1
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
2
|
Xu K, Bai X, Chen S, Xie L, Qiu Y, Li H, Sun Y. CCDC154 Mutant Caused Abnormal Remodeling of the Otic Capsule and Hearing Loss in Mice. Front Cell Dev Biol 2021; 9:637011. [PMID: 33614666 PMCID: PMC7889813 DOI: 10.3389/fcell.2021.637011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Osteopetrosis is a rare inherited bone disease characterized by dysfunction of osteoclasts, causing impaired bone resorption and remodeling, which ultimately leads to increased bone mass and density. Hearing loss is one of the most common complications of osteopetrosis. However, the etiology and pathogenesis of auditory damage still need to be explored. In this study, we found that a spontaneous mutation of coiled-coil domain-containing 154 (CCDC154) gene, a new osteopetrosis-related gene, induced congenital deafness in mice. Homozygous mutant mice showed moderate to severe hearing loss, while heterozygous or wild-type (WT) littermates displayed normal hearing. Pathological observation showed that abnormal bony remodeling of the otic capsule, characterized by increased vascularization and multiple cavitary lesions, was found in homozygous mutant mice. Normal structure of the organ of Corti and no substantial hair cell or spiral ganglion neuron loss was observed in homozygous mutant mice. Our results indicate that mutation of the osteopetrosis-related gene CCDC154 can induce syndromic hereditary deafness in mice. Bony remodeling disorders of the auditory ossicles and otic capsule are involved in the hearing loss caused by CDCC154 mutation.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Bai
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Xie
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Nagata M, Ono N, Ono W. Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. J Dent Res 2019; 99:133-142. [PMID: 31623502 DOI: 10.1177/0022034519882692] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tooth eruption is a unique biological process by which highly mineralized tissues emerge into the outer world, and it occurs concomitantly with tooth root formation. These 2 processes have been considered independent phenomena; however, recent studies support the theory that they are indeed intertwined. Dental mesenchymal progenitor cells in the dental follicle lie at the heart of the coupling of these 2 processes, providing a source for diverse mesenchymal cells that support formation of the highly functional tooth root and the periodontal attachment apparatus, while facilitating formation of osteoclasts. These cells are regulated by autocrine signaling by parathyroid hormone-related protein (PTHrP) and its parathyroid hormone/PTHrP receptor PPR. This PTHrP-PPR signaling appears to crosstalk with other signaling pathways and regulates proper cell fates of mesenchymal progenitor cell populations. Disruption of this autocrine PTHrP-PPR signaling in these cells leads to defective formation of the periodontal attachment apparatus, tooth root malformation, and failure of tooth eruption in molars, which essentially recapitulate primary failure of eruption in humans, a rare genetic disorder exclusively affecting tooth eruption. Diversity and distinct functionality of these mesenchymal progenitor cell populations that regulate tooth eruption and tooth root formation are beginning to be unraveled.
