1
|
Das IJ, Bal T. pH factors in chronic wound and pH-responsive polysaccharide-based hydrogel dressings. Int J Biol Macromol 2024; 279:135118. [PMID: 39208902 DOI: 10.1016/j.ijbiomac.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds present a significant healthcare challenge marked by complexities such as persistent bleeding, inhibited cell proliferation, dysregulated inflammation, vulnerability to infection, and compromised tissue remodeling. Conventional wound dressings often prove inadequate in addressing the intricate requirements of chronic wound healing, leading to slow healing and heightened susceptibility to infections in patients with prolonged medical conditions. Bacterial biofilms in chronic wounds pose an additional challenge due to drug resistance. Advanced wound dressings have emerged as promising tools in expediting the healing process. Among these, pH-responsive polysaccharide-based hydrogels exhibit immense prospect by adapting their functions to dynamic wound conditions. Despite their potential, the current literature lacks a thorough review of these wound dressings. This review bridges this gap by meticulously examining factors related to chronic wounds, current strategies for healing, and the mechanisms and potential applications of pH-responsive hydrogel wound dressings as an emerging therapeutic solution. Special focus is given to their remarkable antibacterial properties and significant self-healing abilities. It further explores the pH-monitoring functions of these dressings, elucidating the associated pH indicators. This synthesis of knowledge aims to guide future research and development in the field of pH-responsive wound dressings, providing valuable insights into their potential applications in wound care.
Collapse
Affiliation(s)
- Itishree Jogamaya Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| |
Collapse
|
2
|
Hasatsri S, Suthi J, Siriwut N, Charoensappakit O. Physical Properties and pH Environment of Foam Dressing Containing Eclipta prostrata Leaf Extract and Gelatin. Pharmaceuticals (Basel) 2023; 16:ph16050685. [PMID: 37242467 DOI: 10.3390/ph16050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Eclipta prostrata (E. prostrata) has several biological activities, including antibacterial and anti-inflammatory activities, that improve wound healing. It is well known that physical properties and pH environment are crucial considerations when developing wound dressings containing medicinal plant extracts in order to create an appropriate environment for wound healing. In this study, we prepared a foam dressing containing E. prostrata leaf extract and gelatin. Chemical composition was verified using Fourier-transform infrared spectroscopy (FTIR) and pore structure was obtained using scanning electron microscopy (SEM). The physical properties of the dressing, including absorption and dehydration properties, were also evaluated. The chemical properties were measured to determine the pH environment after the dressing was suspended in water. The results revealed that the E. prostrata dressings had a pore structure with an appropriate pore size (313.25 ± 76.51 µm and 383.26 ± 64.45 µm for the E. prostrata A and E. prostrata B dressings, respectively). The E. prostrata B dressings showed a higher percentage of weight increase in the first hour and a faster dehydration rate in the first 4 h. Furthermore, the E. prostrata dressings had a slightly acidic environment (5.28 ± 0.02 and 5.38 ± 0.02 for the E. prostrata A and E. prostrata B dressings at 48 h, respectively).
Collapse
Affiliation(s)
- Sukhontha Hasatsri
- Department of Pharmacy Practice, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Jariya Suthi
- Sunpasitthiprasong Hospital, Ubon Ratchathani 34000, Thailand
| | - Nattaporn Siriwut
- NorthEastern Institute of Child and Adolescent Mental Health, Khon Kaen 40000, Thailand
| | | |
Collapse
|
3
|
Sim P, Strudwick XL, Song Y, Cowin AJ, Garg S. Influence of Acidic pH on Wound Healing In Vivo: A Novel Perspective for Wound Treatment. Int J Mol Sci 2022; 23:13655. [PMID: 36362441 PMCID: PMC9658872 DOI: 10.3390/ijms232113655] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
There has been little understanding of acidification functionality in wound healing, highlighting the need to study the efficacy of wound acidification on wound closure and cellular activity in non-infected wounds. This study is focused on establishing the healing potential of wound acidification in non-infected wounds. Acidic buffers, constituting either phosphoric or citric acid, were employed to modify the physiological pH of non-infected full-thickness excisional murine wounds. Acidification of the wound by acidic buffers was found to be an effective strategy to improve wound healing. A significant improvement in wound healing parameters was observed as early as 2 days post-treatment with acidic buffers compared to controls, with faster rate of epithelialization, wound closure and higher levels of collagen at day 7. pH is shown to play a role in mediating the rate of wound healing, with acidic buffers formulated at pH 4 observed to stimulate faster recovery of wounded tissues than pH 6 buffers. Our study shows the importance of maintaining an acidic wound microenvironment at pH 4, which could be a potential therapeutic strategy for wound management.
Collapse
Affiliation(s)
- Pivian Sim
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Xanthe L. Strudwick
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - YunMei Song
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI), Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| |
Collapse
|
4
|
Napavichayanun S, Yamdech R, Pienpinijtham P, Srichana T, Chencharoenwong S, Reddy N, Aramwit P. Using polyvinyl alcohol-ionic hydrogels containing a wound healing agent to manage wounds in different environments. J Wound Care 2022; 31:S12-S21. [PMID: 36004939 DOI: 10.12968/jowc.2022.31.sup8.s12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the effects of pH on properties of polyvinyl alcohol (PVA)-ionic hydrogels containing wound healing promoters. METHOD PVA was combined with a natural wound healing promoter (silk sericin (SS)), and an anionic agent (eosin (ES)) or cationic agent (methylene blue (MB)), and made into hydrogels. Properties of the hydrogels and behaviour at different pHs were investigated. RESULTS The density and gel fraction of PVA/SS-ES hydrogel and PVA/SS-MB hydrogel were considerably lower compared with hydrogel without SS. The swelling ratio and degradation of the hydrogels increased with increasing SS concentration in all pH solutions. The influence of SS in interrupting long-chain PVA molecules was confirmed based on changes in Fourier-transform infrared spectroscopy (FTIR). The SS released from the gels was found to interact with the ionic agent and influenced the release profile of the ionic agent. Surprisingly, the anionic agent in PVA/SS-ES hydrogel showed 70% release in high pH solution whereas the cationic agent in PVA/SS-MB hydrogel showed 86% release in low pH solution. Moreover, the active agent could accumulate on the skin layer and had a positive effect on a specific wound area. CONCLUSION Based on the results obtained in this study, it is suggested to use anionic hydrogels containing wound healing promoter for wounds at high pH and cationic hydrogels containing wound healing promoter for wounds with low pH. Ability to improve wound healing using a natural healing agent combined with ionic agents and controlling the pH of hydrogels will help in developing quick and low-cost treatment for wounds.
