exclusion) interacted to influence carnivorous potential in Sarracenia alata and belowground competition with its neighbors (manipulated via trenching). We hypothesized that simulated fire combined with prey exclusion would (1) increase the potential for prey capture relative to shade avoidance, hereafter, relative prey-capture potential (RPCP), and/or (2) increase belowground competition with neighboring plants. RESULTS Sarracenia alata increased RPCP in response to the combination of simulated fire and prey exclusion, despite increases in phosphorus and other nutrients associated with the simulated fire treatment, suggesting that prey capture potential increases in response to increased nitrogen limitation resulting from increases in light and/or phosphorus after fire. We found no evidence of belowground competition. CONCLUSIONS The potential importance of carnivory in Sarracenia alata increases following fire. This result helps to explain the paradoxical association of carnivorous plants with fire by demonstrating the potential for prey-derived nutrient limitation to increase rather than decrease in response to increases in light and nutrients other than nitrogen following fire.
Collapse
Affiliation(s)
- Matthew J Abbott
- Department of Biology, University of Mississippi, University, MS, 38677-1848, USA
| | - J Stephen Brewer
- Department of Biology, University of Mississippi, University, MS, 38677-1848, USA
| |
Collapse
|
7
|
Oropeza-Aburto A, Cervantes-Pérez SA, Albert VA, Herrera-Estrella L. Agrobacterium tumefaciens mediated transformation of the aquatic carnivorous plant Utricularia gibba. PLANT METHODS 2020; 16:50. [PMID: 32308728 PMCID: PMC7149871 DOI: 10.1186/s13007-020-00592-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND The genus Utricularia belongs to Lentibulariaceae, the largest family of carnivorous plants, which includes terrestrial, epiphytic and aquatic species. The development of specialized structures that evolved for carnivory is a feature of this genus that has been of great interest to biologists since Darwin's early studies. Utricularia gibba is itself an aquatic plant with sophisticated bladder traps having one of the most complex suction mechanisms for trapping prey. However, the molecular characterization of the mechanisms that regulate trap development and the biophysical processes involved in prey trapping are still largely unknown due to the lack of a simple and reproducible gene transfer system. RESULTS Here, we report the establishment of a simple, fast and reproducible protocol for genetic transformation of U. gibba based on the T-DNA of Agrobacterium tumefaciens. An in vitro selection system using Phosphinotricin as a selective agent was established for U. gibba. Plant transformation was confirmed by histochemical GUS assays and PCR and qRT-PCR analyses. We report on the expression pattern of the 35S promoter and of the promoter of a trap-specific ribonuclease gene in transgenic U. gibba plants. CONCLUSIONS The genetic transformation protocol reported here is an effective method for studying developmental biology and functional genomics of this genus of carnivorous plants and advances the utility of U. gibba as a model system to study developmental processes involved in trap formation.
Collapse
Affiliation(s)
- A. Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
| | - S. A. Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
| | - V. A. Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260 USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - L. Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, USA
| |
Collapse
|
8
|
Maurer D, Weber D, Ballering E, Alfarraj S, Albasher G, Hedrich R, Werner C, Rennenberg H. Photosynthetic cyclic electron transport provides ATP for homeostasis during trap closure in Dionaea muscipula. ANNALS OF BOTANY 2020; 125:485-494. [PMID: 31711177 PMCID: PMC7061167 DOI: 10.1093/aob/mcz185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND AIMS The processes connected with prey capture and the early consumption of prey by carnivorous Dionaea muscipula require high amounts of energy. The aim of the present study was to identify processes involved in flytrap energy provision and ATP homeostasis under these conditions. METHODS We determined photosynthetic CO2 uptake and chlorophyll fluorescence as well as the dynamics of ATP contents in the snap traps upon closure with and without prey. KEY RESULTS The results indicate that upon prey capture, a transient switch from linear to cyclic electron transport mediates a support of ATP homeostasis. Beyond 4 h after prey capture, prey resources contribute to the traps' ATP pool and, 24 h after prey capture, export of prey-derived resources to other plant organs may become preferential and causes a decline in ATP contents. CONCLUSIONS Apparently, the energy demand of the flytrap for prey digestion and nutrient mining builds on both internal and prey-derived resources.