Collapse
Affiliation(s)
- M Nagata
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - N Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - W Ono
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Trejo-Remigio DA, Jacinto-Alemán LF, Leyva-Huerta ER, Navarro-Bustos BR, Portilla-Robertson J. Ectodermal and ectomesenchymal marker expression in primary cell lines of complex and compound odontomas: a pilot study. ACTA ACUST UNITED AC 2019; 68:132-141. [PMID: 31014063 DOI: 10.23736/s0026-4970.19.04166-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Odontomas are odontogenic tumors with hamartoma features that are classified as compound or complex. Our objective was to characterize the proliferation of ectodermal and ectomesenchymal profile markers of primary cell cultures of complex and compound odontomas. METHODS Four samples of compound odontomas (OdCm) and three of complex odontomas (OdCx) were obtained from patients attending the Oral Pathology and Medicine Clinic of the Graduate Dental School, National Autonomous University of Mexico for primary culture generation. MTT, immunocytochemistry and RT-PCR assays of CD34, Sox2, Amel, Ambn, p21, EDAR, Msx1, Msx2, Pax9, RUNX2, BSP, OPN, Barx1 and GAPDH (control) were performed. Additionally, six paraffin-embedded odontomas were obtained for immunocytochemistry and RT-PCR validation assays. The mean and standard deviation were determined, and ANOVA and Kruskall-Wallis tests were performed. RESULTS Cultured compound odontoma exhibited higher proliferation, and an ectomesenchymal immunocytochemistry profile with predominant expression of Amel, BSP, Pax9, EDAR, Barx and Msx2; in complex cultured odontoma Sox2, CD34, RUNX2 and OPN predominated. Our statistical analysis showed a significant difference in PCR analysis (P<0.05) for OPN and CD34. Paraffin-embedded odontomas showed similar pattern with difference for NGFR and Sox2 for immunohistochemistry and EDAR, BARX1 and PAX9 for RT-PCR assays. CONCLUSIONS The results suggested heterogeneous behavior for both odontoma cell lines, because in compound odontomas predominant biomarkers are related to the enamel knot, late-stage odontogenesis and ectomesenchymal interactions; and in complex odontoma the significant expression of CD34 and OPN could be responsible for the difference behavior and mineralized amorphous structure.
Collapse
Affiliation(s)
- David A Trejo-Remigio
- Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico
| | - Luis F Jacinto-Alemán
- Laboratory of Cell Culture and Immunohistochemistry, Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico
| | - Elba R Leyva-Huerta
- Service of Oral Pathology Diagnosis, Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico
| | | | - Javier Portilla-Robertson
- Department of Oral Medicine and Pathology, Graduate Dental School, National Autonomous Mexico University, Mexico City, Mexico -
| |
Collapse
|
5
|
Zhang Y, Ji D, Li L, Yang S, Zhang H, Duan X. ClC-7 Regulates the Pattern and Early Development of Craniofacial Bone and Tooth. Am J Cancer Res 2019; 9:1387-1400. [PMID: 30867839 PMCID: PMC6401512 DOI: 10.7150/thno.29761] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/09/2019] [Indexed: 11/05/2022] Open
Abstract
Human CLCN7 encodes voltage-gated chloride channel 7 (ClC-7); mutations of CLCN7 lead to osteopetrosis which is characterized by increased bone mass and impaired osteoclast function. In our previous clinical practice, we noticed that osteopetrosis patients with CLCN7 mutations had some special deformities in craniofacial morphology and tooth dysplasia. It is unclear whether these phenotypes are the typical features of CLCN7 involved osteopetrosis and whether ClC-7 could regulate the development of craniofacial bone and tooth in some signaling pathways. Methods: First, we collected 80 osteopetrosis cases from the literature and compared their craniofacial and dental phenotypes. Second, four osteopetrosis pedigrees with CLCN7 mutations were recruited from our clinic for gene testing and clinical analysis of their craniofacial and dental phenotypes. Third, we used a zebrafish model with clcn7 morpholino treatment to detect the effects of ClC-7 deficiency on the development of craniofacial and dental phenotypes. General observation, whole mount alcian blue and alizarin red staining, whole mount in situ hybridization, scanning electron microscope observation, lysoSensor staining, Q-PCR and western blotting were performed to observe the in vivo characteristics of craniofacial bone and tooth changes. Fourth, mouse marrow stromal cells were further primarily cultured to detect ClC-7 related mRNA and protein changes using siRNA, Q-PCR and western blotting. Results: Over 84% of osteopetrosis patients in the literature had some typical craniofacial and tooth phenotypes, including macrocephaly, frontal bossing, and changes in shape and proportions of facial skeleton, and these unique features are more severe and frequent in autosomal recessive osteopetrosis than in autosomal dominant osteopetrosis patients. Our four pedigrees with CLCN7 mutations confirmed the aforementioned clinical features. clcn7 knockdown in zebrafish reproduced the craniofacial cartilage defects and various dental malformations combined the decreased levels of col10a1, sp7, dlx2b, eve1, and cx43. Loss of clcn7 function resulted in lysosomal storage in the brain and jaw as well as downregulated cathepsin K (CTSK). The craniofacial phenotype severity also presented a dose-dependent relationship with the levels of ClC-7 and CTSK. ClC-7/CTSK further altered the balance of TGF-β/BMP signaling pathway, causing elevated TGF-β-like Smad2 signals and reduced BMP-like Smad1/5/8 signals in clcn7 morphants. SB431542 inhibitor of TGF-β pathway partially rescued the aforementioned craniofacial bone and tooth defects of clcn7 morphants. The ClC-7 involved CTSK/BMP and SMAD changes were also confirmed in mouse bone marrow stromal cells. Conclusion: These findings highlighted the vital role of clcn7 in zebrafish craniofacial bone and tooth development and mineralization, revealing novel insights for the causation of osteopetrosis with CLCN7 mutations. The mechanism chain of ClC-7/CTSK/ TGF-β/BMP/SMAD might explain the typical craniofacial bone and tooth changes in osteopetrosis as well as pycnodysostosis patients.