Collapse
Affiliation(s)
- Supamas Napavichayanun
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| | - Rungnapha Yamdech
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| | - Prompong Pienpinijtham
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand.,Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Teerapol Srichana
- Department of Pharmaceutical Technology and Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Siripich Chencharoenwong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Narendra Reddy
- Center of Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Bangalore, India
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Sim P, Song Y, Yang GN, Cowin AJ, Garg S. In Vitro Wound Healing Properties of Novel Acidic Treatment Regimen in Enhancing Metabolic Activity and Migration of Skin Cells. Int J Mol Sci 2022; 23:ijms23137188. [PMID: 35806191 PMCID: PMC9266998 DOI: 10.3390/ijms23137188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023] Open
Abstract
Strategies that alter the pH of wounds to improve healing outcomes are an emerging area of interest. Currently, there is limited understanding of the effect of hydrogen (H+) on the functionality of skin cells during proliferation and migration, highlighting the need for research to determine the effect of pH during wound healing. This study aimed to determine the effect of acidification on the metabolic activity and migration of human immortalized keratinocytes (HaCaT) and human foreskin fibroblasts (HFF). In vitro models were used with phosphoric and citric acid buffers at a pH range between 3 and 7. Our results showed that cells were more viable in buffers with low rather than high ionic strength. A time-dependent effect of the acidification treatment was also observed with cell metabolic activity varying with treatment duration and frequency. Our results showed that a 24 h treatment and subsequent resting phase significantly improved cell proliferation and migration. This in vitro study is the first to establish a correlation between the role of acidic pH, molarity and treatment regimen in cellular activity. Our data demonstrated a positive effect of acidic pH on cell metabolic activity and migration rate, suggesting a clinical potential in indications such as wound healing.
Collapse
Affiliation(s)
- Pivian Sim
- Centre for Pharmaceutical Innovation (CPI)Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.S.); (Y.S.)
| | - Yunmei Song
- Centre for Pharmaceutical Innovation (CPI)Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.S.); (Y.S.)
| | - Gink N. Yang
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (G.N.Y.); (A.J.C.)
| | - Allison J. Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (G.N.Y.); (A.J.C.)
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation (CPI)Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (P.S.); (Y.S.)
- Correspondence: ; Tel.: +61-883021575
| |
Collapse
|
6
|
Casado-Díaz A, La Torre M, Priego-Capote F, Verdú-Soriano J, Lázaro-Martínez JL, Rodríguez-Mañas L, Berenguer Pérez M, Tunez I. EHO-85: A Multifunctional Amorphous Hydrogel for Wound Healing Containing Olea europaea Leaf Extract: Effects on Wound Microenvironment and Preclinical Evaluation. J Clin Med 2022; 11:1229. [PMID: 35268320 PMCID: PMC8911171 DOI: 10.3390/jcm11051229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
The prevalence of chronic wounds is increasing due to the population aging and associated pathologies, such as diabetes. These ulcers have an important socio-economic impact. Thus, it is necessary to design new products for their treatment with an adequate cost/effectiveness ratio. Among these products are amorphous hydrogels. Their composition can be manipulated to provide a favorable environment for ulcer healing. The aim of this study was to evaluate a novel multifunctional amorphous hydrogel (EHO-85), containing Olea europaea leaf extract, designed to enhance the wound healing process. For this purpose, its moistening ability, antioxidant capacity, effect on pH in the wound bed of experimental rats, and the effect on wound healing in a murine model of impaired wound healing were assessed. EHO-85 proved to be a remarkable moisturizer and its application in a rat skin wound model showed a significant antioxidant effect, decreasing lipid peroxidation in the wound bed. EHO-85 also decreased the pH of the ulcer bed from day 1. In addition, in mice (BKS. Cg-m +/+ Leprdb) EHO-85 treatment showed superior wound healing rates compared to hydrocolloid dressing. In conclusion, EHO-85 can speed up the closure of hard-to-heal wounds due to its multifunctional properties that are able to modulate the wound microenvironment, mainly through its remarkable effect on reactive oxygen species, pH, and moistening regulation.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- Clinical Management Unit of Endocrinology and Nutrition, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (F.P.-C.); (L.R.-M.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
| | - Manuel La Torre
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| | - Feliciano Priego-Capote
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (F.P.-C.); (L.R.-M.)
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
- Department of Analytical Chemistry, Institute of Nanochemistry, University of Córdoba, 14071 Córdoba, Spain
| | - José Verdú-Soriano
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain;
| | - José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatry Clinic, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Leocadio Rodríguez-Mañas
- Consortium for Biomedical Research in Frailty & Healthy Ageing, CIBERFES, Carlos III Institute of Health, 28029 Madrid, Spain; (F.P.-C.); (L.R.-M.)
- Department of Geriatrics, Hospital Universitario de Getafe, 28905 Madrid, Spain
| | - Miriam Berenguer Pérez
- Department of Community Nursing, Preventive Medicine, Public Health and History of Science, Faculty of Health Sciences, University of Alicante, 03690 Alicante, Spain;
| | - Isaac Tunez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain; (M.L.T.); (I.T.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing, University of Córdoba, 14004 Córdoba, Spain
| |
Collapse
|
7
|
Krastl G, Weiger R, Ebeleseder K, Galler K. Present status and future directions: Endodontic management of traumatic injuries to permanent teeth. Int Endod J 2021; 55 Suppl 4:1003-1019. [PMID: 34862800 DOI: 10.1111/iej.13672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022]
Abstract
The prognosis of traumatized teeth depends largely on the fate of the pulp and its treatment. This review aims to update the present status on the endodontic management of traumatic injuries to permanent teeth and to identify relevant research areas that could contribute to an improvement in diagnosis and treatment of traumatized permanent teeth. Future research should pay greater attention to (1) diagnostic methods to assess the perfusion of the pulp and enhance detection of tooth cracks and initial signs of root resorption; (2) improved materials for vital pulp treatment; (3) studies focusing on type and duration of splinting after root fractures; (4) antiresorptive intracanal medication in case of posttraumatic pulp necrosis and infection-related resorption and (5) long-term data on the apical barrier technique compared to revitalization.
Collapse
Affiliation(s)
- Gabriel Krastl
- Department of Conservative Dentistry and Periodontology, Center of Dental Traumatology, University Hospital of Würzburg, Würzburg, Germany
| | - Roland Weiger
- Department of Periodontology, Endodontology and Cariology, Center of Dental Traumatology, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland
| | - Kurt Ebeleseder
- University Clinic of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
8
|
Krastl G, Weiger R, Filippi A, Van Waes H, Ebeleseder K, Ree M, Connert T, Widbiller M, Tjäderhane L, Dummer PMH, Galler K. European Society of Endodontology position statement: endodontic management of traumatized permanent teeth. Int Endod J 2021; 54:1473-1481. [PMID: 33934366 DOI: 10.1111/iej.13543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023]
Abstract
This position statement represents a consensus of an expert committee convened by the European Society of Endodontology (ESE) on the endodontic management of traumatized permanent teeth. A recent comprehensive review with detailed background information provides the basis for this position statement (Krastl et al. 2021, International Endodontic Journal, https://doi.org/10.1111/iej.13508). The statement is based on current scientific evidence as well as the expertise of the committee. Complementing the recently revised guidelines of the International Association of Dental Traumatology, this position statement aims to provide clinical guidance for the choice of the appropriate endodontic approach for traumatized permanent teeth. Given the dynamic nature of research in this area, this position statement will be updated at appropriate intervals.