Collapse
Affiliation(s)
- Daniel Maurer
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Daniel Weber
- Phytoprove Plant Analytics UG, Senckenberg Biodiversity & Climate Research Centre, Frankfurt am Main, Germany
| | - Eva Ballering
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Salah Alfarraj
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Gada Albasher
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany
- College of Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Klink S, Giesemann P, Gebauer G. Picky carnivorous plants? Investigating preferences for preys' trophic levels - a stable isotope natural abundance approach with two terrestrial and two aquatic Lentibulariaceae tested in Central Europe. ANNALS OF BOTANY 2019; 123:1167-1177. [PMID: 30865264 PMCID: PMC6612943 DOI: 10.1093/aob/mcz022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/01/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Stable isotope two-source linear mixing models are frequently used to calculate the nutrient-uptake efficiency of carnivorous plants from pooled prey. This study aimed to separate prey into three trophic levels as pooled prey limits statements about the contribution of a specific trophic level to the nutrition of carnivorous plants. Phytoplankton were used as an autotrophic reference for aquatic plants as the lack of suitable reference plants impedes calculation of their efficiency. METHODS Terrestrial (Pinguicula) and aquatic (Utricularia) carnivorous plants alongside autotrophic reference plants and potential prey from six sites in Germany and Austria were analysed for their stable isotope natural abundances (δ15N, δ13C). A two-source linear mixing model was applied to calculate the nutrient-uptake efficiency of carnivorous plants from pooled prey. Prey preferences were determined using a Bayesian inference isotope mixing model. KEY RESULTS Phytophagous prey represented the main contribution to the nutrition of Pinguicula (approx. 55 %), while higher trophic levels contributed a smaller amount (diverse approx. 27 %, zoophagous approx. 17 %). As well as around 48 % nitrogen, a small proportion of carbon (approx. 9 %) from prey was recovered in the tissue of plants. Aquatic Utricularia australis received 29 % and U. minor 21 % nitrogen from zooplankton when applying phytoplankton as the autotrophic reference. CONCLUSIONS The separation of prey animals into trophic levels revealed a major nutritional contribution of lower trophic level prey (phytophagous) for temperate Pinguicula species. Naturally, prey of higher trophic levels (diverse, zoophagous) are rarer, resulting in a smaller chance of being captured. Phytoplankton represents an adequate autotrophic reference for aquatic systems to estimate the contribution of zooplankton-derived nitrogen to the tissue of carnivorous plants. The autonomous firing of Utricularia bladders results in the additional capture of phytoplankton, calling for new aquatic references to determine the nutritional importance of phytoplankton for aquatic carnivorous plants.
Collapse
Affiliation(s)
- Saskia Klink
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Philipp Giesemann
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Gerhard Gebauer
- Laboratory of Isotope Biogeochemistry, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
10
|
Baby S, Johnson AJ, Zachariah EJ, Hussain AA. Nepenthes pitchers are CO 2-enriched cavities, emit CO 2 to attract preys. Sci Rep 2017; 7:11281. [PMID: 28900277 PMCID: PMC5595901 DOI: 10.1038/s41598-017-11414-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Carnivorous plants of the genus Nepenthes supplement their nutrient deficiency by capturing arthropods or by mutualistic interactions, through their leaf-evolved biological traps (pitchers). Though there are numerous studies on these traps, mostly on their prey capture mechanisms, the gas composition inside them remains unknown. Here we show that, Nepenthes unopened pitchers are CO2-enriched 'cavities', when open they emit CO2, and the CO2 gradient around open pitchers acts as a cue attracting preys towards them. CO2 contents in near mature, unopened Nepenthes pitchers were in the range 2500-5000 ppm. Gas collected from inside open N. khasiana pitchers showed CO2 at 476.75 ± 59.83 ppm. CO2-enriched air-streaming through N. khasiana pitchers (at 619.83 ± 4.53 ppm) attracted (captured) substantially higher number of aerial preys compared to air-streamed pitchers (CO2 at 412.76 ± 4.51 ppm). High levels of CO2 dissolved in acidic Nepenthes pitcher fluids were also detected. We demonstrate respiration as the source of elevated CO2 within Nepenthes pitchers. Most unique features of Nepenthes pitchers, viz., high growth rate, enhanced carbohydrate levels, declined protein levels, low photosynthetic capacity, high respiration rate and evolved stomata, are influenced by the CO2-enriched environment within them.