Collapse
|
6
|
Abstract
The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Murphy B, Michel A, LaDouceur E, Bell C, Lin M, Imai D. Ameloblastoma of the Jaw in Three Species of Rodent: a Domestic Brown Rat ( Rattus norvegicus ), Syrian Hamster ( Mesocricetus auratus ) and Amargosa Vole ( Microtus californicus scirpensis ). J Comp Pathol 2017; 157:145-149. [DOI: 10.1016/j.jcpa.2017.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/28/2022]
|
8
|
Mancinelli E, Capello V. Anatomy and Disorders of the Oral Cavity of Rat-like and Squirrel-like Rodents. Vet Clin North Am Exot Anim Pract 2016; 19:871-900. [PMID: 27497210 PMCID: PMC7110795 DOI: 10.1016/j.cvex.2016.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The order Rodentia comprises more than 2000 species divided into 3 groups based on anatomic and functional differences of the masseter muscle. Myomorph and sciuromorph species have elodont incisors and anelodont cheek teeth, unlike hystrichomorph species which have full anelodont dentition. Diseases of incisors and cheek teeth of rat-like and squirrel-like rodents result in a wide variety of symptoms and clinical signs. Appropriate diagnostic testing and imaging techniques are required to obtain a definitive diagnosis, formulate a prognosis, and develop a treatment plan. A thorough review of elodontoma, odontoma, and pseudo-odontoma is provided, including treatment of pseudo-odontomas in prairie dogs.
Collapse
Affiliation(s)
- Elisabetta Mancinelli
- Bath Referrals, Rosemary Lodge Veterinary Hospital, Bath, Wellsway, Somerset BA2 5RL, UK.
| | - Vittorio Capello
- Clinica Veterinaria S.Siro, Via Lampugnano, 99, Milano 20151, Italy; Clinica Veterinaria Gran Sasso, Via Donatello, 26, Milano 20134, Italy
| |
Collapse
|
9
|
Duan P, Bonewald LF. The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 2016; 77:23-29. [PMID: 27210503 DOI: 10.1016/j.biocel.2016.05.015] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 02/05/2023]
Abstract
The Wnt signaling pathway is known as one of the important molecular cascades that regulate cell fate throughout lifespan. The Wnt signaling pathway is further separated into the canonical signaling pathway that depends on the function of β-catenin (Wnt/β-catenin pathway) and the noncanonical pathways that operate independently of β-catenin (planar cell polarity pathway and Wnt/Ca(2+) pathway). The Wnt/β-catenin signaling pathway is complex and consists of numerous receptors, inhibitors, activators, modulators, phosphatases, kinases and other components. However, there is one central, critical molecule to this pathway, β-catenin. While there are at least 3 receptors, LRP 4, 5 and 6, and over twenty activators known as the wnts, and several inhibitors such as sclerostin, dickkopf and secreted frizzled-related protein, these all target β-catenin. These regulators/modulators function to target β-catenin either to the proteasome for degradation or to the nucleus to regulate gene expression. Therefore, the interaction of β-catenin with different factors and Wnt/β-catenin signaling pathway will be the subject of this review with a focus on how this pathway relates to and functions in the formation and maintenance of bone and teeth based on mainly basic and pre-clinical research. Also in this review, the role of this pathway in osteocytes, bone cells embedded in the mineralized matrix, is covered in depth. This pathway is not only important in mineralized tissue growth and development, but for modulation of the skeleton in response to loading and unloading and the viability and health of the adult and aging skeleton.