Collapse
Affiliation(s)
| | - G Krastl
- Department of Conservative Dentistry and Periodontology & Center of Dental Traumatology, University Hospital of Würzburg, Würzburg, Germany
| | - R Weiger
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland.,Center of Dental Traumatology, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland
| | - A Filippi
- Center of Dental Traumatology, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland.,Department of Oral Surgery, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland
| | - H Van Waes
- Department of Paediatric Dentistry, Clinic for Orthodontics and Paediatric Dentistry, University of Zürich, Zürich, Switzerland
| | - K Ebeleseder
- University Clinic of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | - M Ree
- Private Practice, Purmerend, Netherlands
| | - T Connert
- Department of Periodontology, Endodontology and Cariology, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland.,Center of Dental Traumatology, University Center for Dental Medicine UZB, University of Basel, Basel, Switzerland
| | - M Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - L Tjäderhane
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Oulu, Finland
| | - P M H Dummer
- School of Dentistry, College of Biomedical & Life Sciences, Cardiff University, Cardiff, UK
| | - K Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Probing Skin Barrier Recovery on Molecular Level Following Acute Wounds: An In Vivo/Ex Vivo Study on Pigs. Biomedicines 2021; 9:biomedicines9040360. [PMID: 33807251 PMCID: PMC8065685 DOI: 10.3390/biomedicines9040360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022] Open
Abstract
Proper skin barrier function is paramount for our survival, and, suffering injury, there is an acute need to restore the lost barrier and prevent development of a chronic wound. We hypothesize that rapid wound closure is more important than immediate perfection of the barrier, whereas specific treatment may facilitate perfection. The aim of the current project was therefore to evaluate the quality of restored tissue down to the molecular level. We used Göttingen minipigs with a multi-technique approach correlating wound healing progression in vivo over three weeks, monitored by classical methods (e.g., histology, trans-epidermal water loss (TEWL), pH) and subsequent physicochemical characterization of barrier recovery (i.e., small and wide-angle X-ray diffraction (SWAXD), polarization transfer solid-state NMR (PTssNMR), dynamic vapor sorption (DVS), Fourier transform infrared (FTIR)), providing a unique insight into molecular aspects of healing. We conclude that although acute wounds sealed within two weeks as expected, molecular investigation of stratum corneum (SC) revealed a poorly developed keratin organization and deviations in lipid lamellae formation. A higher lipid fluidity was also observed in regenerated tissue. This may have been due to incomplete lipid conversion during barrier recovery as glycosphingolipids, normally not present in SC, were indicated by infrared FTIR spectroscopy. Evidently, a molecular approach to skin barrier recovery could be a valuable tool in future development of products targeting wound healing.
Collapse
|
10
|
Krastl G, Weiger R, Filippi A, Van Waes H, Ebeleseder K, Ree M, Connert T, Widbiller M, Tjäderhane L, Dummer PMH, Galler K. Endodontic management of traumatized permanent teeth: a comprehensive review. Int Endod J 2021; 54:1221-1245. [PMID: 33683731 DOI: 10.1111/iej.13508] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022]
Abstract
The pulp plays a key role in the treatment of traumatic dental injuries (TDIs) and is strongly associated with the outcome, particularly in severe cases. A correct pulp diagnosis is essential as it forms the basis for developing the appropriate management strategy. However, many TDIs are complex, and their treatment requires a profound knowledge of the physiological and pathological responses of the affected tissues. This comprehensive review will look at the dentine-pulp complex and its interaction with the surrounding tissues following TDIs. The literature up to 2020 was reviewed based on several searches on PubMed and the Cochrane Library using relevant terms. In addition to the recently revised guidelines of the International Association of Dental Traumatology, this article aims to provide background information with a focus on endodontic aspects and to gather evidence on which a clinician can make decisions on the choice of the appropriate endodontic approach for traumatized permanent teeth.
Collapse
Affiliation(s)
- G Krastl
- Department of Conservative Dentistry and Periodontology, Center of Dental Traumatology, University Hospital of Würzburg, Würzburg, Germany
| | - R Weiger
- Department of Periodontology, Endodontology and Cardiology, University School of Dental Medicine, Basel, Switzerland.,Center of Dental Traumatology, University School of Dental Medicine, Basel, Switzerland
| | - A Filippi
- Center of Dental Traumatology, University School of Dental Medicine, Basel, Switzerland.,Department of Oral Surgery, University School of Dental Medicine, Basel, Switzerland
| | - H Van Waes
- Department of Paediatric Dentistry, Clinic for Orthodontics and Paediatric Dentistry, University of Zürich, Zürich, Switzerland
| | - K Ebeleseder
- University Clinic of Dental Medicine and Oral Health, Medical University Graz, Graz, Austria
| | - M Ree
- Private Practice, Purmerend, Netherlands
| | - T Connert
- Department of Periodontology, Endodontology and Cardiology, University School of Dental Medicine, Basel, Switzerland.,Center of Dental Traumatology, University School of Dental Medicine, Basel, Switzerland
| | - M Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - L Tjäderhane
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Research Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital, University of Oulu, Oulu, Finland
| | - P M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - K Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Wang XF, Li ML, Fang QQ, Zhao WY, Lou D, Hu YY, Chen J, Wang XZ, Tan WQ. Flexible electrical stimulation device with Chitosan-Vaseline® dressing accelerates wound healing in diabetes. Bioact Mater 2021; 6:230-243. [PMID: 32913931 PMCID: PMC7451868 DOI: 10.1016/j.bioactmat.2020.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The healing process of diabetic wounds is typically disordered and prolonged and requires both angiogenesis and epithelialization. Disruptions of the endogenous electric fields (EFs) may lead to disordered cell migration. Electrical stimulation (ES) that mimics endogenous EFs is a promising method in treating diabetic wounds; however, a microenvironment that facilitates cell migration and a convenient means that can be used to apply ES are also required. Chitosan-Vaseline® gauze (CVG) has been identified to facilitate wound healing; it also promotes moisture retention and immune regulation and has antibacterial activity. For this study, we created a wound dressing using CVG together with a flexible ES device and further evaluated its potential as a treatment for diabetic wounds. We found that high voltage monophasic pulsed current (HVMPC) promoted healing of diabetic wounds in vivo. In studies carried out in vitro, we found that HVMPC promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) by activating PI3K/Akt and ERK1/2 signaling. Overall, we determined that the flexible ES-chitosan dressing may promoted healing of diabetic wounds by accelerating angiogenesis, enhancing epithelialization, and inhibiting scar formation. These findings provide support for the ongoing development of this multidisciplinary product for the care and treatment of diabetic wounds.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Meng-Lu Li
- Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Dong Lou
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Yan-Yan Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| | - Jun Chen
- Innovation Center for Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang Province, PR China
| | - Xiao-Zhi Wang
- Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang Province, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, PR China
| |
Collapse
|
12
|
Li S, Vu H, Senkowsky J, Hu W, Tang L. A near-infrared fluorescent pH sensing film for wound milieu pH monitoring. Exp Dermatol 2020; 29:107-111. [PMID: 31587370 PMCID: PMC6989363 DOI: 10.1111/exd.14046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 09/27/2019] [Indexed: 01/13/2023]
Abstract
Studies have shown that wound pH is a potentially influential factor in the healing process. Due to the flaws of traditional pH measurement approaches, wound pH measurement has not become part of current standard of care. A near-infrared pH-sensitive ratiometric film was created and characterized for measuring wound pH. This film was fabricated by physically absorbing poly (N-isopropyl Acrylamide) nanoparticles conjugated with pH-sensitive (CypHer5E) and pH-insensitive (Cy7) fluorescent dyes into 2-hydroxyethyl methacrylate hydrogel film. The pH pattern on wounds can be indirectly measured by pressing freshly discarded wound dressing on top of the pH-sensitive film and imaging it. In vitro tests show that the film can accurately and rapidly detect a wide range of pH (from pH 4 to 8) in wound milieu. Further, patient studies showed that, by measuring pH on wound contact side of discarded wound gauze, the pH and its non-homogeneous distribution on wounds can be indirectly determined. By comparing patients with different wound conditions, we find that near-infrared pH sensing film can be used to measure wound exudate pH with high accuracy and efficiency. In addition, wound pH determination can provide an accurate assessment of wound healing activity in real time.
Collapse
Affiliation(s)
- Shuxin Li
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Hong Vu
- Progenitec Inc., 7301 W Pioneer Parkway, Suite B, Arlington, Texas 76013-2804
| | - Jon Senkowsky
- Texas Health Physician’s Group, 1001 N Waldrop Drive, # 612, Arlington, TX 76012
| | - Wenjing Hu
- Progenitec Inc., 7301 W Pioneer Parkway, Suite B, Arlington, Texas 76013-2804
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
13
|
Rabiee Motmaen S, Tavakol S, Joghataei MT, Barati M. Acidic pH derived from cancer cells as a double-edged knife modulates wound healing through DNA repair genes and autophagy. Int Wound J 2019; 17:137-148. [PMID: 31714008 DOI: 10.1111/iwj.13248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a sequester program that involves diverse cell signalling cascades. Notwithstanding, complete signal transduction pathways underpinning acidic milieu derived from cancer cells is not clear, yet. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, fluorescein diacetate/propidium iodide staining, and cell cycle flow cytometry revealed that acidic media decreased cell viability and cell number along with enhanced dead cells and S-phase arrest in normal fibroblasts. Notably, the trends of intracellular reactive oxygen species production and lactate dehydrogenase release significantly increased with time. It seems the downregulation of Klf4 is in part due to acidosis-induced DNA damage. It promoted cells towards S-phase arrest and diminished cell proliferation. Klf4 downregulation had a direct correlation with the P53 level while acidic microenvironment promotes cells towards cell death mechanisms including apoptosis and autophagy. Noteworthily, the unchanged levels of Rb and Mlh1 indicated in those genes had no dominant role in the repairing of DNA damage in fibroblasts treated with the acidic microenvironment. Therefore, cells owing to not entering to mitosis and accumulation of DNA damage were undergone cell death to preserve cell homeostasis. Since acidic media decreased the level of tumour suppressor and DNA repair genes and altered the normal survival pathways in fibroblasts, caution should be exercised to not lead to cancer rather than wound healing.
Collapse
Affiliation(s)
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Barati
- Department of Medical Biotechnology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Abstract
Regarded as a silent epidemic, chronic wounds are a global public health issue. Wound healing is a complex, synchronized cascade of physiological processes restoring the anatomic and functional integrity of the skin; however, chronic wounds fail to proceed through the wound healing cascade. Wound pH oscillates during wound healing, usually traversing from a neutral pH to an acidic pH, while chronic wounds perpetuate in an elevated alkaline milieu. Although a neglected clinical parameter, pH has implications for relatively all pathologies of wound healing affecting oxygen release, angiogenesis, protease activity, bacterial toxicity and antimicrobial activity. Despite the array of wound healing products currently marketed, understanding the implications of pH on arresting wound healing can stimulate innovation within this vast market.
Collapse
|
15
|
Dalisson B, Barralet J. Bioinorganics and Wound Healing. Adv Healthc Mater 2019; 8:e1900764. [PMID: 31402608 DOI: 10.1002/adhm.201900764] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Wound dressings and the healing enhancement (increasing healing speed and quality) are two components of wound care that lead to a proper healing. Wound care today consists mostly of providing an optimal environment by removing waste and necrotic tissues from a wound, preventing infections, and keeping the wounds adequately moist. This is however often not enough to re-establish the healing process in chronic wounds; with the local disruption of vascularization, the local environment is lacking oxygen, nutrients, and has a modified ionic and molecular concentration which limits the healing process. This disruption may affect cellular ionic pumps, energy production, chemotaxis, etc., and will affect the healing process. Biomaterials for wound healing range from simple absorbents to sophisticated bioactive delivery vehicles. Often placing a material in or on a wound can change multiple parameters such as pH, ionic concentration, and osmolarity, and it can be challenging to pinpoint key mechanism of action. This article reviews the literature of several inorganic ions and molecules and their potential effects on the different wound healing phases and their use in new wound dressings.