Collapse
Affiliation(s)
- Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695 562, Kerala, India.
| | - Anil John Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695 562, Kerala, India
| | - Elavinamannil Jacob Zachariah
- Atmospheric Sciences Division, National Centre for Earth Science Studies, Post Box No. 7250, Akkulam, Thiruvananthapuram, 695 011, Kerala, India
| | - Abdul Azeez Hussain
- Garden Management Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695 562, Kerala, India
| |
Collapse
|
11
|
Silva SR, Alvarenga DO, Aranguren Y, Penha HA, Fernandes CC, Pinheiro DG, Oliveira MT, Michael TP, Miranda VFO, Varani AM. The mitochondrial genome of the terrestrial carnivorous plant Utricularia reniformis (Lentibulariaceae): Structure, comparative analysis and evolutionary landmarks. PLoS One 2017; 12:e0180484. [PMID: 28723946 PMCID: PMC5516982 DOI: 10.1371/journal.pone.0180484] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/13/2017] [Indexed: 11/18/2022] Open
Abstract
The carnivorous plants of the family Lentibulariaceae have attained recent attention not only because of their interesting lifestyle, but also because of their dynamic nuclear genome size. Lentibulariaceae genomes span an order of magnitude and include species with the smallest genomes in angiosperms, making them a powerful system to study the mechanisms of genome expansion and contraction. However, little is known about mitochondrial DNA (mtDNA) sequences of this family, and the evolutionary forces that shape this organellar genome. Here we report the sequencing and assembly of the complete mtDNA from the endemic terrestrial Brazilian species Utricularia reniformis. The 857,234bp master circle mitochondrial genome encodes 70 transcriptionaly active genes (42 protein-coding, 25 tRNAs and 3 rRNAs), covering up to 7% of the mtDNA. A ltrA-like protein related to splicing and mobility and a LAGLIDADG homing endonuclease have been identified in intronic regions, suggesting particular mechanisms of genome maintenance. RNA-seq analysis identified properties with putative diverse and important roles in genome regulation and evolution: 1) 672kbp (78%) of the mtDNA is covered by full-length reads; 2) most of the 243kbp intergenic regions exhibit transcripts; and 3) at least 69 novel RNA editing sites in the protein-coding genes. Additional genomic features are hypothetical ORFs (48%), chloroplast insertions, including truncated plastid genes that have been lost from the chloroplast DNA (5%), repeats (5%), relics of transposable elements mostly related to LTR retrotransposons (5%), and truncated mitovirus sequences (0.4%). Phylogenetic analysis based on 32 different Lamiales mitochondrial genomes corroborate that Lentibulariaceae is a monophyletic group. In summary, the U. reniformis mtDNA represents the eighth largest plant mtDNA described to date, shedding light on the genomic trends and evolutionary characteristics and phylogenetic history of the family Lentibulariaceae.
Collapse
Affiliation(s)
- Saura R. Silva
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Danillo O. Alvarenga
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Yani Aranguren
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Helen A. Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Camila C. Fernandes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Marcos T. Oliveira
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Todd P. Michael
- Computational Genomics, Ibis Bioscience, Carlsbad, CA, United States of America
| | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
12
|
Pavlovič A, Saganová M. A novel insight into the cost-benefit model for the evolution of botanical carnivory. ANNALS OF BOTANY 2015; 115:1075-92. [PMID: 25948113 PMCID: PMC4648460 DOI: 10.1093/aob/mcv050] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/02/2015] [Accepted: 03/20/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The cost-benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants. SCOPE This review summarizes results from the classical interpretation of the cost-benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost-benefit model. CONCLUSIONS Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Saganová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic and Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| |
Collapse
|
13
|
|
14
|
Pavlovič A, Krausko M, Libiaková M, Adamec L. Feeding on prey increases photosynthetic efficiency in the carnivorous sundew Drosera capensis. ANNALS OF BOTANY 2014; 113:69-78. [PMID: 24201141 PMCID: PMC3864725 DOI: 10.1093/aob/mct254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/11/2013] [Indexed: 05/24/2023]
Abstract
