1
|
McGeoch MA, Clarke DA, Mungi NA, Ordonez A. A nature-positive future with biological invasions: theory, decision support and research needs. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230014. [PMID: 38583473 PMCID: PMC10999266 DOI: 10.1098/rstb.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/24/2024] [Indexed: 04/09/2024] Open
Abstract
In 2050, most areas of biodiversity significance will be heavily influenced by multiple drivers of environmental change. This includes overlap with the introduced ranges of many alien species that negatively impact biodiversity. With the decline in biodiversity and increase in all forms of global change, the need to envision the desired qualities of natural systems in the Anthropocene is growing, as is the need to actively maintain their natural values. Here, we draw on community ecology and invasion biology to (i) better understand trajectories of change in communities with a mix of native and alien populations, and (ii) to frame approaches to the stewardship of these mixed-species communities. We provide a set of premises and actions upon which a nature-positive future with biological invasions (NPF-BI) could be based, and a decision framework for dealing with uncertain species movements under climate change. A series of alternative management approaches become apparent when framed by scale-sensitive, spatially explicit, context relevant and risk-consequence considerations. Evidence of the properties of mixed-species communities together with predictive frameworks for the relative importance of the ecological processes at play provide actionable pathways to a NPF in which the reality of mixed-species communities are accommodated and managed. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Melodie A. McGeoch
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - David A. Clarke
- Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Ninad Avinash Mungi
- Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Alejandro Ordonez
- Section of Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus 8000, Denmark
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
2
|
Drees TH, Shea K. Elevated temperatures shift flower head height distributions and seed dispersal patterns in two invasive thistle species. Ecology 2024; 105:e4201. [PMID: 37901946 DOI: 10.1002/ecy.4201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 08/06/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023]
Abstract
Climate change may significantly alter how organisms disperse, with implications for population spread and species management. Wind-dispersed plants have emerged as a useful study system for investigating how climate change affects dispersal, although studies modeling wind dispersal often assume propagules are released from a single point on an individual. This simplifying assumption, while useful, may misestimate dispersal. Here, we investigate the effects of climate change on dispersal distances and spread rates, examining how these quantities shift when accounting for all points of seed release on an individual. Using the wind-dispersed invasive thistles Carduus nutans and Carduus acanthoides, we quantify temperature-driven shifts in the distribution of flower head heights using a passive warming field experiment, and estimate how these shifts affect dispersal using the Wald analytical long-distance (WALD) model; for C. nutans, we use existing demographic data to simulate how these shifts affect population spread rates. We also compare dispersal distances for both warmed and ambient temperature plants, considering the entire distribution of flower head heights versus the common assumption of point-source seed release at the maximum height. For experimentally grown individuals, an ~0.6°C higher growing temperature increased mean and maximum flower head height by 14.1 cm (15.0%) and 14.0 cm (13.2%), respectively, in C. nutans and by 21.2 cm (26.6%) and 31.8 cm (36.7%), respectively, in C. acanthoides. Seeds from warmed individuals were more likely to exceed a given dispersal distance than those from their unwarmed counterparts; warmed C. nutans and C. acanthoides seeds were on average 1.36 and 1.71 times as likely, respectively, to travel 10 m or more in dispersal simulations, with this disparity increasing at longer dispersal distances. For C. nutans, increased growing temperatures boosted simulated rates of population spread by 42.2%, while assuming dispersal from a maximum height point source rather than the true distribution of flower head heights increased simulated spread by up to 28.5%. Our results not only demonstrate faster population spread under increased temperatures, but also have substantial implications for modeling such spread, as the common simplifying assumption of dispersal from a single maximum height source may substantially overestimate spread rates.