Collapse
Affiliation(s)
- Peipei Duan
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - L F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
10
|
ClC-7 Deficiency Impairs Tooth Development and Eruption. Sci Rep 2016; 6:19971. [PMID: 26829236 PMCID: PMC4734291 DOI: 10.1038/srep19971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
CLCN7 gene encodes the voltage gated chloride channel 7 (ClC-7) in humans. The mutations in CLCN7 have been associated with osteopetrosis in connection to the abnormal osteoclasts functions. Previously, we found that some osteopetrosis patients with CLCN7 mutations suffered from impacted teeth and root dysplasia. Here we set up two in vivo models under a normal or an osteoclast-poor environment to investigate how ClC-7 affects tooth development and tooth eruption. Firstly, chitosan-Clcn7-siRNA nanoparticles were injected around the first maxillary molar germ of newborn mice and caused the delay of tooth eruption and deformed tooth with root dysplasia. Secondly, E13.5 molar germs infected with Clcn7 shRNA lentivirus were transplanted under the kidney capsule and presented the abnormal changes in dentin structure, periodontal tissue and cementum. All these teeth changes have been reported in the patients with CLCN7 mutation. In vitro studies of ameloblasts, odontoblasts and dental follicle cells (DFCs) were conducted to explore the involved mechanism. We found that Clcn7 deficiency affect the differentiation of these cells, as well as the interaction between DFCs and osteoclasts through RANKL/OPG pathway. We conclude that ClC-7 may affect tooth development by directly targeting tooth cells, and regulate tooth eruption through DFC mediated osteoclast pathway.
Collapse
|
11
|
Alfaqeeh S, Oralova V, Foxworthy M, Matalova E, Grigoriadis AE, Tucker AS. Root and Eruption Defects in c-Fos Mice Are Driven by Loss of Osteoclasts. J Dent Res 2015; 94:1724-31. [PMID: 26442949 DOI: 10.1177/0022034515608828] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
c-Fos homozygous mice lack osteoclasts with a failure of the teeth to erupt and with an arrest of root development. Here, we characterize the defects associated with the failure in root development and the loss of the tooth-bone interface, and we investigate the underlying causes. We show that, while homozygous c-Fos mice have no multinucleated osteoclasts, heterozygous mice have a reduction in the number of osteoclasts with a reduction in the tooth-bone interface during development and subtle skeletal defects postnatally. In the homozygous mutants bone is found to penetrate the tooth, particularly at the apical end, physically disrupting the root forming HERS (Hertwig's epithelial root sheath) cells. The cells of the HERS continue to proliferate but cannot extend downward due to the presence of bone, leading to a loss of root formation. Tooth germ culture showed that the developing tooth invaded the static bone in mutant tissue, rather than the bone encroaching on the tooth. Although c-Fos has been shown to be expressed in developing teeth, the defect in maintenance of the tooth-bone interface appears to be driven solely by the lack of osteoclasts, as this defect can be rescued in the presence of donor osteoclasts. The rescue suggests that signals from the tooth recruit osteoclasts to clear the bone from around the tooth, allowing the tooth to grow, form roots, and later erupt.