Collapse
Affiliation(s)
| | - Jake Barralet
- Faculty of DentistryMcGill University Montreal H3A 1G1 QC Canada
- Division of OrthopaedicsDepartment of SurgeryFaculty of MedicineMcGill University Montreal H4A 0A9 QC Canada
| |
Collapse
|
16
|
Maver T, Gradišnik L, Smrke DM, Stana Kleinschek K, Maver U. Systematic Evaluation of a Diclofenac-Loaded Carboxymethyl Cellulose-Based Wound Dressing and Its Release Performance with Changing pH and Temperature. AAPS PharmSciTech 2019; 20:29. [PMID: 30603817 DOI: 10.1208/s12249-018-1236-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 11/30/2022] Open
Abstract
Development of drug-loaded wound dressings is often performed without systematic consideration of the changing wound environment that can influence such materials' performance. Among the crucial changes are the wound pH and temperature, which have an immense effect on the drug release. Detailed release studies based on the consideration of these changing properties provide an important aspect of the in vitro performance testing of novel wound dressing materials. A sodium carboxymethyl cellulose-based wound dressing, with the incorporated non-steroidal anti-inflammatory drug diclofenac, was developed and characterised in regard to its physico-chemical, structural and morphological properties. Further, the influence of pH and temperature were studied on the drug release. Finally, the biocompatibility of the wound dressing towards human skin cells was tested. Incorporation of diclofenac did not alter important properties (water retention value, air permeability) of the host material. Changes in the pH and temperature were shown to influence the release performance and have to be accounted for in the evaluation of such dressings. Furthermore, the knowledge about the potential changes of these parameters in the wound bed could be used potentially to predict, and potentially even to control the drug release from the developed wound dressing. The prepared wound dressing was also proven biocompatible towards human skin cells, making it interesting for potential future use in the clinics.
Collapse
|
17
|
Stratton JA, Assinck P, Sinha S, Kumar R, Moulson A, Patrick N, Raharjo E, Chan JA, Midha R, Tetzlaff W, Biernaskie J. Factors Within the Endoneurial Microenvironment Act to Suppress Tumorigenesis of MPNST. Front Cell Neurosci 2018; 12:356. [PMID: 30364248 PMCID: PMC6193112 DOI: 10.3389/fncel.2018.00356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Deciphering avenues to adequately control malignancies in the peripheral nerve will reduce the need for current, largely-ineffective, standards of care which includes the use of invasive, nerve-damaging, resection surgery. By avoiding the need for en bloc resection surgery, the likelihood of retained function or efficient nerve regeneration following the control of tumor growth is greater, which has several implications for long-term health and well-being of cancer survivors. Nerve tumors can arise as malignant peripheral nerve sheath tumors (MPNST) that result in a highly-aggressive form of soft tissue sarcoma. Although the precise cause of MPNST remains unknown, studies suggest that dysregulation of Schwann cells, mediated by the microenvironment, plays a key role in tumor progression. This study aimed to further characterize the role of local microenvironment on tumor progression, with an emphasis on identifying factors within tumor suppressive environments that have potential for therapeutic application. Methods: We created GFP-tagged adult induced tumorigenic Schwann cell lines (iSCs) and transplanted them into various in vivo microenvironments. We used immunohistochemistry to document the response of iSCs and performed proteomics analysis to identify local factors that might modulate divergent iSC behaviors. Results: Following transplant into the skin, spinal cord or epineurial compartment of the nerve, iSCs formed tumors closely resembling MPNST. In contrast, transplantation into the endoneurial compartment of the nerve significantly suppressed iSC proliferation. Proteomics analysis revealed a battery of factors enriched within the endoneurial compartment, of which one growth factor of interest, ciliary neurotrophic factor (CNTF) was capable of preventing iSCs proliferation in vitro. Conclusions: This dataset describes a novel approach for identifying biologically relevant therapeutic targets, such as CNTF, and highlights the complex relationship that tumor cells have with their local microenvironment. This study has significant implications for the development of future therapeutic strategies to fight MPNSTs, and, consequently, improve peripheral nerve regeneration and nerve function.
Collapse
Affiliation(s)
- Jo Anne Stratton
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Peggy Assinck
- Department of International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Ranjan Kumar
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Aaron Moulson
- Department of International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada
| | - Natalya Patrick
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Eko Raharjo
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Wolfram Tetzlaff
- Department of International Collaboration on Repair Discoveries, The University of British Columbia, Vancouver, BC, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
18
|
Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms. Adv Drug Deliv Rev 2018; 129:95-117. [PMID: 29627369 DOI: 10.1016/j.addr.2018.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.
Collapse
|
19
|
Zhang Y, Dang Q, Liu C, Yan J, Cha D, Liang S, Li X, Fan B. Synthesis, characterization, and evaluation of poly(aminoethyl) modified chitosan and its hydrogel used as antibacterial wound dressing. Int J Biol Macromol 2017; 102:457-467. [DOI: 10.1016/j.ijbiomac.2017.04.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/21/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
|
20
|
Kruse CR, Singh M, Targosinski S, Sinha I, Sørensen JA, Eriksson E, Nuutila K. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair Regen 2017; 25:260-269. [PMID: 28370923 DOI: 10.1111/wrr.12526] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 02/03/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022]
Abstract
Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | - Mansher Singh
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stefan Targosinski
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Denmark
| | | | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Ma J, Zhao N, Betts L, Zhu D. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2016; 32:815-826. [PMID: 27698548 PMCID: PMC5044878 DOI: 10.1016/j.jmst.2015.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept "bio-adaption" between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed.
Collapse
Affiliation(s)
- Jun Ma
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Nan Zhao
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Lexxus Betts
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Donghui Zhu
- Department of Chemical, Biological and Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
- NSF Engineering Research Center-Revolutionizing Metallic Biomaterials, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| |
Collapse
|
22
|
Fahim A, Ilyas MS, Jafari FH, Farzana F. Effect of carbonated drinks on wound healing of oral epithelium. J Oral Biol Craniofac Res 2016; 6:49-53. [PMID: 26937370 DOI: 10.1016/j.jobcr.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/08/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Carbonated drinks are the second most consumed non-alcoholic beverages in the world after tea. The effects of these drinks on hard tissues and vital organs of the body have been proved beyond doubt. This study, however, explains the effect of these drinks on wound healing of oral epithelium. METHODS Thirty-six male Wistar rats were considered for the study. A circular wound of 3.0 mm was created on the buccal mucosa of all animals and they were divided into two groups. Animals in group 1 were fed with chow pellet and water, while those in group 2 were fed with a commercially available carbonated drink instead of water. Six animals from each group were euthanized at 0, 7, and 21 days. Wound site was histologically assessed for differences in thickness and characteristics of the regenerating epithelium between two groups. RESULTS There was a marked difference in the healing pattern between the two groups. Animals in group 1 showed a normal healing pattern at the end of day 21. In the group 2, the regenerated epithelium showed hyperplasia and hyperkeratosis along with acanthosis at the end of the experiment with a subsequent delayed inflammatory reaction at day 21. CONCLUSION Consumption of carbonated drinks can disrupt oral wound healing. The contents in carbonated drinks have a proinflammatory action on the soft tissue. Results suggest that epithelial changes seen in experimental group 2 could be a result of constant irritation by the acidic and fizzy nature of carbonated drinks.