Collapse
Affiliation(s)
- Trevor H Drees
- Department of Biology and IGDP in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Katriona Shea
- Department of Biology and IGDP in Ecology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Bellingham PJ, Arnst EA, Clarkson BD, Etherington TR, Forester LJ, Shaw WB, Sprague R, Wiser SK, Peltzer DA. The right tree in the right place? A major economic tree species poses major ecological threats. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02892-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractTree species in the Pinaceae are some of the most widely introduced non-native tree species globally, especially in the southern hemisphere. In New Zealand, plantations of radiata pine (Pinus radiata D. Don) occupy c. 1.6 million ha and form 90% of planted forests. Although radiata pine has naturalized since 1904, there is a general view in New Zealand that this species has not invaded widely. We comprehensively review where radiata pine has invaded throughout New Zealand. We used a combination of observational data and climate niche modelling to reveal that invasion has occurred nationally. Climate niche modelling demonstrates that while current occurrences are patchy, up to 76% of the land area (i.e. 211,388 km2) is climatically capable of supporting populations. Radiata pine has mainly invaded grasslands and shrublands, but also some forests. Notably, it has invaded lower-statured vegetation, including three classes of naturally uncommon ecosystems, primary successions and secondary successions. Overall, our findings demonstrate pervasive and ongoing invasion of radiata pine outside plantations. The relatively high growth rates and per individual effects of radiata pine may result in strong effects on naturally uncommon ecosystems and may alter successional trajectories. Local and central government currently manage radiata pine invasions while propagule pressure from existing and new plantations grows, hence greater emphasis is warranted both on managing current invasions and proactively preventing future radiata pine invasions. We therefore recommend a levy on new non-native conifer plantations to offset costs of managing invasions, and stricter regulations to protect vulnerable ecosystems. A levy on economic uses of invasive species to offset costs of managing invasions alongside stricter regulations to protect vulnerable ecosystems could be a widely adopted measure to avert future negative impacts.
Collapse
|
4
|
Essl F, Dullinger S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Lenzner B, Pauchard A, Pyšek P, Rabitsch W, Richardson DM, Seebens H, van Kleunen M, van der Putten WH, Vilà M, Bacher S. A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. Bioscience 2019. [DOI: 10.1093/biosci/biz101] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
For many species, human-induced environmental changes are important indirect drivers of range expansion into new regions. We argue that it is important to distinguish the range dynamics of such species from those that occur without, or with less clear, involvement of human-induced environmental changes. We elucidate the salient features of the rapid increase in the number of species whose range dynamics are human induced, and review the relationships and differences to both natural range expansion and biological invasions. We discuss the consequences for science, policy and management in an era of rapid global change and highlight four key challenges relating to basic gaps in knowledge, and the transfer of scientific understanding to biodiversity management and policy. We conclude that range-expanding species responding to human-induced environmental change will become an essential feature for biodiversity management and science in the Anthropocene. Finally, we propose the term neonative for these taxa.
Collapse
Affiliation(s)
- Franz Essl
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, in Vienna, Austria
- Department of Botany and Zoology, at Stellenbosch University, in Stellenbosch, South Africa
| | - Stefan Dullinger
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, in Vienna, Austria
| | - Piero Genovesi
- Institute for Environmental Protection and Research and is chair of the IUCN SSC Invasive Species Specialist Group, in Rome, Italy
| | - Philip E Hulme
- Bio-Protection Research Centre, at Lincoln University, in Christchurch, New Zealand
| | - Jonathan M Jeschke
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy's Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | | | - Ingolf Kühn
- Department of Community Ecology, Halle, Germany
- Martin Luther University Halle–Wittenberg Geobotany and Botanical Garden, Halle, Germany
- German Centre for Integrative Biodiversity Research Halle–Jena–Leipzig, Leipzig, Germany
| | - Bernd Lenzner
- Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, in Vienna, Austria
| | - Aníbal Pauchard
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, at the University of Concepcion, in Concepción, Chile
- Institute of Ecology and Biodiversity, in Santiago, Chile
| | - Petr Pyšek
- Department of Invasion Ecology, in Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, at Charles University, in Prague, Czech Republic
| | - Wolfgang Rabitsch
- Environment Agency Austria's Department of Biodiversity and Nature Conservation, in Vienna, Austria
| | - David M Richardson
- Department of Botany and Zoology, at Stellenbosch University, in Stellenbosch, South Africa
| | - Hanno Seebens
- Senckenberg Biodiversity and Climate Research Centre, in Frankfurt am Main, Germany
| | - Mark van Kleunen
- Ecology section of the Department of Biology at the University of Konstanz, in Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, at Taizhou University, in Taizhou, China
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, in Wageningen, The Netherlands
- Laboratory of Nematology at Wageningen University and Research Centre, in Wageningen, The Netherlands
| | | | - Sven Bacher
- Department of Biology at the University of Fribourg, in Fribourg, Switzerland
| |
Collapse
|
5
|
Abstract
Declines in wild and managed bee species richness and abundances have been observed throughout Europe and North America in recent decades. These declines have led to questions regarding pollination of wild and cultivated plants. In response to these concerns, efforts towards the conservation of pollinators have been initiated. Part of this conservation effort should be to provide the basic nutritional needs for bees. Nutrition plays one of the most important roles in bee growth, development, and reproduction. There is a large body of information regarding honey bee nutrition, whereas we lack nutritional information on native wild bees. Our knowledge of bumble bee nutritional needs has increased since the introduction of commercial rearing and sale of certain bumble bee species; however, there is still a lack of basic nutritional guidelines such as minimum dietary needs of proteins, amino acids, lipids, and sterols. The large difference in physiology and life history between honey bees and North American wild bees suggests that their nutritional requirements could be quite different.