Collapse
Affiliation(s)
- S Alfaqeeh
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - V Oralova
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - M Foxworthy
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK
| | - E Matalova
- Institute of Animal Physiology and Genetics CAS, v.v.i., Brno, Czech Republic Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - A E Grigoriadis
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK
| | - A S Tucker
- Department of Craniofacial Development and Stem Cell Biology, Department of Orthodontics, King's College London, London, UK
| |
Collapse
|
12
|
Guo J, Bervoets TJM, Henriksen K, Everts V, Bronckers ALJJ. Null mutation of chloride channel 7 (Clcn7) impairs dental root formation but does not affect enamel mineralization. Cell Tissue Res 2015; 363:361-70. [PMID: 26346547 PMCID: PMC4735262 DOI: 10.1007/s00441-015-2263-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022]
Abstract
ClC-7, located in late endosomes and lysosomes, is critical for the function of osteoclasts. Secretion of Cl(-) by the ruffled border of osteoclasts enables H(+) secretion by v-H(+)-ATPases to dissolve bone mineral. Mice lacking ClC-7 show altered lysosomal function that leads to severe lysosomal storage. Maturation ameloblasts are epithelial cells with a ruffled border that secrete Cl(-) as well as endocytose and digest large quantities of enamel matrix proteins during formation of dental enamel. We tested the hypothesis that ClC-7 in maturation ameloblasts is required for intracellular digestion of matrix fragments to complete enamel mineralization. Craniofacial bones and developing teeth in Clcn7(-/-) mice were examined by micro-CT, immunohistochemistry, quantified histomorphometry and electron microscopy. Osteoclasts and ameloblasts in wild-type mice stained intensely with anti-ClC-7 antibody but not in Clcn7(-/-) mice. Craniofacial bones in Clcn7(-/-) mice were severely osteopetrotic and contained 1.4- to 1.6-fold more bone volume, which was less mineralized than the wild-type littermates. In Clcn7(-/-) mice maturation ameloblasts and osteoclasts highly expressed Ae2 as in wild-type mice. However, teeth failed to erupt, incisors were much shorter and roots were disfigured. Molars formed a normal dental crown. In compacted teeth, dentin was slightly less mineralized, enamel did not retain a matrix and mineralized fairly normal. We concluded that ClC-7 is essential for osteoclasts to resorb craniofacial bones to enable tooth eruption and root development. Disruption of Clcn7 reduces bone and dentin mineral density but does not affect enamel mineralization.
Collapse
Affiliation(s)
- Jing Guo
- Department Oral Cell Biology, Academic Center of Dentistry Amsterdam (ACTA), University of Amsterdam and VU-University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands. .,School of Stomatology/Dental Clinic, Zhejiang Chinese Medical University, Mailbox 97, Binwen Road 548, Binjiang District, 310053, Hangzhou, China.
| | - Theodore J M Bervoets
- Department Oral Cell Biology, Academic Center of Dentistry Amsterdam (ACTA), University of Amsterdam and VU-University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Kim Henriksen
- Nordic Bioscience Biomarkers and Research A/S, Hovedgade 207, 2730, Herlev, Denmark
| | - Vincent Everts
- Department Oral Cell Biology, Academic Center of Dentistry Amsterdam (ACTA), University of Amsterdam and VU-University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Antonius L J J Bronckers
- Department Oral Cell Biology, Academic Center of Dentistry Amsterdam (ACTA), University of Amsterdam and VU-University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Microscopic analysis of molar--incisor malformation. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 119:544-52. [PMID: 25544405 DOI: 10.1016/j.oooo.2014.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/10/2014] [Accepted: 10/19/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Molar-incisor malformation (MIM) is a newly discovered type of dental anomaly that involves a characteristic root malformation of the permanent first molars. The aim of this study was to reveal the microstructure of MIM teeth in order to determine their origin. STUDY DESIGN Four MIM teeth were extracted from a 9-year-old girl due to severe mobility. The detailed microstructure of the teeth was determined by examinations with micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, immunohistochemical staining, and scanning electron microscopy to reveal the detailed microstructure. RESULTS Micro-CT and H&E staining revealed the pulpal floor comprising three layers: upper, middle, and lower. Amorphous hard tissues and hyperactive cells were observed in the middle layer of the pulpal floor, and the cells stained positively for dentin sialoprotein and osteocalcin, but not for collagen XII. CONCLUSION The results of the present study imply that MIM-affected molars probably result from inappropriate differentiation of the apical pulp and dental follicle.