UNLABELLED BACKROUND AND AIMS: It has been suggested that the rate of net photosynthesis (AN) of carnivorous plants increases in response to prey capture and nutrient uptake; however, data confirming the benefit from carnivory in terms of increased AN are scarce and unclear. The principal aim of our study was to investigate the photosynthetic benefit from prey capture in the carnivorous sundew Drosera capensis. METHODS Prey attraction experiments were performed, with measurements and visualization of enzyme activities, elemental analysis and pigment quantification together with simultaneous measurements of gas exchange and chlorophyll a fluorescence in D. capensis in response to feeding with fruit flies (Drosophila melanogaster). KEY RESULTS Red coloration of tentacles did not act as a signal to attract fruit flies onto the traps. Phosphatase, phophodiesterase and protease activities were induced 24 h after prey capture. These activities are consistent with the depletion of phosphorus and nitrogen from digested prey and a significant increase in their content in leaf tissue after 10 weeks. Mechanical stimulation of tentacle glands alone was not sufficient to induce proteolytic activity. Activities of β-D-glucosidases and N-acetyl-β-D-glucosaminidases in the tentacle mucilage were not detected. The uptake of phosphorus from prey was more efficient than that of nitrogen and caused the foliar N:P ratio to decrease; the contents of other elements (K, Ca, Mg) decreased slightly in fed plants. Increased foliar N and P contents resulted in a significant increase in the aboveground plant biomass, the number of leaves and chlorophyll content as well as AN, maximum quantum yield (Fv/Fm) and effective photochemical quantum yield of photosystem II (ΦPSII). CONCLUSIONS According to the stoichiometric relationships among different nutrients, the growth of unfed D. capensis plants was P-limited. This P-limitation was markedly alleviated by feeding on fruit flies and resulted in improved plant nutrient status and photosynthetic performance. This study supports the original cost/benefit model proposed by T. Givnish almost 30 years ago and underlines the importance of plant carnivory for increasing phosphorus, and thereby photosynthesis.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Lubomír Adamec
- Institute of Botany of the Academy of Sciences of the Czech Republic, Section of Plant Ecology, Dukelská 135, CZ-379 82, Třeboň, Czech Republic
| |
Collapse
|
15
|
Strategy of nitrogen acquisition and utilization by carnivorous Dionaea muscipula. Oecologia 2013; 174:839-51. [PMID: 24141381 DOI: 10.1007/s00442-013-2802-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
Plant carnivory represents an exceptional means to acquire N. Snap traps of Dionaea muscipula serve two functions, and provide both N and photosynthate. Using (13)C/(15)N-labelled insect powder, we performed feeding experiments with Dionaea plants that differed in physiological state and N status (spring vs. autumn plants). We measured the effects of (15)N uptake on light-saturated photosynthesis (A(max)), dark respiration (R(D)) and growth. Depending on N status, insect capture briefly altered the dynamics of R(D)/A(max), reflecting high energy demand during insect digestion and nutrient uptake, followed by enhanced photosynthesis and growth. Organic N acquired from insect prey was immediately redistributed, in order to support swift renewal of traps and thereby enhance probability of prey capture. Respiratory costs associated with permanent maintenance of the photosynthetic machinery were thereby minimized. Dionaea's strategy of N utilization is commensurate with the random capture of large prey, occasionally transferring a high load of organic nutrients to the plant. Our results suggest that physiological adaptations to unpredictable resource availability are essential for Dionaea's success with regards to a carnivorous life style.
Collapse
|
16
|
Schmidt S, Raven JA, Paungfoo-Lonhienne C. The mixotrophic nature of photosynthetic plants. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:425-438. [PMID: 32481119 DOI: 10.1071/fp13061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/22/2013] [Indexed: 06/11/2023]
Abstract
Plants typically have photosynthetically competent green shoots. To complement resources derived from the atmospheric environment, plants also acquire essential elements from soil. Inorganic ions and molecules are generally considered to be the sources of soil-derived nutrients, and plants tested in this respect can grow with only inorganic nutrients and so can live as autotrophs. However, mycorrhizal symbionts are known to access nutrients from organic matter. Furthermore, specialist lineages of terrestrial photosynthetically competent plants are mixotrophic, including species that obtain organic nutrition from animal prey (carnivores), fungal partners (mycoheterotrophs) or plant hosts (hemi-parasites). Although mixotrophy is deemed the exception in terrestrial plants, it is a common mode of nutrition in aquatic algae. There is mounting evidence that non-specialist plants acquire organic compounds as sources of nutrients, taking up and metabolising a range of organic monomers, oligomers, polymers and even microbes as sources of nitrogen and phosphorus. Plasma-membrane located transporter proteins facilitate the uptake of low-molecular mass organic compounds, endo- and phagocytosis may enable the acquisition of larger compounds, although this has not been confirmed. Identifying the mechanisms involved in the acquisition of organic nutrients will provide understanding of the ecological significance of mixotrophy. Here, we discuss mixotrophy in the context of nitrogen and phosphorus nutrition drawing parallels between algae and plants.
Collapse
Affiliation(s)
- Susanne Schmidt
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Qld 4072, Australia
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | | |
Collapse
|
17
|
|