Collapse
|
6
|
Inderjit, Catford JA, Kalisz S, Simberloff D, Wardle DA. A framework for understanding human‐driven vegetation change. OIKOS 2017. [DOI: 10.1111/oik.04587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Inderjit
- Dept of Environmental Studies Centre for Environmental Management of Degraded Ecosystems (CEMDE), Univ. of Delhi Delhi India
| | - Jane A. Catford
- Biological Sciences Univ. of Southampton, Southampton, UK, and: School of BioSciences, The Univ. of Melbourne Victoria Australia
| | - Susan Kalisz
- Dept of Ecology and Evolutionary Biology Univ. of Tennessee Knoxville TN USA
| | - Daniel Simberloff
- Dept of Ecology and Evolutionary Biology Univ. of Tennessee Knoxville TN USA
| | - David A. Wardle
- Dept of Forest Ecology and Management Swedish Univ. of Agricultural Sciences Umeå Sweden
- Asian School of the Environment, Nanyang Technological Univ. Singapore
| |
Collapse
|
7
|
Dudeque Zenni R, Lacerda da Cunha W, Sena G. Rapid increase in growth and productivity can aid invasions by a non-native tree. AOB PLANTS 2016; 8:plw048. [PMID: 27339051 PMCID: PMC4972472 DOI: 10.1093/aobpla/plw048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/10/2016] [Indexed: 05/31/2023]
Abstract
Research on biological invasions has produced detailed theories describing range expansions of introduced populations. However, current knowledge of evolutionary factors associated with invasive range expansions, especially those related to rapid evolution of long-lived organisms, is still rudimentary. Here, we used a system of six 40-year-old invasive pine populations that originated from replicated introduction events to study evolution in productivity, growth, and chemical defence traits. We tested the hypotheses that invasive populations were undergoing rapid phenotypic change as populations spread, that populations exhibit trade-offs between evolution in growth and chemical defences, and that rates of rapid evolution in plant growth and productivity effect rates of invasion. Although all invasions started from replicated pools of genetic material and equal propagule pressure, we found divergence in mean values for the six invasive populations in the six traits measured. Not only were there between-population variations but also invasive populations were also rapidly changing along each invasive population expansion. Two populations displayed greater leaf areas (LAs) and smaller specific LAs (SLAs) during range expansion. Four populations had faster growth rates at the leading edge of the invasion front in comparison with plants at the rear edge. In terms of total plant defences, non-volatile resin increased in plants along one invasion gradient and decreased in a second, total needle phenolics increased in plants along one invasion gradient and total wood phenolics increased in plants along the one invasion gradient and decreased in a second. We found no trade-offs between investments in growth and chemical defence. Also, faster rates of change in growth rate and LA were positively associated with greater dispersal distances of invasive populations, suggesting rapid evolution may increase invasiveness. Understanding the roles of both natural and human-mediated ecological and evolutionary processes in population-level dynamics is key to understanding the ability of non-native species to invade.