Collapse
|
14
|
Castaneda B, Simon Y, Ferbus D, Robert B, Chesneau J, Mueller C, Berdal A, Lézot F. Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice. PLoS One 2013; 8:e80054. [PMID: 24278237 PMCID: PMC3836916 DOI: 10.1371/journal.pone.0080054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/30/2013] [Indexed: 02/05/2023] Open
Abstract
The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 (-/-)) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 (-/-) mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 (-/-) mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 (-/-) Rank(Tg) mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 (-/-) mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.
Collapse
Affiliation(s)
- Beatriz Castaneda
- INSERM, UMR 872, Centre de Recherche des Cordeliers, Laboratoire de Physiopathologie Orale Moléculaire, Equipe 5, Paris, F-75006 France; Université Paris-5, Paris, F-75006; Université Paris-6, Paris, F-75006 France; Université Paris-7, Paris, F-75006 France ; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
New population of odontoblasts responsible for tooth root formation. Gene Expr Patterns 2013; 13:197-202. [PMID: 23603379 DOI: 10.1016/j.gep.2013.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/02/2013] [Accepted: 04/10/2013] [Indexed: 01/09/2023]
Abstract
Root formation is initiated with the extension of Hertwig's epithelial root sheath (HERS) after crown morphogenesis. To date, little is known about the molecular and cellular mechanisms controlling root formation. Recently we found rootless molars are formed in the dental mesenchyme-specific β-catenin conditional knockout mice. The striking root phenotypes of these mutant mice result from the disrupted differentiation of differentiating odontoblasts, caused by ablation of β-catenin during initiation of root formation. Here we show the cellular and molecular characteristics of differentiating odontoblasts using histochemistry and immunohistochemistry. These cells were not found in crown formation, but appeared only in the apical end of developing tooth, thus we have named these cells "apical odontoblasts" (AOds). AOds appeared immediately after HERS formation and were always present on the apical side of developing roots until root formation was complete. These findings indicate that AOds are closely associated with the transition from crown to root and with root elongation. In AOds, several transcription factors, including Nfic, Creb3l1, and Osx, as well as β-catenin and alkaline phosphatase were expressed but Phex and Dspp were not expressed. Taken together, our results indicate that AOds are the principal cells responsible for tooth root formation. These findings may contribute to the further understanding of the mechanisms underlying tooth root formation and root regeneration.
Collapse
|
16
|
Kim T, Bae C, Lee J, Ko S, Yang X, Jiang R, Cho E. β-catenin is Required in Odontoblasts for Tooth Root Formation. J Dent Res 2013; 92:215-21. [DOI: 10.1177/0022034512470137] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The tooth root is an important part of the tooth that works together with the surrounding periodontium to maintain the tooth in the alveolar socket. The root develops after crown morphogenesis. While the molecular and cellular mechanisms of early tooth development and crown morphogenesis have been extensively studied, little is known about the molecular mechanisms controlling tooth root formation. Here, we show that β-catenin is strongly expressed in odontoblast-lineage cells and is required for root formation. Tissue-specific inactivation of β-catenin in developing odontoblasts produced molars lacking roots and aberrantly thin incisors. At the beginning of root formation in the mutant molars, the cervical loop epithelium extended apically to form Hertwig’s epithelial root sheath (HERS), but root odontoblast differentiation was disrupted and followed by the loss of some HERS inner layer cells. However, the outer layer of the HERS extended without the root, and the mutant molars finally erupted. The periodontal tissues extensively invaded the dental pulp. These results indicate that there is a cell-autonomous requirement for Wnt/β-catenin signaling in the dental mesenchyme for root formation.