Collapse
Affiliation(s)
- Ayesha Fahim
- Post Graduate Medical Institute, Lahore, Pakistan
| | | | | | | |
Collapse
|
23
|
Scalise A, Bianchi A, Tartaglione C, Bolletta E, Pierangeli M, Torresetti M, Marazzi M, Di Benedetto G. Microenvironment and microbiology of skin wounds: the role of bacterial biofilms and related factors. Semin Vasc Surg 2016; 28:151-9. [PMID: 27113281 DOI: 10.1053/j.semvascsurg.2016.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wound healing is a systemic response to injury that impacts the entire body and not just the site of tissue damage; it represents one of the most complex biological processes. Our knowledge of wound healing continues to evolve and it is now clear that the wound microenvironment plays a crucial role. The interactions between cells and the surface microenvironment, referred to as the "biofilm," contributes to skin homeostasis and healing. Understanding the functional complexity of the wound microenvironment informs how various factors such as age, ischemia, or bacterial infections can impair or arrest the normal healing processes, and it also allows for the possibility of acting therapeutically on healing defects with microenvironment manipulation. Microbes represent a particularly important factor for influencing the wound microenvironment and therefore wound healing. Moreover, the role of infections, particularly those that are sustained by biofilm-forming bacteria, is mutually related to other microenvironment aspects, such as humidity, pH, metalloproteinases, and reactive oxygen species, on which the modern research of new therapeutic strategies is focused. Today, chronic wounds are a rapidly growing health care burden and it is progressively understood that many non-healing wounds might benefit from therapies that target microorganisms and their biofilm communities. There is no doubt that host factors like perfusion impairments, venous insufficiency, pressure issues, malnutrition, and comorbidities strongly impact the healing processes and therefore must be targeted in the therapeutic management, but this approach might be not enough. In this article, we detail how bacterial biofilms and related factors impair wound healing, the reasons they must be considered a treatment target that is as important as the host's local and systemic pathologic conditions, and the latest therapeutic strategies derived from the comprehension of the wound microenvironment.
Collapse
Affiliation(s)
- A Scalise
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy.
| | - A Bianchi
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy
| | - C Tartaglione
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy
| | - E Bolletta
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy
| | - M Pierangeli
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy
| | - M Torresetti
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy
| | - M Marazzi
- Struttura Semplice Terapia Tissutale, A.O. Ospedale Niguarda Ca׳ Granda, Milan, Italy
| | - G Di Benedetto
- Department of Plastic and Reconstructive Surgery, Università Politecnica delle, Marche, Ancona, Italy
| |
Collapse
|
24
|
Delayed tooth replantation following root canal filling with calcium hydroxide and MTA: Histomorphometric study in rats. Arch Oral Biol 2015; 60:1254-62. [DOI: 10.1016/j.archoralbio.2015.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/28/2014] [Accepted: 02/02/2015] [Indexed: 01/04/2023]
|
25
|
Kruse CR, Nuutila K, Lee CCY, Kiwanuka E, Singh M, Caterson EJ, Eriksson E, Sørensen JA. The external microenvironment of healing skin wounds. Wound Repair Regen 2015; 23:456-64. [PMID: 25857996 DOI: 10.1111/wrr.12303] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/02/2015] [Indexed: 11/28/2022]
Abstract
The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and carbon dioxide), pH, and anti-microbial treatment on the wound. These factors are well described in the literature and can be modified with treatment methods available in the clinic. Understanding the roles of these factors in wound pathophysiology is of central importance in wound treatment.
Collapse
Affiliation(s)
- Carla R Kruse
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cameron C Y Lee
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Kiwanuka
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mansher Singh
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward J Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jens A Sørensen
- Department of Plastic and Reconstructive Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
26
|
Jones EM, Cochrane CA, Percival SL. The Effect of pH on the Extracellular Matrix and Biofilms. Adv Wound Care (New Rochelle) 2015; 4:431-439. [PMID: 26155386 DOI: 10.1089/wound.2014.0538] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 05/13/2014] [Indexed: 11/13/2022] Open
Abstract
Significance: Chronic wounds become caught in a state of inflammation causing an increase in levels of degrading proteases, which destroy components of the extracellular matrix (ECM) that are essential for the wound healing process. This review aims to highlight and provide readers with an overview of what is currently known about the role of pH and its effect on the ECM and biofilms within healing and nonhealing wounds. Recent Advances: The pH profiles of healthy skin, acute wounds, and chronic wounds differ significantly. Chronic wounds have an alkaline pH whereas healthy skin has a slightly acidic pH. Although there is evidence on the effect of pH on protease production and bacterial proliferation in wounds, there is little evidence to show its effect on ECM synthesis and degradation. Critical Issues: The implications for the complex nature of chronic wounds are that no single treatment is relevant for all wounds, but rather a combination of methodologies must be adopted. It is known that pH of a wound reduces throughout the stages of healing, suggesting that wound pH measurements could be beneficial to identify nonhealing wounds earlier and decide on the most appropriate course of treatment. Future Direction: Wound healing is a very complex process with multiple factors known to play a role. All aspects of the nonhealing wound (defective ECM, pH, microbial invasion, and excess proteases) need to be taken into account when investigating or clinically treating a chronic wound.
Collapse
Affiliation(s)
- Eleri M. Jones
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Christine A. Cochrane
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Steven L. Percival
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
- Surface Science Research Centre, University of Liverpool, Liverpool, United Kingdom
- Scapa Healthcare, Manchester, United Kingdom
| |
Collapse
|
27
|
Zaugg LK, Zitzmann NU, Hauser-Gerspach I, Waltimo T, Weiger R, Krastl G. Antimicrobial activity of short- and medium-term applications of polyhexamethylene biguanide, chlorhexidine digluconate and calcium hydroxide in infected immature bovine teethin vitro. Dent Traumatol 2013; 30:326-31. [DOI: 10.1111/edt.12077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Lucia K. Zaugg
- Department of Periodontology, Endodontology and Cariology; University of Basel; Basel Switzerland
| | - Nicola U. Zitzmann
- Department of Periodontology, Endodontology and Cariology; University of Basel; Basel Switzerland
- Center of Dental Traumatology; University of Basel; Basel Switzerland
| | - Irmgard Hauser-Gerspach
- Department of Preventive Dentistry and Oral Microbiology; University of Basel; Basel Switzerland
| | - Tuomas Waltimo
- Center of Dental Traumatology; University of Basel; Basel Switzerland
- Department of Preventive Dentistry and Oral Microbiology; University of Basel; Basel Switzerland
| | - Roland Weiger
- Department of Periodontology, Endodontology and Cariology; University of Basel; Basel Switzerland
- Center of Dental Traumatology; University of Basel; Basel Switzerland
| | - Gabriel Krastl
- Department of Periodontology, Endodontology and Cariology; University of Basel; Basel Switzerland
- Center of Dental Traumatology; University of Basel; Basel Switzerland
- Department of Oral Surgery; School of Dentistry; University of Birmingham; Birmingham UK
| |
Collapse
|
28
|
Cao TM, Takatani T, King MR. Effect of extracellular pH on selectin adhesion: theory and experiment. Biophys J 2013; 104:292-9. [PMID: 23442851 DOI: 10.1016/j.bpj.2012.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022] Open
Abstract
Selectins mediate circulatory leukocyte trafficking to sites of inflammation and trauma, and the extracellular microenvironments at these sites often become acidic. In this study, we investigated the influence of slightly acidic pH on the binding dynamics of selectins (P-, L-, and E-selectin) to P-selectin glycoprotein ligand-1 (PSGL-1) via computational modeling (molecular dynamics) and experimental rolling assays under shear in vitro. The P-selectin/PSGL-1 binding is strengthened at acidic pH, as evidenced by the formation of a new hydrogen bond (seen computationally) and the observed decrease in the rolling velocities of model cells. In the case of L-selectin/PSGL-1 binding dynamics, the binding strength and frequency increase at acidic pH, as indicated by the greater cell-rolling flux of neutrophils and slower rolling velocities of L-selectin-coated microspheres, respectively. The cell flux is most likely due to an increased population of L-selectin in the high-affinity conformation as pH decreases, whereas the velocities are due to increased L-selectin/PSGL-1 contacts. In contrast to P- and L-selectin, the E-selectin/PSGL-1 binding does not exhibit significant changes at acidic pH levels, as shown both experimentally and computationally.