Collapse
Affiliation(s)
- Rafael Dudeque Zenni
- Department of Ecology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília CEP 70910-900, Brazil
| | - Wanderson Lacerda da Cunha
- Department of Ecology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília CEP 70910-900, Brazil
| | - Guilherme Sena
- Department of Ecology, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília CEP 70910-900, Brazil
| |
Collapse
|
8
|
Teller BJ, Zhang R, Shea K. Seed release in a changing climate: initiation of movement increases spread of an invasive species under simulated climate warming. DIVERS DISTRIB 2016. [DOI: 10.1111/ddi.12436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Brittany J. Teller
- Department of Biology and IGDP in Ecology the Pennsylvania State University 208 Mueller Laboratory University Park 16802 PA USA
- Wildland Resources Utah State University Old Main Hill Logan 84322 UT USA
| | - Rui Zhang
- Department of Biology and IGDP in Ecology the Pennsylvania State University 208 Mueller Laboratory University Park 16802 PA USA
- Harvard Forest Harvard University 324 North Main Street Petersham MA 01366 USA
| | - Katriona Shea
- Department of Biology and IGDP in Ecology the Pennsylvania State University 208 Mueller Laboratory University Park 16802 PA USA
| |
Collapse
|
9
|
Estrada A, Morales-Castilla I, Caplat P, Early R. Usefulness of Species Traits in Predicting Range Shifts. Trends Ecol Evol 2016; 31:190-203. [PMID: 26776962 DOI: 10.1016/j.tree.2015.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Information on the ecological traits of species might improve predictions of climate-driven range shifts. However, the usefulness of traits is usually assumed rather than quantified. Here, we present a framework to identify the most informative traits, based on four key range-shift processes: emigration of individuals or propagules away from the natal location; the distance a species can move; establishment of self-sustaining populations; and proliferation following establishment. We propose a framework that categorises traits according to their contribution to range-shift processes. We demonstrate how the framework enables the predictive value of traits to be evaluated empirically and how this categorisation can be used to better understand range-shift processes; we also illustrate how range-shift estimates can be improved.
Collapse
Affiliation(s)
- Alba Estrada
- CIBIO/InBIO, Universidade de Évora, Évora, Portugal; Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | | | - Paul Caplat
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
| | - Regan Early
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall, UK.
| |
Collapse
|
10
|
Alofs KM, Jackson DA. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada. GLOBAL CHANGE BIOLOGY 2015; 21:2227-2237. [PMID: 25556555 DOI: 10.1111/gcb.12853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/14/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake-to-lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.
Collapse
Affiliation(s)
- Karen M Alofs
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S3B2, Canada
| | | |
Collapse
|
11
|
Adams VM, Petty AM, Douglas MM, Buckley YM, Ferdinands KB, Okazaki T, Ko DW, Setterfield SA. Distribution, demography and dispersal model of spatial spread of invasive plant populations with limited data. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vanessa M. Adams
- Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub Charles Darwin University Darwin NT 0909 Australia
| | - Aaron M. Petty
- Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub Charles Darwin University Darwin NT 0909 Australia
| | - Michael M. Douglas
- Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub Charles Darwin University Darwin NT 0909 Australia
| | - Yvonne M. Buckley
- School of Natural Sciences and Trinity Centre for Biodiversity Research Trinity College Dublin, Zoology Dublin 2 Ireland
- ARC Center of Excellence for Environmental Decisions School of Biological Sciences University of Queensland Brisbane Qld 4072 Australia
| | - Keith B. Ferdinands
- Department of Land Resource Management Weed Management Branch Palmerston NT 0831 Australia
| | - Tomoko Okazaki
- Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub Charles Darwin University Darwin NT 0909 Australia
| | - Dongwook W. Ko
- Research Institute for the Environment and Livelihoods Charles Darwin University Darwin NT 0909 Australia
| | - Samantha A. Setterfield
- Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub Charles Darwin University Darwin NT 0909 Australia
| |
Collapse
|
12
|
Meyra AG, Zarragoicoechea GJ, Kuz VA. Self-organization of plants in a dryland ecosystem: Symmetry breaking and critical cluster size. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052810. [PMID: 26066215 DOI: 10.1103/physreve.91.052810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 06/04/2023]
Abstract
Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation, solar radiation, nutrients, etc.) are available to the ecosystem, it is possible to obtain the persistent configurations of plants compatible with an equitable distribution of resources maximizing the Shannon entropy. Variation of vegetation patterns with density, critical cluster size, and facilitation distance are predicted. Morphological changes of clusters are shown to be a function of the external resources. As a final remark, it is proposed that an early warning of desertification could be detected from the coefficient of variation of the mean cluster size together with the distribution of cluster sizes.
