1
|
Zeng C, Qiao M, Chen Y, Xie H. EBV-positive glycoproteins associated with nasopharyngeal carcinoma. Pathol Res Pract 2024; 260:155427. [PMID: 38936091 DOI: 10.1016/j.prp.2024.155427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is closely related to Epstein-Barr virus (EBV) infection, and glycosylation of proteins is associated with precancerous lesions and carcinogenesis of NPC, and viral glycoproteins mediates the fusion of viruses with B cells or epithelial cells in the infection stage, promoting the conversion of normal epithelial cells into cancer cells. In the process of occurrence and development of NPC, various glycoproteins in the body promote or inhibit the proliferation, invasion, metastasis, and drug resistance of tumor cells, such as the tumor inhibitory effect of NGX6 and inhibin B (INHBB); the cancer-promoting effect of tenascin-C (TNC), fibronectin 1 (FN1), insulin-like growth factor binding protein-3 (IGFBP3), serglycin, and its core protein; and some effects of glycosylation of immune proteins on immunotherapy in NPC. This article provides an overview of the research progress on the interaction of glycoproteins associated with EBV infection with the occurrence and development of NPC.
Collapse
Affiliation(s)
- Chenlu Zeng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, China
| | - Muchuan Qiao
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, China
| | - Yanhua Chen
- Department of Medical Oncology, the Second Affiliated Hospital of the University of South China, Hengyang, Hunan Province, China
| | - Hailong Xie
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan Province 421001, China.
| |
Collapse
|
2
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|
3
|
Hayman IR, Temple RM, Burgess CK, Ferguson M, Liao J, Meyers C, Sample CE. New insight into Epstein-Barr virus infection using models of stratified epithelium. PLoS Pathog 2023; 19:e1011040. [PMID: 36630458 PMCID: PMC9873185 DOI: 10.1371/journal.ppat.1011040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2023] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen that is transmitted in saliva. EBV transits through the oral epithelium to infect B cells, where it establishes a life-long latent infection. Reinfection of the epithelium is believed to be mediated by virus shed from B cells, but whether a latent reservoir can exist in the epithelia is unknown. We previously developed an in vitro organotypic model of stratified epithelium where EBV can readily replicate within the suprabasal layers of the epithelium following apical infection mediated by virus-producing B cells. Given that infected epithelial cells and cell-free virus are observed in saliva, we examined the ability of both of these to mediate infection in organotypic cultures. Epithelial-derived cell-free virus was able to infect organotypic cultures from the apical surface, but showed enhanced infection of B cells. Conversely, B cell-derived virus exhibited enhanced infection of epithelial cells. While EBV has been detected in basal cells in oral hairy leukoplakia, it is unknown whether EBV can be seen in undifferentiated primary keratinocytes in the basal layer. Undifferentiated epithelial cells expressed proposed EBV receptors in monolayer and were susceptible to viral binding and entry. Integrins, and occasionally ephrin A2, were expressed in the basal layer of gingiva and tonsil derived organotypic cultures, but the known B-cell receptors HLAII and CD21 were not detected. Following infection with cell-free virus or virus-producing B cells at either the apical or basolateral surface of preformed organotypic cultures, abundant infection was detected in differentiated suprabasal cells while more limited but readily detectable infection was observed in the undifferentiated basal cells. Together, our data has provided new insight into EBV infection in stratified epithelium.
Collapse
Affiliation(s)
- Ian R. Hayman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Rachel M. Temple
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Cole K. Burgess
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mary Ferguson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jason Liao
- Department of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- The Penn State Cancer Institute, Hershey, Pennsylvania, United States of America
| |
Collapse
|
4
|
Bu GL, Xie C, Kang YF, Zeng MS, Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses 2022; 14:2372. [PMID: 36366470 PMCID: PMC9696472 DOI: 10.3390/v14112372] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a variety of human malignancies, including Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric cancers. EBV infection is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play important roles in the process of virus entry into host cells. Current studies have shown that the main tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial cells significantly differs, relying on heterogenous glycoprotein-receptor interactions. This review focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a comprehensive overview.