Collapse
Affiliation(s)
- Thong M Cao
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
29
|
Uzun M, Anand S, Shah T. The effect of wound dressings on the pH stability of fuids. J Wound Care 2012; 21:88-90, 92-5. [DOI: 10.12968/jowc.2012.21.2.88] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Uzun
- Institute for Materials research and Innovation, university of Bolton, UK
- Department of Textile education, Marmara university, Istanbul, Turkey
| | - S.C. Anand
- Institute for Materials research and Innovation, university of Bolton, UK
| | - T. Shah
- Institute for Materials research and Innovation, university of Bolton, UK
| |
Collapse
|
30
|
Evaluation of pH and calcium ion release in capseal I and II and in two other root canal sealers. ACTA ACUST UNITED AC 2011; 112:e23-8. [DOI: 10.1016/j.tripleo.2011.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 04/18/2011] [Accepted: 04/23/2011] [Indexed: 11/16/2022]
|
31
|
Shukla VK, Shukla D, Tiwary SK, Agrawal S, Rastogi A. Evaluation of pH measurement as a method of wound assessment. J Wound Care 2007; 16:291-4. [PMID: 17708378 DOI: 10.12968/jowc.2007.16.7.27062] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To assess variations in wound pH levels and explore the relationship between wound pH and the state of wound healing. METHOD Fifty patients with acute or chronic wounds attending the wound clinic at University Hospital,Varanasi, India were included. Wound pH was measured using litmus paper strips and recorded weekly. Other parameters recorded were the wound condition, exudate level and culture. RESULTS The baseline pH of most of the wounds was greater than 8.5. As the wound condition improved and exudate levels decreased, the pH reduced to less than 8.0. Fifty-eight per cent of the wounds were culture positive, and an association was observed between the type of organism present and the wound pH. CONCLUSION Wound pH measurements can be performed efficiently and are non-invasive, causing no discomfort to the patient. As the wounds healed, the pH reduced. This change in pH can help predict the likelihood of wound healing.
Collapse
Affiliation(s)
- V K Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University.Varanasi, India.
| | | | | | | | | |
Collapse
|
32
|
Evaluation of pH and calcium ion release of Acroseal sealer in comparison with Apexit and Sealapex sealers. ACTA ACUST UNITED AC 2007; 103:e86-91. [DOI: 10.1016/j.tripleo.2006.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/15/2006] [Accepted: 10/18/2006] [Indexed: 11/15/2022]
|
33
|
Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res 2006; 298:413-20. [PMID: 17091276 DOI: 10.1007/s00403-006-0713-x] [Citation(s) in RCA: 571] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 09/23/2006] [Indexed: 10/23/2022]
Abstract
Wound healing is a complex regeneration process, which is characterised by intercalating degradation and re-assembly of connective tissue and epidermal layer. The pH value within the wound-milieu influences indirectly and directly all biochemical reactions taking place in this process of healing. Interestingly it is so far a neglected parameter for the overall outcome. For more than three decades the common assumption amongst physicians was that a low pH value, such as it is found on normal skin, is favourable for wound healing. However, investigations have shown that in fact some healing processes such as the take-rate of skin-grafts require an alkaline milieu. The matter is thus much more complicated than it was assumed. This review article summarises the existing literature dealing with the topic of pH value within the wound-milieu, its influence on wound healing and critically discusses the currently existing data in this field. The conclusion to be drawn at present is that the wound pH indeed proves to be a potent influential factor for the healing process and that different pH ranges are required for certain distinct phases of wound healing. Further systematic data needs to be collected for a better understanding of the pH requirements under specific circumstances. This is important as it will help to develop new pH targeted therapeutic strategies.
Collapse
Affiliation(s)
- Lars Alexander Schneider
- Department of Dermatology, Venerology and Allergology, University School of Medicine, Maienweg 12, Ulm, 89081, Germany
| | | | | | | |
Collapse
|
34
|
Godbout C, Frenette J. Periodic direct current does not promote wound closure in an in vitro dynamic model of cell migration. Phys Ther 2006; 86:50-9; discussion 59-65. [PMID: 16386062 DOI: 10.1093/ptj/86.1.50] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE A prevailing paradigm is that electrical fields can promote cell migration and tissue healing. To further validate this paradigm, we tested the hypothesis that periodic direct current (DC) can enhance wound closure using an in vitro dynamic model of cell migration. METHODS AND RESULTS Layers of primary fibroblasts were wounded and treated with DC under various voltages. Repair area, cell velocity, and directionality as well as lamellipodium area were evaluated at different times. Direct current had no beneficial effect on cell migration. Moreover, prolonged stimulation under the highest voltage led to significant reduction in wound closure and cell velocity. The reduction of membrane protusions in stimulated cells may be associated with the deleterious effect of DC. DISCUSSION AND CONCLUSION Contrary to the authors' expectations, they found that periodic DC did not promote wound closure, a finding that emphasizes the need to clarify the complex effects of electrical fields on migrating cells.