Collapse
Affiliation(s)
- Ariel G Meyra
- IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina
| | - Guillermo J Zarragoicoechea
- IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina
- Diseño Industrial, Facultad de Bellas Artes, UNLP, La Plata, Argentina
| | - Victor A Kuz
- IFLYSIB (UNLP, CONICET), 59 No. 789, B1900BTE La Plata, Argentina
| |
Collapse
|
13
|
Teller BJ, Marden JH, Shea K. Covariation in abscission force and terminal velocity of windborne sibling seeds alters long‐distance dispersal projections. Methods Ecol Evol 2015. [DOI: 10.1111/2041-210x.12336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brittany J. Teller
- Department of Biology and IGDP in Ecology The Pennsylvania State University 208 Mueller Laboratory University Park 16802 PA USA
- Wildland Resources Utah State University 5230 Old Main Logan 84322 UT USA
| | - James H. Marden
- Department of Biology and IGDP in Ecology The Pennsylvania State University 208 Mueller Laboratory University Park 16802 PA USA
| | - Katriona Shea
- Department of Biology and IGDP in Ecology The Pennsylvania State University 208 Mueller Laboratory University Park 16802 PA USA
| |
Collapse
|
14
|
Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. Biological invasions, climate change and genomics. Evol Appl 2015; 8:23-46. [PMID: 25667601 PMCID: PMC4310580 DOI: 10.1111/eva.12234] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022] Open
Abstract
The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species' geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.
Collapse
Affiliation(s)
- Steven L Chown
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash UniversityClayton, Vic., Australia
| | - Philippa C Griffin
- Department of Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| | - John G Oakeshott
- CSIRO Land and Water Flagship, Black Mountain LaboratoriesCanberra, ACT, Australia
| | - Margaret Byrne
- Science and Conservation Division, Department of Parks and Wildlife, Bentley Delivery CentreBentley, WA, Australia
| | - Ary A Hoffmann
- Departments of Zoology and Genetics, Bio21 Institute, The University of MelbourneParkville, Vic., Australia
| |
Collapse
|
15
|
|
16
|
Teller BJ, Miller AD, Shea K. Conservation of passively dispersed organisms in the context of habitat degradation and destruction. J Appl Ecol 2014. [DOI: 10.1111/1365-2664.12379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brittany J. Teller
- Department of Biology and IGDP in Ecology; The Pennsylvania State University; 208 Mueller Laboratory University Park 16802 PA USA
- Wildland Resources; Utah State University; 5230 Old Main Logan 84322 UT USA
| | - Adam D. Miller
- Department of Biology and IGDP in Ecology; The Pennsylvania State University; 208 Mueller Laboratory University Park 16802 PA USA
- Smithsonian Conservation Biology Institute; 1500 Remount Rd. Front Royal VA 22630 USA
| | - Katriona Shea
- Department of Biology and IGDP in Ecology; The Pennsylvania State University; 208 Mueller Laboratory University Park 16802 PA USA
| |
Collapse
|
17
|
Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M, O'Geen H, Kim RW, Sammons RD, Rieseberg LH, Stewart CN. De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. PLANT PHYSIOLOGY 2014; 166:1241-54. [PMID: 25209985 PMCID: PMC4226366 DOI: 10.1104/pp.114.247668] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 05/20/2023]
Abstract
Horseweed (Conyza canadensis), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n = 2x = 18), with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic bases of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000, and PacBio RS) using various libraries with different insertion sizes (approximately 350 bp, 600 bp, 3 kb, and 10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (approximately 350× coverage) of data, the genome was assembled into 13,966 scaffolds with 50% of the assembly = 33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (approximately 153 kb) and a nearly complete mitochondrial genome (approximately 450 kb in 120 scaffolds). The nuclear genome is composed of 44,592 protein-coding genes. Genome resequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single-nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or -susceptible biotypes. The draft genome will be useful to better understand weediness and the evolution of herbicide resistance and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this article represents the first published draft genome of an agricultural weed.