Collapse
Affiliation(s)
- Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
5
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
6
|
Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. BIOLOGY 2021; 10:biology10121232. [PMID: 34943147 PMCID: PMC8698839 DOI: 10.3390/biology10121232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary A subset of carcinomas that arise in the head and neck region show a viral etiology. In fact, a subgroup of oropharyngeal cancers are caused by some types of human papillomavirus (HPV), so-called high-risk (HR)-HPVs, whereas undifferentiated nasopharyngeal carcinomas are etiologically related to Epstein–Barr virus (EBV). However, studies have reported the presence of both HR-HPV and EBV in some types of head and neck cancers. In this review, we discuss the potential contribution and role of HR-HPV/EBV coinfection in head and neck carcinogenesis, as well as the mechanisms that are potentially involved. In addition, HR-HPV/EBV interaction models are proposed. Abstract High-risk human papillomaviruses (HR-HPVs) and Epstein–Barr virus (EBV) are recognized oncogenic viruses involved in the development of a subset of head and neck cancers (HNCs). HR-HPVs are etiologically associated with a subset of oropharyngeal carcinomas (OPCs), whereas EBV is a recognized etiological agent of undifferentiated nasopharyngeal carcinomas (NPCs). In this review, we address epidemiological and mechanistic evidence regarding a potential cooperation between HR-HPV and EBV for HNC development. Considering that: (1) both HR-HPV and EBV infections require cofactors for carcinogenesis; and (2) both oropharyngeal and oral epithelium can be directly exposed to carcinogens, such as alcohol or tobacco smoke, we hypothesize possible interaction mechanisms. The epidemiological and experimental evidence suggests that HR-HPV/EBV cooperation for developing a subset of HNCs is plausible and warrants further investigation.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Diego Carrillo-Beltrán
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | | |
Collapse
|
7
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
8
|
Immunization with Epstein-Barr Virus Core Fusion Machinery Envelope Proteins Elicit High Titers of Neutralizing Activities and Protect Humanized Mice from Lethal Dose EBV Challenge. Vaccines (Basel) 2021; 9:vaccines9030285. [PMID: 33808755 PMCID: PMC8003492 DOI: 10.3390/vaccines9030285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/18/2022] Open
Abstract
Epstein–Barr virus (EBV) is the primary cause of infectious mononucleosis and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. EBV core fusion machinery envelope proteins gH/gL and gB coordinately mediate EBV fusion and entry into its target cells, B lymphocytes and epithelial cells, suggesting these proteins could induce antibodies that prevent EBV infection. We previously reported that the immunization of rabbits with recombinant EBV gH/gL or trimeric gB each induced markedly higher serum EBV-neutralizing titers for B lymphocytes than that of the leading EBV vaccine candidate gp350. In this study, we demonstrated that immunization of rabbits with EBV core fusion machinery proteins induced high titer EBV neutralizing antibodies for both B lymphocytes and epithelial cells, and EBV gH/gL in combination with EBV trimeric gB elicited strong synergistic EBV neutralizing activities. Furthermore, the immune sera from rabbits immunized with EBV gH/gL or trimeric gB demonstrated strong passive immune protection of humanized mice from lethal dose EBV challenge, partially or completely prevented death respectively, and markedly decreased the EBV load in peripheral blood of humanized mice. These data strongly suggest the combination of EBV core fusion machinery envelope proteins gH/gL and trimeric gB is a promising EBV prophylactic vaccine.
Collapse
|
9
|
Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel) 2020; 12:cancers12092441. [PMID: 32872147 PMCID: PMC7565514 DOI: 10.3390/cancers12092441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Epstein-Barr virus (EBV) infection is known to contribute in nasopharyngeal carcinoma (NPC) carcinogenesis. The oncogenic roles of the EBV proteins and non-coding RNAs in NPC are becoming evident with the aid of current advances in genome-wide and in-depth molecular analyses. This current work provides a comprehensive overview, which covers recent understandings of the pathogenic role of EBV infection in NPC. Perspectives on molecular mechanisms, which are involved in the pathogenesis of NPC, focusing on the connection between EBV and NPC cells and the corresponding signaling pathways are highlighted. Cancer hallmarks associated with EBV in NPC development are also discussed herein. Abstract Nasopharyngeal carcinoma (NPC) is one of the most common tumors occurring in China and Southeast Asia. Etiology of NPC seems to be complex and involves many determinants, one of which is Epstein-Barr virus (EBV) infection. Although evidence demonstrates that EBV infection plays a key role in NPC carcinogenesis, the exact relationship between EBV and dysregulation of signaling pathways in NPC needs to be clarified. This review focuses on the interplay between EBV and NPC cells and the corresponding signaling pathways, which are modulated by EBV oncoproteins and non-coding RNAs. These altered signaling pathways could be critical for the initiation and progression of NPC.