Collapse
Affiliation(s)
- T.H. Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 561-756, South Korea
| | - C.H. Bae
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 561-756, South Korea
| | - J.C. Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 561-756, South Korea
| | - S.O. Ko
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 561-756, South Korea
| | - X. Yang
- Genetic Laboratory of Development and Disease, Institute of Biotechnology, China
| | - R. Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - E.S. Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju 561-756, South Korea
| |
Collapse
|
17
|
Kim TH, Bae CH, Jang EH, Yoon CY, Bae Y, Ko SO, Taketo MM, Cho ES. Col1a1-cre mediated activation of β-catenin leads to aberrant dento-alveolar complex formation. Anat Cell Biol 2012; 45:193-202. [PMID: 23094208 PMCID: PMC3472146 DOI: 10.5115/acb.2012.45.3.193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/10/2012] [Accepted: 08/18/2012] [Indexed: 01/05/2023] Open
Abstract
Wnt/β-catenin signaling plays a critical role in bone formation and regeneration. Dentin and cementum share many similarities with bone in their biochemical compositions and biomechanical properties. Whether Wnt/β-catenin signaling is involved in the dento-alveolar complex formation is unknown. To understand the roles of Wnt/β-catenin signaling in the dento-alveolar complex formation, we generated conditional β-catenin activation mice through intercross of Catnb+/lox(ex3) mice with Col1a1-cre mice. In mutant mice, tooth formation and eruption was disturbed. Lower incisors and molars did not erupt. Bone formation was increased in the mandible but tooth formation was severely disturbed. Hypomineralized dentin was deposited in the crown but roots of molars were extremely short and distorted. In the odontoblasts of mutant molars, expression of dentin matrix proteins was obviously downregulated following the activation of β-catenin whereas that of mineralization inhibitor was increased. Cementum and periodontal ligament were hypoplastic but periodontal space was narrow due to increased alveolar bone formation. While cementum matrix proteins were decreased, bone matrix proteins were increased in the cementum and alveolar bone of mutant mice. These results indicate that local activation of β-catenin in the osteoblasts and odontoblasts leads to aberrant dento-alveolar complex formation. Therefore, appropriate inhibition of Wnt/β-catenin signaling is important for the dento-alveolar complex formation.
Collapse
Affiliation(s)
- Tak-Heun Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liao W, Zhao R, Lu L, Zhang R, Zou J, Xu T, Wu C, Tang J, Deng Y, Lu X. Overexpression of a novel osteopetrosis-related gene CCDC154 suppresses cell proliferation by inducing G2/M arrest. Cell Cycle 2012; 11:3270-9. [PMID: 22895184 DOI: 10.4161/cc.21642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteopetrosis, a disorder of skeletal bone, can cause death during childhood. We previously described a new spontaneous autosomal recessive osteopetrosis mouse mutant, "new toothless" (ntl). In this study, we reported for the first time the identification, cloning and characterization of the coiled-coil domain-containing 154 (CCDC154), a novel gene whose deletion of ~5 kb sequence including exons 1-6 was completely linked to the ntl mutant. The CCDC154 was conserved between mouse and human and is wildly expressed in mouse tissues. The cellular localization of CCDC154 was in the early endosomes. Overexpression of CCDC154 inhibited cell proliferation of HEK293 cells by inducing G 2/M arrest. CCDC154 also inhibited tumor cell growth, and the soft agar assay revealed a significant decrease of the colony size of Hela cells upon transfection of CCDC154. Our results indicate that CCDC154 is a novel osteopetrosis-related gene involved in cell cycle regulation and tumor suppression growth.