Collapse
Affiliation(s)
- Charles Godbout
- Department of Rehabilitation, Laval University, Quebec City, Canada G1V 4G2
| | | |
Collapse
|
35
|
Affiliation(s)
- B Greener
- Smith & Nephew Research Centre, York, UK.
| | | | | | | |
Collapse
|
36
|
Liu Y, Kalén A, Risto O, Wahlström O. Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair Regen 2002; 10:336-40. [PMID: 12406171 DOI: 10.1046/j.1524-475x.2002.10510.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of platelet-rich plasma lysates on fibroblast proliferation was studied in culture. Cells were exposed to platelet lysates that had been preincubated at different pHs (5.0, 7.1, and 7.6). Proliferation was evaluated with the MTT assay and incorporation of [3H]thymidine into macromolecules, while type I collagen production was assayed by Western blotting. Enzyme-linked immunosorbent assays were used to determine platelet-derived growth factor and transforming growth factor-beta concentrations. Platelets preincubated in an acidic environment (pH 5.0) induced the highest degree of fibroblast proliferation, and the concentration of platelet-derived growth factor in the different treated lysates was the highest at that particular pH. The concentration of transforming growth factor-beta, however, was lower after incubation at pH 5.0 than at either pH 7.1 or 7.6. These findings may be relevant to normal wound healing in vivo and useful in the treatment of wounds and delayed healing processes.
Collapse
Affiliation(s)
- Yawei Liu
- Departments of Pathology IIand Orthopaedics, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
37
|
Guigand M, Pellen-Mussi P, Le Goff A, Vulcain JM, Bonnaure-Mallet M. Evaluation of the cytocompatibility of three endodontic materials. J Endod 1999; 25:419-23. [PMID: 10530242 DOI: 10.1016/s0099-2399(99)80270-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The goal of this in vitro study was to evaluate the relative cytocompatibility of three endodontic materials: calcium hydroxide, a calcium oxide-based compound, and a zinc oxide-eugenol-based sealer. The evaluation was conducted 24, 72, and 168 h after contact with the compounds and involved three complementary techniques: a colorimetric cytotoxicity test, scanning electron microscopy, and flow cytometry. The results we obtained confirmed the initial cytotoxicity of the zinc oxide-eugenol-based sealer and showed that the calcium oxide-based compound had the same relative cytocompatibility as calcium hydroxide.
Collapse
Affiliation(s)
- M Guigand
- Department of Endodontics, Faculty of Dentistry, University of Rennes, France
| | | | | | | | | |
Collapse
|
38
|
Pipelzadeh MH, Naylor IL. The in vitro enhancement of rat myofibroblast contractility by alterations to the pH of the physiological solution. Eur J Pharmacol 1998; 357:257-9. [PMID: 9797045 DOI: 10.1016/s0014-2999(98)00588-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wound contraction achieved by myofibroblast contraction is vital for the repair of cutaneous wounds. Many changes occur during tissue repair one of which is a lowering of pH. This study was designed to determine if myofibroblast contractility, as mimicked by using in vitro preparations, was sensitive to alterations of the pH. The responses of strips of rat superficial fascia when stimulated in vitro by adenosine, calcium and potassium ions, and mepyramine in physiological solutions at pH 5.5, 6.1, 7.3 and 8.1 were clearly pH dependent with acidic media producing an enhanced in vitro contractility. Perhaps modifying the pH of the wound environment could enhance wound contraction.
Collapse
Affiliation(s)
- M H Pipelzadeh
- Pharmacology Department, Medical School, Ahwaz University of Medical Sciences, Iran
| | | |
Collapse
|
39
|
Abstract
The purpose of this study was to compare the surface pH level of three different type sealers after mixing at various time intervals in vitro. The cements were mixed according to the manufacturer's instructions. They were incubated to set in 100% humidity at 37 degrees C for 1 h, 24 h, 5 days, 8 days, 2 wk, 3 wk, 4 wk, 5 wk, and 7 wk. pH was calculated by a Twin pH meter. The pH levels of the three sealers were different at various time intervals (p < 0.0001). The resin-based cement had a acid pH level (pH < 7.0). The calcium hydroxide-based cement showed a higher alkalinity pH level (pH > 7.0). The zinc oxide-eugenol-based cement showed a similar pH level to the calcium hydroxide cement at the end of the measurement. We postulated that, in endodontic therapy when those healing is needed, the alkaline-based sealer is the choice.
Collapse
Affiliation(s)
- T H Huang
- Dental Department, Chung Shan Medical and Dental College, Taiwan, Republic of China
| | | |
Collapse
|
40
|
Beltes PG, Pissiotis E, Koulaouzidou E, Kortsaris AH. In vitro release of hydroxyl ions from six types of calcium hydroxide nonsetting pastes. J Endod 1997; 23:413-5. [PMID: 9587291 DOI: 10.1016/s0099-2399(97)80292-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of intracanal medication in root canal treatment is very important. Calcium hydroxide (Ca(OH)2) is considered to fulfill many of the properties of an ideal root canal dressing mainly due to its alkalizing pH. It is bacteriocidal and neutralizing to the remaining tissue debris in the root canal(s) and through the continuous release of OH- ions it promotes an alkalizing osteogenic environment for the surrounding tissues. The purpose of this study was to examine the pH values of various Ca(OH)2 based on compounds used as intracanal medicaments over a period of 5 days. The following materials were tested: Calasept, Calcicur, Calxyl blue, Calxyl red, Reogan rapid, and Tempcanal. After a fast OH- release period (2 h) each compound reached an asymptotic pH state. The results showed that all materials exhibited alkalizing pH with Reogan rapid, Calxyl Red, and Calcicur being the most potent (p = 0.05). The final pH of each compound correlated positively with the Ca(OH)2 mass fraction contained in it.
Collapse
Affiliation(s)
- P G Beltes
- Department of Dental Pathology and Therapeutics, Aristotle University of Thessaloniki, Greece
| | | | | | | |
Collapse
|
41
|
Song A, Parus S, Kopelman R. High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye. Anal Chem 1997; 69:863-7. [PMID: 9068274 DOI: 10.1021/ac960917+] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A fast and durable ratiometric pH microoptode that is highly accurate, precise, sensitive, reversible, and reproducible over the physiological ranges of pH, ionic strength, and temperature has been developed. The sensing site consists of 5 (and 6)-carboxynaphthofluorescein (CNF) entrapped in a polyacrylamide gel matrix via photopolymerization at the silanized end of an optical fiber with a diameter of 2 (pulled) or 125 microns (unpulled). The optode's precision for the pH 6.3-8.4 range in rat embryos, sera, or physiological (Earle's and Tyrode's) buffers was found to be better than +/- 0.03 pH unit. The pulled and unpulled optodes have respective upper limit response times of 1 and 400 ms for 1-pH-unit change. Over a 7-week period, they retain sensitivity for 600 and 10,000 measurements, respectively. Ratiometric measurements are made using a pH-sensitive emission peak on each side of an isosbestic point. The CNF microoptode is most suitable for biological applications because of its essentially linear response over the pH 7-8 range, its high sensitivity (slope about 2), and its almost perfect correlation with a pH macroelectrode. Furthermore, errors introduced by photobleaching, leaching, quenching, optode movement, and excitation source fluctuations are minimal.
Collapse
Affiliation(s)
- A Song
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|