Collapse
|
10
|
Pevzner AM, Tsyganov MM, Ibragimova MK, Litvyakov NV. [Viral co-infection with head and neck tumors]. Vestn Otorinolaringol 2020; 85:67-72. [PMID: 32476395 DOI: 10.17116/otorino20208502167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to assessing the prevalence of human papillomavirus (HPV) in combination with other viral agents for head and neck tumors (HNT). HPV is recognized as an etiological factor in the development of cervical cancer, but there is evidence that it may be involved in carcinogenesis in other locations, in particular the upper respiratory tract. However, HPV is not the most important factor in tumor growth and progression. Recently, many researchers have reported the presence of concomitant co-infection, affecting tumor progression. Of all the studies analyzed, only 3 studies showed the absence or low rates of co-infection in HNT: from the Czech Republic (0%), China (0.6%) and Japan (3%). Most often, HPV infection was detected together with the Epstein-Barr virus (EBV) - from 12.5 to 34.1% of cases. In Russia, the prevailing combination of viral co-infection was a combination of EBV and cytomegalovirus (9.5%) and a combination of EBV and herpes simplex virus (6.7%). Thus, the degree of incidence of HPV in HNT varies greatly, and the mechanisms of coinfection are poorly understood, which raises the question of whether HPV and concomitant infection can be involved in tumor progression. This makes further research in this direction relevant and promising.
Collapse
Affiliation(s)
- A M Pevzner
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| | - M M Tsyganov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| | - M K Ibragimova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| | - N V Litvyakov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| |
Collapse
|
11
|
Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv Virus Res 2019; 104:313-343. [PMID: 31439152 DOI: 10.1016/bs.aivir.2019.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prototypical human γ-herpesviruses Epstein-Barr virus (EBV) and Kaposi Sarcoma-associated herpesvirus (KSHV) are involved in the development of malignancies. Like all herpesviruses, they share the establishment of latency, the typical architecture, and the conserved fusion machinery to initiate infection. The fusion machinery reflects virus-specific adaptations due to the requirements of the respective herpesvirus. For example, EBV evolved a tropism switch involving either the B- or epithelial cell-tropism complexes to activate fusion driven by gB. Most of the EBV entry proteins and their cellular receptors have been crystallized providing molecular details of the initial steps of infection. For KSHV, a variety of entry and binding receptors has also been reported but the mechanism how receptor binding activates gB-driven fusion is not as well understood as that for EBV. However, the downstream signaling pathways that promote the early steps of KSHV entry are well described. This review summarizes the current knowledge of the key players involved in EBV and KSHV entry and the cell-type specific mechanisms that allow infection of a wide variety of cell types.
Collapse
|
12
|
Tsao SW, Tsang CM, Lo KW. Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0270. [PMID: 28893937 DOI: 10.1098/rstb.2016.0270] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with multiple types of human cancer, including lymphoid and epithelial cancers. The closest association with EBV infection is seen in undifferentiated nasopharyngeal carcinoma (NPC), which is endemic in the southern Chinese population. A strong association between NPC risk and the HLA locus at chromosome 6p has been identified, indicating a link between the presentation of EBV antigens to host immune cells and NPC risk. EBV infection in NPC is clonal in origin, strongly suggesting that NPC develops from the clonal expansion of a single EBV-infected cell. In epithelial cells, the default program of EBV infection is lytic replication. However, latent infection is the predominant mode of EBV infection in NPC. The establishment of latent EBV infection in pre-invasive nasopharyngeal epithelium is believed to be an early stage of NPC pathogenesis. Recent genomic study of NPC has identified multiple somatic mutations in the upstream negative regulators of NF-κB signalling. Dysregulated NF-κB signalling may contribute to the establishment of latent EBV infection in NPC. Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.This article is part of the themed issue 'Human oncogenic viruses'.