Collapse
Affiliation(s)
- Wanqin Liao
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Xue Y, Wang W, Mao T, Duan X. Report of two Chinese patients suffering from CLCN7-related osteopetrosis and root dysplasia. J Craniomaxillofac Surg 2011; 40:416-20. [PMID: 21962762 DOI: 10.1016/j.jcms.2011.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 07/27/2011] [Accepted: 07/30/2011] [Indexed: 12/15/2022] Open
Abstract
Osteopetrosis is a group of genetic bone disorders. There are three types of osteopetrosis: autosomal recessive osteopetrosis (ARO), autosomal dominant osteopetrosis type II (ADO II), and intermediate autosomal recessive osteopetrosis (IARO). The prevalence of ADO II is about 1:100,000, while no more than 20 cases of IARO have been reported worldwide. We present the first Chinese IARO patient with a novel homozygous variant in CLCN7 gene (p. Pro470Leu) and an ADO II patient with a heterozygous variant in CLCN7 gene (p. Arg286Trp). In addition to general osteosclerosis, the striking features of these two patients are unerupted teeth with root dysplasia. We speculate that ClC-7 in different tooth cells may contribute directly to the root development, the defect of ClC-7 may have a dose dependent effect on the phenotype of root dysplasia, and the tooth position may also affect the root phenotype with dysfunctional ClC-7.
Collapse
Affiliation(s)
- Yang Xue
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, 145 West Changle Road, Xi'an, Shaanxi 710032, PR China
| | | | | | | |
Collapse
|
20
|
Berdal A, Castaneda B, Aïoub M, Néfussi JR, Mueller C, Descroix V, Lézot F. Osteoclasts in the dental microenvironment: a delicate balance controls dental histogenesis. Cells Tissues Organs 2011; 194:238-43. [PMID: 21576913 DOI: 10.1159/000324787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The impact of osteoclast activity on dental development has been previously analyzed but in the context of severe osteopetrosis. The present study sought to investigate the effects of osteoclast hypofunction,present in Msx2 gene knockin mutant mice (Msx2-/-), and hyperfunction, in transgenic mice driving RANK over-expression in osteoclast precursors (RANK(Tg)), on tooth development. In Msx2-/- mice, moderate osteopetrosis was observed, occurring exclusively in the periodontal region. Microradiographical and histological analyses revealed an abnormal dental epithelium histogenesis that gave rise to odontogenic tumor-like structures. This led to impaired tooth eruption, especially of the third mandibular molars. In RANK(Tg) mice, root histogenesis showed site-specific upregulation of dental cell proliferation and differentiation rates. This culminated in roots with a reduced diameter and pulp size albeit of normal length. These two reverse experimental systems will enable the investigation of distinctive dental cell and osteoclast communication in normal growth and tumorigenesis.
Collapse
Affiliation(s)
- A Berdal
- INSERM, UMR 872, Cordeliers Research Center, Team 5, Laboratory of Oral Molecular Physiopathology, Universities Paris-Diderot, Pierre and Marie Curie and Paris-Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Edwards JR, Mundy GR. Advances in osteoclast biology: old findings and new insights from mouse models. Nat Rev Rheumatol 2011; 7:235-43. [PMID: 21386794 DOI: 10.1038/nrrheum.2011.23] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The maintenance of adequate bone mass is dependent upon the controlled and timely removal of old, damaged bone. This complex process is performed by the highly specialized, multinucleated osteoclast. Over the past 15 years, a detailed picture has emerged describing the origins, differentiation pathways and activation stages that contribute to normal osteoclast function. This information has primarily been obtained by the development and skeletal analysis of genetically modified mouse models. Mice harboring mutations in specific genetic loci exhibit bone defects as a direct result of aberrations in normal osteoclast recruitment, formation or function. These findings include the identification of the RANK-RANKL-OPG system as a primary mediator of osteoclastogenesis, the characterization of ion transport and cellular attachment mechanisms and the recognition that matrix-degrading enzymes are essential components of resorptive activity. This Review focuses on the principal observations in osteoclast biology derived from genetic mouse models, and highlights emerging concepts that describe how the osteoclast is thought to contribute to the maintenance of adequate bone mass and integrity throughout life.
Collapse
Affiliation(s)
- James R Edwards
- Institute of Musculoskeletal Sciences, University of Oxford, Nuffield Orthopedic Center, Windmill Road, Oxford OX3 7LD, UK.
| | | |
Collapse
|