Collapse
Affiliation(s)
- Yanhui Peng
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Zhao Lai
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Thomas Lane
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Madhugiri Nageswara-Rao
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Miki Okada
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Marie Jasieniuk
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Henriette O'Geen
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Ryan W Kim
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - R Douglas Sammons
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - Loren H Rieseberg
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| | - C Neal Stewart
- Department of Plant Science, University of Tennessee, Knoxville, Tennessee 37996 (Y.P., T.L., M.N.-R., C.N.S.);Department of Biology, Indiana University, Bloomington, Indiana 47405 (Z.L., L.H.R.);Department of Plant Sciences (M.O., M.J.) and Genome Center (H.O., R.W.K.), University of California, Davis, California 95616;Monsanto, Inc., St. Louis, Missouri 63130 (R.D.S.); andDepartment of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (L.H.R.)
| |
Collapse
|
18
|
Affiliation(s)
- Alistair G. Auffret
- Landscape Ecology; Department of Physical Geography and Quaternary Geology; Stockholm University; Stockholm 106 91 Sweden
| | - Johan Berg
- Department of Human Geography; Stockholm University; Stockholm 106 91 Sweden
| | - Sara A.O. Cousins
- Landscape Ecology; Department of Physical Geography and Quaternary Geology; Stockholm University; Stockholm 106 91 Sweden
| |
Collapse
|
19
|
Pandit MK, White SM, Pocock MJO. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. THE NEW PHYTOLOGIST 2014; 203:697-703. [PMID: 24697788 DOI: 10.1111/nph.12799] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/05/2014] [Indexed: 05/28/2023]
Abstract
Understanding how species' traits relate to their status (e.g. invasiveness or rarity) is important because it can help to efficiently focus conservation and management effort and infer mechanisms affecting plant status. This is particularly important for invasiveness, in which proactive action is needed to restrict the establishment of potentially invasive plants. We tested the ability of genome size (DNA 1C-values) to explain invasiveness and compared it with cytogenetic traits (chromosome number and ploidy level). We considered 890 species from 62 genera, from across the angiosperm phylogeny and distributed from tropical to boreal latitudes. We show that invasiveness was negatively related to genome size and positively related to chromosome number (and ploidy level), yet there was a positive relationship between genome size and chromosome number; that is, our result was not caused by collinearity between the traits. Including both traits in explanatory models greatly increased the explanatory power of each. This demonstrates the potential unifying role that genome size, chromosome number and ploidy have as species' traits, despite the diverse impacts they have on plant physiology. It provides support for the continued cataloguing of cytogenetic traits and genome size of the world's flora.
Collapse
Affiliation(s)
- Maharaj K Pandit
- Department of Environmental Studies, Centre for Inter-disciplinary Studies of Mountain & Hill Environment, University of Delhi, Delhi, 110007, India
| | - Steven M White
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, Oxfordshire, OX1 3LB, UK
| | - Michael J O Pocock
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
20
|
Zenni RD, Bailey JK, Simberloff D. Rapid evolution and range expansion of an invasive plant are driven by provenance-environment interactions. Ecol Lett 2014; 17:727-35. [DOI: 10.1111/ele.12278] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/11/2023]
Affiliation(s)
- Rafael D. Zenni
- Department of Ecology & Evolutionary Biology; The University of Tennessee; 569 Dabney Hall Knoxville TN 37996 USA
| | - Joseph K. Bailey
- Department of Ecology & Evolutionary Biology; The University of Tennessee; 569 Dabney Hall Knoxville TN 37996 USA
| | - Daniel Simberloff
- Department of Ecology & Evolutionary Biology; The University of Tennessee; 569 Dabney Hall Knoxville TN 37996 USA
| |
Collapse
|
21
|
Moran EV, Alexander JM. Evolutionary responses to global change: lessons from invasive species. Ecol Lett 2014; 17:637-49. [DOI: 10.1111/ele.12262] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/23/2013] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Emily V. Moran
- ETH Zurich; Universitatstrasse 16 8092 Zurich Switzerland
| | | |
Collapse
|
22
|
Wilson JRU, Caplat P, Dickie IA, Hui C, Maxwell BD, Nuñez MA, Pauchard A, Rejmánek M, Richardson DM, Robertson MP, Spear D, Webber BL, van Wilgen BW, Zenni RD. A standardized set of metrics to assess and monitor tree invasions. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0605-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|