Collapse
Affiliation(s)
- Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
13
|
McBride AA. The Promise of Proteomics in the Study of Oncogenic Viruses. Mol Cell Proteomics 2017; 16:S65-S74. [PMID: 28104704 DOI: 10.1074/mcp.o116.065201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/16/2016] [Indexed: 12/30/2022] Open
Abstract
Oncogenic viruses are responsible for about 15% human cancers. This article explores the promise and challenges of viral proteomics in the study of the oncogenic human DNA viruses, HPV, McPyV, EBV and KSHV. These viruses have coevolved with their hosts and cause persistent infections. Each virus encodes oncoproteins that manipulate key cellular pathways to promote viral replication and evade the host immune response. Viral proteomics can identify cellular pathways perturbed by viral infection, identify cellular proteins that are crucial for viral persistence and oncogenesis, and identify important diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Alison A McBride
- From the ‡Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, 33 North Drive, MSC3209, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Cui X, Cao Z, Chen Q, Arjunaraja S, Snow AL, Snapper CM. Rabbits immunized with Epstein-Barr virus gH/gL or gB recombinant proteins elicit higher serum virus neutralizing activity than gp350. Vaccine 2016; 34:4050-5. [PMID: 27291087 DOI: 10.1016/j.vaccine.2016.06.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/26/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Epstein-Barr virus (EBV) is the primary cause of infectious mononucleosis and has been strongly implicated in the etiology of multiple epithelial and lymphoid cancers, such as nasopharyngeal carcinoma, gastric carcinoma, Hodgkin lymphoma, Burkitt lymphoma, non-Hodgkin lymphoma and post-transplant lymphoproliferative disorder. There is currently no licensed prophylactic vaccine for EBV. Most efforts to develop prophylactic vaccines have focused on EBV gp350, which binds to CD21/CD35 to gain entry into B cells, and is a major target of serum neutralizing antibody in EBV seropositive humans. However, a recombinant monomeric gp350 protein failed to prevent EBV infection in a phase II clinical trial. Thus, alternative or additional target antigens may be necessary for a successful prophylactic vaccine. EBV gH/gL and gB proteins coordinately mediate EBV fusion and entry into B cells and epithelial cells, strongly suggesting that vaccination with these proteins might elicit antibodies that will prevent EBV infection. We produced recombinant trimeric and monomeric EBV gH/gL heterodimeric proteins and a trimeric EBV gB protein, in addition to tetrameric and monomeric gp350(1-470) proteins, in Chinese hamster ovary cells. We demonstrated that vaccination of rabbits with trimeric and monomeric gH/gL, trimeric gB, and tetrameric gp350(1-470) induced serum EBV-neutralizing titers, using cultured human B cells, that were >100-fold, 20-fold, 18-fold, and 4-fold higher, respectively, than monomeric gp350(1-470). These data strongly suggest a role for testing EBV gH/gL and EBV gB in a future prophylactic vaccine to prevent EBV infection of B cells, as well as epithelial cells.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Zhouhong Cao
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Quanyi Chen
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States.
| |
Collapse
|
15
|
Chesnokova LS, Valencia SM, Hutt-Fletcher LM. The BDLF3 gene product of Epstein-Barr virus, gp150, mediates non-productive binding to heparan sulfate on epithelial cells and only the binding domain of CD21 is required for infection. Virology 2016; 494:23-8. [PMID: 27061054 DOI: 10.1016/j.virol.2016.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/08/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
Abstract
The cell surface molecules used by Epstein-Barr virus (EBV) to attach to epithelial cells are not well-defined, although when CD21, the B cell receptor for EBV is expressed epithelial cell infection increases disproportionately to the increase in virus bound. Many herpesviruses use low affinity charge interactions with molecules such as heparan sulfate to attach to cells. We report here that the EBV glycoprotein gp150 binds to heparan sulfate proteoglycans, but that attachment via this glycoprotein is not productive of infection. We also report that only the aminoterminal two short consensus repeats of CD21 are required for efficient infection, This supports the hypothesis that, when expressed on an epithelial cell CD21 serves primarily to cluster the major attachment protein gp350 in the virus membrane and enhance access of other important glycoproteins to the epithelial cell surface.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | - Sarah M Valencia
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | - Lindsey M Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
16
|
Abstract
Glycoproteins are critical to virus entry, to spread within and between hosts and can modify the behavior of cells. Many viruses carry only a few, most found in the virion envelope. EBV makes more than 12, providing flexibility in how it colonizes its human host. Some are dedicated to getting the virus through the cell membrane and on toward the nucleus of the cell, some help guide the virus back out and on to the next cell in the same or a new host. Yet others undermine host defenses helping the virus persist for a lifetime, maintaining a presence that is mostly tolerated and serves to perpetuate EBV as one of the most common infections of man.
Collapse
Affiliation(s)
- Lindsey M Hutt-Fletcher
- Department of Microbiology & Immunology, Feist-Weiller Cancer Center and Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA; Tel.: +1 318 675 4948
| |
Collapse
|
17
|
Gillet L, Frederico B, Stevenson PG. Host entry by gamma-herpesviruses--lessons from animal viruses? Curr Opin Virol 2015; 15:34-40. [PMID: 26246389 DOI: 10.1016/j.coviro.2015.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/15/2022]
Abstract
The oncogenicity of gamma-herpesviruses (γHVs) motivates efforts to control them and their persistence makes early events key targets for intervention. Human γHVs are often assumed to enter naive hosts orally and infect B cells directly. However, neither assumption is supported by direct evidence, and vaccination with the Epstein-Barr virus (EBV) gp350, to block virion binding to B cells, failed to reduce infection rates. Thus, there is a need to re-evaluate assumptions about γHV host entry. Given the difficulty of analysing early human infections, potentially much can be learned from animal models. Genomic comparisons argue that γHVs colonized mammals long before humans speciation, and so that human γHVs are unlikely to differ dramatically in behaviour from those of other mammals. Murid Herpesvirus-4 (MuHV-4), which like EBV and the Kaposi's Sarcoma-associated Herpesvirus (KSHV) persists in memory B cells, enters new hosts via olfactory neurons and exploits myeloid cells to spread. Integrating these data with existing knowledge of human and veterinary γHVs suggests a new model of host entry, with potentially important implications for infection control.
Collapse
Affiliation(s)
- Laurent Gillet
- Immunology/Vaccinology, Faculty of Veterinary Medicine, FARAH, University of Liège, Belgium.
| | - Bruno Frederico
- Cancer Research UK, Lincoln's Inn Fields, London, United Kingdom
| | - Philip G Stevenson
- Sir Albert Sakzewski Virus Research Centre, University of Queensland and Royal Children's Hospital, Brisbane, Australia
| |
Collapse
|
18
|
Abstract
Epstein-Barr virus primarily, though not exclusively, infects B cells and epithelial cells. Many of the virus and cell proteins that are involved in entry into these two cell types in vitro have been identified, and their roles in attachment and fusion are being explored. This chapter discusses what is known about entry at the cellular level in vitro and describes what little is known about the process in vivo. It highlights some of the questions that still need to be addressed and considers some models that need further testing.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Ru Jiang
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.,Department of Clinical Teaching and Training, Tianjin University of Traditional Chinese Medicine, 312 West Anshan Road, 300193, Nankai District, Tianjin, China
| | - Lindsey M Hutt-Fletcher
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| |
Collapse
|
19
|
|
20
|
Chesnokova LS, Hutt-Fletcher LM. Epstein-Barr virus infection mechanisms. CHINESE JOURNAL OF CANCER 2014; 33:545-8. [PMID: 25322867 PMCID: PMC4244317 DOI: 10.5732/cjc.014.10168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) infection occurs by distinct mechanisms across different cell types. EBV infection of B cells in vitro minimally requires 5 viral glycoproteins and 2 cellular proteins. By contrast, infection of epithelial cells requires a minimum of 3 viral glycoproteins, which are capable of interacting with one or more of 3 different cellular proteins. The full complement of proteins involved in entry into all cell types capable of being infected in vivo is unknown. This review discusses the events that occur when the virus is delivered into the cytoplasm of a cell, the players known to be involved in these events, and the ways in which these players are thought to function.
Collapse
Affiliation(s)
- Liudmila S Chesnokova
- Department of Microbiology and Immunology, Center for Molecular Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130,
| | | |
Collapse
|
21
|
Efficient replication of Epstein-Barr virus in stratified epithelium in vitro. Proc Natl Acad Sci U S A 2014; 111:16544-9. [PMID: 25313069 DOI: 10.1073/pnas.1400818111] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus is a ubiquitous human herpesvirus associated with epithelial and lymphoid tumors. EBV is transmitted between human hosts in saliva and must cross the oral mucosal epithelium before infecting B lymphocytes, where it establishes a life-long infection. The latter process is well understood because it can be studied in vitro, but our knowledge of infection of epithelial cells has been limited by the inability to infect epithelial cells readily in vitro or to generate cell lines from EBV-infected epithelial tumors. Because epithelium exists as a stratified tissue in vivo, organotypic cultures may serve as a better model of EBV in epithelium than monolayer cultures. Here, we demonstrate that EBV is able to infect organotypic cultures of epithelial cells to establish a predominantly productive infection in the suprabasal layers of stratified epithelium, similar to that seen with Kaposi's-associated herpesvirus. These cells did express latency-associated proteins in addition to productive-cycle proteins, but a population of cells that exclusively expressed latency-associated viral proteins could not be detected; however, an inability to infect the basal layer would be unlike other herpesviruses examined in organotypic cultures. Furthermore, infection did not induce cellular proliferation, as it does in B cells, but instead resulted in cytopathic effects more commonly associated with productive viral replication. These data suggest that infection of epithelial cells is an integral part of viral spread, which typically does not result in the immortalization or enhanced growth of infected epithelial cells but rather in efficient production of virus.
Collapse
|
22
|
Jiang R, Ekshyyan O, Moore-Medlin T, Rong X, Nathan S, Gu X, Abreo F, Rosenthal EL, Shi M, Guidry JT, Scott RS, Hutt-Fletcher LM, Nathan CAO. Association between human papilloma virus/Epstein-Barr virus coinfection and oral carcinogenesis. J Oral Pathol Med 2014; 44:28-36. [PMID: 25040496 DOI: 10.1111/jop.12221] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND The recent epidemic of head and neck squamous cell carcinomas associated with human papilloma virus (HPV) has not addressed its association with lymphoid tissue in the oropharynx or the potential role of Epstein-Barr virus (EBV)/HPV coinfection. METHODS The prevalence of HPV and EBV infection/coinfection and CD21 mRNA expression were determined in normal and cancerous tissues from the oropharynx using in situ hybridization (ISH), p16, and quantitative reverse transcriptase PCR (qRT-PCR). The effects of coinfection on tumorigenicity were evaluated using proliferation and invasion assays. RESULTS Normal oropharynx, tonsil, non-cancer base of tongue (BOT), and BOT from sleep apnea patients demonstrated EBV positivity ranging from 7% to 36% depending on the site and methods of detection used (qRT-PCR or ISH). Among non-malignant BOT samples, HPV positivity was noted only in 20%. The percent of tonsil and BOT cancers positive for HPV (up to 63% and 80%, respectively) or coinfected with HPV/EBV (up to 25% and 70%, respectively) were both significantly associated with cancer status. Notably, HPV/EBV coinfection was observed only in malignant tissue originating in lymphoid-rich oropharynx sites (tonsil, BOT). CD21 mRNA (the major EBV attachment receptor) was detected in tonsil and BOT epithelium, but not in soft-palate epithelium. Coinfected cell lines showed a significant increase in invasiveness (P < 0.01). CONCLUSIONS There is a high prevalence of HPV/EBV infection and coinfection in BOT and tonsil cancers, possibly reflecting their origins in lymphoid-rich tissue. In vitro, cells modeling coinfection have an increased invasive potential.
Collapse
Affiliation(s)
- Ru Jiang
- Department of Microbiology and Immunology, LSUHSC, Shreveport, LA, USA; Department of Clinical Teaching and Training, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tsao SW, Yip YL, Tsang CM, Pang PS, Lau VMY, Zhang G, Lo KW. Etiological factors of nasopharyngeal carcinoma. Oral Oncol 2014; 50:330-8. [PMID: 24630258 DOI: 10.1016/j.oraloncology.2014.02.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common disease among southern Chinese. The major etiological factors proposed for NPC pathogenesis include genetic susceptibility, environment factors and EBV infection. In the high risk population, genetic susceptibility to NPC has been mapped to the HLA loci and adjacent genes in MHC region on chromosome 6p21. Consumption of preserved food including salted fish has been implicated in its etiology in earlier studies. Its contribution to pathogenesis of NPC remains to be determined. A decreasing trend of NPC incidence was observed in Hong Kong, Taiwan and Singapore in recent years which may be accounted by a change of dietary habits. A comprehensive epidemiological study will help to elucidate the relative importance of various risk factors in the pathogenesis of NPC. Despite the close association of EBV infection with NPC, the etiological role of EBV in NPC pathogenesis remains enigmatic. EBV infection in primary nasopharyngeal epithelial cells is uncommon and difficult to achieve. EBV does not transform primary nasopharyngeal epithelial cells into proliferative clones, which contrasts greatly with the well-documented ability of EBV to transform and immortalize primary B cells. Genetic alterations identified in premalignant nasopharyngeal epithelium may play crucial roles to support stable EBV infection. Subsequently, latent and lytic EBV gene products may drive clonal expansion and transformation of premalignant nasopharyngeal epithelial cells into cancer cells. Stromal inflammation in nasopharyngeal mucosa is believed to play an important role in modulating the growth and possibly drive the malignant transformation of EBV-infected nasopharyngeal epithelial cells. Furthermore, there are increasing evidences supporting a role of EBV infection to evade host immune surveillance. EBV-infected cells may have selective growth advantages in vivo by acquiring a stress-resistance phenotype. Understanding the etiological factors and pathogenesis of NPC will contribute effectively to the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Yim Ling Yip
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chi Man Tsang
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Pei Shin Pang
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Victoria Ming Yi Lau
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Guitao Zhang
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
24
|
Shannon-Lowe C, Rowe M. Epstein Barr virus entry; kissing and conjugation. Curr Opin Virol 2014; 4:78-84. [PMID: 24553068 DOI: 10.1016/j.coviro.2013.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
Epstein Barr virus (EBV) is a highly prevalent human gamma 1 lymphocryptovirus which infects both B lymphocytes and epithelial cells. In the healthy host, infection of these different cell lineages broadly reflects the different phases of the virus lifecycle. Memory B cells are the reservoir for latent EBV, in which viral gene expression is highly restricted to maintain an asymptomatic lifelong infection. In contrast, epithelial cells may be a major site of the virus lytic cycle, where infectious virus is propagated and transmitted via saliva to uninfected hosts. To achieve this dual tropism, EBV has evolved a unique set of glycoproteins in addition to a highly conserved set, which interact with cell lineage-specific receptors and switch cellular tropism during infection.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- School for Cancer Sciences, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK.
| | - Martin Rowe
- School for Cancer Sciences, The University of Birmingham, Vincent Drive, Birmingham B15 2TT, UK
| |
Collapse
|
25
|
Jiang R, Gu X, Moore-Medlin TN, Nathan CA, Hutt-Fletcher LM. Oral dysplasia and squamous cell carcinoma: correlation between increased expression of CD21, Epstein-Barr virus and CK19. Oral Oncol 2012; 48:836-41. [PMID: 22513207 PMCID: PMC3401344 DOI: 10.1016/j.oraloncology.2012.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Epstein-Barr virus is an orally transmitted human gammaherpesvirus that infects B lymphocytes and epithelial cells. Although most primary infections are asymptomatic, long term carriage of the virus can be associated with either lymphoid or epithelial malignancies. The association of EBV with oral squamous cell carcinomas is sporadic and it is uncertain if the virus is involved in initiation of the tumor or, possibly, in its progression. Complement receptor type 2, CR2 or CD21, is a receptor for the major attachment protein of EBV, which significantly enhances epithelial cell infection, but its expression on normal tissues is restricted to tonsil and adenoid epithelium. As cells become dysplastic they are reported to express higher levels of CK19. We sought to evaluate whether CD21 and CK19 expression change as oral epithelial cells outside Waldeyer's ring become dysplastic. MATERIALS AND METHODS Epithelial cells were isolated by laser capture microdissection and levels of CD21, CK19 and EBV RNA were measured by quantitative reverse transcriptase PCR. RESULTS We report that expression of CD21 increases in frequency and intensity as oral epithelial cells become more dysplastic and that expression correlates with an increase in infection by EBV. Tumors or dysplastic lesions that carry EBV also generally express higher levels of CK19 than those that do not. CONCLUSION The findings suggest that dysplasia may make cells more susceptible to infection by EBV and that infection by the virus may alter the phenotype of the infected cell in a manner which could affect prognosis.
Collapse
Affiliation(s)
- Ru Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Tara N. Moore-Medlin
- Department of Otolaryngology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Cherie-Ann Nathan
- Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Department of Otolaryngology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Lindsey M. Hutt-Fletcher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
- Center for Molecular and Tumor Virology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA
| |
Collapse
|
26
|
Oropharyngeal malignant epithelial cell, lymphocyte and macrophage CD44 surface receptors for hyaluronate are expressed in sustained EBV infection: immunohistochemical data and EBV DNA tissue indices. Pathol Res Pract 2012; 208:518-26. [PMID: 22770970 DOI: 10.1016/j.prp.2012.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022]
Abstract
The role of CD44 in Epstein-Barr virus (EBV)-related epithelial tumors is poorly understood. We studied the expression of CD44 in EBV infection in patients with oral squamous cell carcinoma (SCC) and nasopharyngeal carcinoma (NPC) and measured the EBV DNA. Whole blood, plasma and tissue samples from 8 male and 2 female patients with oral SCC, NPC, salivary gland lymphoepithelioma, normal salivary gland and buccal mucosa were assayed for EBV DNA. Expression of CD44, latent membrane protein (LMP), and labeling of lymphocytes, macrophages and dendritic cells were estimated by immunohistochemistry. Tissue EBV DNA was detected in 7 of 8 cases (87.5%) of oral malignant, benign and border-line lesions. LMP expression levels in tumors varied from absence and minimal to moderate - 50.3, 43.6, 6.0% and 91.1, 6.7, 2.2% for SCC and NPC, respectively. Levels of CD44 positivity in neoplasms were minimal (15.5 and 16.7%), moderate (30.3 and 47.8%), and diffuse (54.2 and 35.5%) for SCC and NPC, respectively, thus deviating from normal oral mucosa revealing heavily stained (100.0%) epithelial contours. CD19-positive B lymphocytes and S100-positive dendritic cells were intermixed with neoplastic cells. Collectively, CD44 mediated signaling may be implicated in EBV infection associated with the pathogenesis of oral SCC and NPC.
Collapse
|
27
|
Abstract
Expression array analysis of epithelial mRNA to identify biomarkers of premalignant and malignant conditions in the gastrointestinal (GI) tract is an area of intense study. Archived formalin-fixed paraffin-embedded (FFPE) tissues documenting these changes are readily available and should be a valuable resource for retrospective analysis. Laser capture microdissection of defined areas of epithelial cells at different stages of neoplastic progression is described together with methods for prequalification of RNA in FFPE tissue blocks selected for analysis. Paradise reagents specifically designed for isolation and amplification of RNA from FFPE archival tissue specimens are used to prepare probes for the human X3P microarray from Affymetrix.
Collapse
|
28
|
Important but differential roles for actin in trafficking of Epstein-Barr virus in B cells and epithelial cells. J Virol 2011; 86:2-10. [PMID: 22031939 DOI: 10.1128/jvi.05883-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epstein-Barr virus (EBV) uses different virus and cell proteins to enter its two major targets, B lymphocytes and epithelial cells. The routes that the virus takes into the two cell types are also different. To determine if these differences extend to movement from the cell surface to the nucleus, we examined the fate of incoming virus. Essentially all virus that entered a B cell remained stable for at least 8 h. In contrast, up to 80% of virus entering an epithelial cell was degraded in a compartment sensitive to inhibitors of components involved in autophagy. Inhibitors of actin remodeling blocked entry into a B cell but had no effect or enhanced entry into an epithelial cell. Inhibitors of the microtubule network reduced intracellular transport in both cell types, but movement to the nucleus in an epithelial cell also required involvement of the actin cytoskeleton. Deletion of the cytoplasmic tail of CR2, which in an epithelial cell interacts with the actin nucleator FHOS/FHOD when cross-linked by EBV, had no effect on infection. However, inhibitors of downstream signaling by integrins reduced intracellular transport. Cooperation of the microtubule and actin cytoskeletons, possibly activated by interaction with integrin binding proteins in the envelope of EBV, is needed for successful infection of an epithelial cell.
Collapse
|
29
|
Rowe CL, Matsuura H, Jardetzky TS, Longnecker R. Investigation of the function of the putative self-association site of Epstein-Barr virus (EBV) glycoprotein 42 (gp42). Virology 2011; 415:122-31. [PMID: 21550622 DOI: 10.1016/j.virol.2011.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 03/01/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
Abstract
The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLA class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.
Collapse
Affiliation(s)
- Cynthia L Rowe
- Department of Microbiology and Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
30
|
Shannon-Lowe C, Rowe M. Epstein-Barr virus infection of polarized epithelial cells via the basolateral surface by memory B cell-mediated transfer infection. PLoS Pathog 2011; 7:e1001338. [PMID: 21573183 PMCID: PMC3088705 DOI: 10.1371/journal.ppat.1001338] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 04/06/2011] [Indexed: 12/13/2022] Open
Abstract
Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b-negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Cancer Research UK Birmingham Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Martin Rowe
- Cancer Research UK Birmingham Cancer Centre, School of Cancer Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Fusion of epithelial cells by Epstein-Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins alphavbeta6 or alphavbeta8. Proc Natl Acad Sci U S A 2009; 106:20464-9. [PMID: 19920174 DOI: 10.1073/pnas.0907508106] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that is causally implicated in the development of lymphoid and epithelial tumors. Entry of virus requires fusion of virus envelopes and cell membranes. Fusion with B lymphocytes requires virus glycoprotein gB and a 3-part complex of glycoproteins, gHgLgp42. It is triggered by interactions between glycoprotein 42 (gp42) and HLA class II. However, fusion with epithelial cells is impeded by gp42 and instead is triggered by interactions between an unknown epithelial protein and a 2-part complex of gHgL. We report here that gHgL binds with high affinity to epithelial cells and that affinity of binding is increased by 3 orders of magnitude in the presence of Mn(2+). Binding and infection can be reduced by fibronectin and vitronectin, by down-regulation of integrin alphav, or by a peptide corresponding to 13 aa of gH which include a KGDE motif. Fusion of cells expressing gB and gHgL can be blocked by vitronectin or triggered by addition of soluble truncated integrins alphavbeta6 and alphavbeta8. We conclude that the direct interaction between EBV gHgL and integrins alphavbeta6 and alphavbeta8 can provide the trigger for fusion of EBV with an epithelial cell.
Collapse
|